首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, trace metals such as Hg, Pb, As, Cd, Cu, Fe, Mn and Zn in underground water samples obtained from three wells, an ash-pond and drinking water located near the Yatagan Thermal Power Plant were measured. As, Hg, Cu and Zn contents of the underground water were lower than those reported in the EEC (European Economic Community) and WHO (World Health Organization) guidelines. In contrast, the levels of Fe, Pb, Cd and Mn in some groundwater samples were higher than EEC and WHO guideline values. The trace metal concentrations in coal ash-pond water were observed to be lower than water quality standards with the exception of Pb. The obtained results indicated that the trace metal concentration in the sampled drinking water site did not exceed WHO limits.  相似文献   

2.
Street sediment collected in Sault Ste. Marie, Ontario was examined for trace element composition (As, Cd, Cr, Cu, Fe, Pb, Hg, Ni and Zn) and the metal partitioning to various sediment properties was determined by sequential extraction. Total Ni, Cu, Zn and Pb concentrations exceeded the lowest effect levels specified in the Ontario Provincial Sediment Quality Guidelines for Metals (Environment Ontario, 1992) and derived from bioassay studies. According to these Guidelines, the disposal of such sediment has to be guided by environmental considerations. A significant fraction of these metals was extractable in 0.5 N HCl over a 12-hour period and considered as potentially bioavailable. The major accumulative phases of toxic metals in this sediment are exchangeable, carbonate, Fe/Mn oxides and organic matter but the relative importance of each phase varied for individual metals. Approximately 20% of the total extractable Cd is found in each of these four fractions. Pb, Zn and Mn are predominantly bound to carbonates, Fe/Mn oxides and organic matter. Cu shows a high affinity for organic matter and to a lesser extent for carbonates. Elevated levels of Cd, Pb, Cu, Zn, Mn and Cr in the exchangeable and/or soluble phase suggest that sediment associated metals, mobilised from streets in Sault Ste. Marie during runoff and snowmelt, would adversely impact water quality in the receiving waters. However, large fractions of the total metal load are associated with coarser particles which are unlikely to be transported through the drainage system into receiving waters.  相似文献   

3.
Heavy metal inputs to Mississippi Delta sediments   总被引:1,自引:0,他引:1  
Heavy metal concentrations were determined in suspended particulates, filtered water and sediment collected in the Mississippi River and from its marine delta. More than 90% of the metal load of the river is associated with particulate matter, which is relatively constant in chemical composition with time and place. The Mississippi River suspended material is similar to average crystal rocks in Fe, Al, V, Cr, Cu, Co, Mn, and Ni concentration but is generally enriched in Zn, Cd and Pb. Sediment cores dated by the Pb 210 method show that the Cd and Pb enrichments are recent phenomenon and are most likely due to the activities of man. About 6000 tonne of Pb and 300 tonne of Cd are being added to the delta sediments by man each year, more than 30 times the amount added to the Southern California Bight. River particulate matter is essentially identical to deltaic sediments in Al, Fe, Cr, V, Cd and Pb concentration, but the sediments are depleted in Co, Cu, Mn, Ni and Zn by 20 to 40%. Chemical leaching of the solids show the metal losses to be primarily from the oxide phase, suggesting diagenetic reduction and mobilization as a mechanism. Trace metal concentrations in filtered Mississippi River water were below the limits for safe drinking water and were similar to world average river values. The abundant river suspended matter and high pH combine to keep dissolved trace metal concentrations low.  相似文献   

4.
Twenty-three metallic elements, including almost all essential and toxic metals such as lead, cadmium, mercury, arsenic, silver, and thallium, have been quantified in 35 types of bottled and canned Polish beer by using double-focusing sector field inductively coupled plasma mass spectrometry (ICP-MS) with ultrasonic nebulization. The samples were digested using concentrated HNO3 in closed PTFE vessels and applying microwave energy under pressure. The means and medians of the concentrations of Rb, Mn, and Fe were on the order of 200 ng/mL; Cu, Zn, V, Cr, Sn, As, Pb, and Ni were detected at 1-5 ng/mL; Ag, Ga, Cd, Co, Cs, Hg, U, and Sb were found at < 1 ng/mL; and In, Tl, Bi, and Th were present at < 0.1 ng/mL. The concentrations of Hg, Cd, As, Pb, and Zn were 1-3 orders of magnitude lower than proposed tolerance limits. The interdependences among determined trace elements were examined using the principal component analysis (PCA) method. The PCA model explained 74% of the total variance. The metals tend to cluster together (As, Tl, Cs, Sn, Th, Bi, and Hg; Cd and Co; Cs and Cr; Fe and Zn; Mn and V).  相似文献   

5.
About 20 trace elements were analysed in samples from 60 boreholes located in the Upper East and West Regions of Ghana. Findings from the analysis indicated that most trace element concentrations were higher as compared to their concentrations found in natural water systems. The available chemical data of rocks in the area suggest that local bedrock is the dominant source of the trace elements found in goundwater. Aluminium, Fe, Mn, Zn, Sr, and Ba were excessively high in concentration. In comparison with WHO guidelines, all except Al, Fe, Fe and Mn values were below the recommended limits.  相似文献   

6.
Freshly deposited stream sediments from six urban centres of the Ganga Plain were collected and analysed for heavy metals to obtain a general scenery of sediment quality. The concentrations of heavy metals varied within a wide range for Cr (115–817), Mn (440–1 750), Fe (28 700–61 100), Co (11.7–29.0), Ni (35–538), Cu (33–1 204), Zn (90–1 974), Pb (14–856) and Cd (0.14–114.8) in mg kg-1. Metal enrichment factors for the stream sediments were <1.5 for Mn, Fe and Co; 1.5–4.1 for Cr, Ni, Cu, Zn and Pb; and 34 for Cd. The anthropogenic source in metals concentrations contributes to 59% Cr, 49% Cu, 52% Zn, 51% Pb and 77% Cd. High positive correlation between concentrations of Cr/Ni, Cr/Cu, Cr/Zn, Ni/Zn, Ni/Cu, Cu/Zn, Cu/Cd, Cu/Pb, Fe/Co, Mn/Co, Zn/Cd, Zn/Pb and Cd/Pb indicate either their common urban origin or their common sink in the stream sediments. The binding capacity of selected metals to sediment carbon and sulphur decreases in order of Zn > Cu > Cr > Ni and Cu > Zn > Cr > Ni, respectively. Stream sediments from Lucknow, Kanpur, Delhi and Agra urban centres have been classified by the proposed Sediment Pollution Index as highly polluted to dangerous sediments. Heavy metal analysis in the <20-μm-fraction of stream sediments appears to be an adequate method for the environmental assessment of urbanisation activities on alluvial rivers. The present study reveals that urban centres act as sources of Cr, Ni, Cu, Zn, Pb and Cd and cause metallic sediment pollution in rivers of the Ganga Plain.  相似文献   

7.
太原市污灌区土壤重金属污染现状评价   总被引:1,自引:0,他引:1  
对太原市污灌区土壤重金属分布特征进行了分析评价,结果表明重金属Pb、Zn、Cu、Ni、Mn、Cr、As、Hg、Cd含量均值均未超过土壤环境质量标准(GB15618—1995),但其平均值均显著高于太原市土壤背景值。各重金属间的相关分析表明,Pb、Zn、Cu、Ni、Mn、Cr、As、Cd之间呈极显著相关,说明这8种元素污染源可能相同。Hg是本区表层土壤重金属污染的主要因子,重金属元素的污染程度依次为Hg〉Cd〉Pb〉As〉Cu〉Zn〉Cr〉Mn〉Ni。土壤重金属单项污染指数均值均大于1,综合污染指数为2.81,总体上,污染水平为中度及其以上。各种重金属单因子污染指数和综合指数在研究区有相似的空间分布格局,总体分布趋势为东南部小店地区和中南部晋源区相对较高,南部清徐县相对较小;通过因子分析并结合污灌区污染源调查,表明Hg除受污水灌溉的影响外,燃煤释放的Hg可能是重要来源之一,Cd、Zn、Pb和Cu可能来自污水灌溉和大气沉降,以污水灌溉的贡献为主,Ni、Mn、As、Cr来自污水灌溉。Hg、Cd是太原市污灌区土壤中需要优先控制的重金属。  相似文献   

8.
The objective of this study was to test the suitability of a simple approach to identify the direction from where airborne heavy metals reach the study area as indication of their sources. We examined the distribution of heavy metals in soil profiles and along differently exposed transects. Samples were taken from 10 soils derived from the same parent material along N-, S-, and SE-exposed transects at 0—10, 10—20, and 20—40 cm depth and analyzed for total Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations. The heavy metal concentrations at 0—10 cm were larger than background concentrations in German arable soils except for Cr (Cd: 0.6—1.8 mg kg—1; Cr: 39—67; Cu: 40—77; Ni: 87—156; Pb: 48—94; Zn: 71—129; Fe: 26—34 g kg—1; Mn: 1.1—2.4). Decreasing Cd, Cu, Mn, and Pb concentrations with increasing soil depth pointed at atmospheric inputs. Aluminum and Ni concentrations increased with soil depth. Those of Fe, Cr, and Zn did not change with depth indicating that inputs at most equalled leaching losses. The Pb accumulation in the surface layer (i.e. the ratio between the Pb concentrations at 0—10 to those at 20—40 cm depth) was most pronounced at N-exposed sites; Pb obviously reached Mount Križna mainly by long-range transport from N where several industrial agglomerations are located. Substantial Cd, Cu, and Mn accumulations at the S- and SE-exposed sites indicated local sources such as mining near to the study area which probably are also the reason for slight Cr and Zn accumulations in the SE-exposed soils. Based on a principal component analysis of the total concentrations in the topsoils four metal groups may be distinguished: 1. Cr, Ni, Zn; 2. Mn, Cd; 3. Pb (positive loading), Cu (negative loading); 4. Al, Fe, indicating common sources and distribution patterns. The results demonstrate that the spatial distribution of soil heavy metal concentrations can be used as indication of the location of pollution sources.  相似文献   

9.
新乡市大棚菜田土壤重金属积累特征及污染评价   总被引:4,自引:0,他引:4  
采用微波消解-ICP-AES技术,测定不同种植年限大棚菜田土壤样品中As、Pb、Zn、Cd、Cr、Mn、Ni、Cu等重金属的含量,研究不同种植年限与大棚菜田土壤重金属累积的相关性以及大棚菜田土壤重金属累积特征,并利用地积累指数法进行污染评价。结果表明:大棚菜田土壤重金属Zn、Pb、Ni、Mn和Cu的含量与种植年限具有极显著相关性;大棚菜田土壤中重金属Cd和Cr的含量与种植年限不相关。重金属元素间相关性分析表明,Zn与Pb、Cd、Ni、Mn、Cr、Cu,Pb与Cd、Ni、Mn、Cr、Cu,Cd与Ni、Mn、Cr,Ni与Mn、Cr、Cu,Mn与Cr、Cu具有污染同源性,Cu与Cd、Cr不具有污染同源性。地积累指数法污染评价结果显示Cd的污染等级达到了6级,已构成了极严重污染;Zn和Cu的污染等级达到2级,已构成了中度污染;Pb、Mn的污染等级达到1级,已经构成了轻~中度污染;As、Ni、Cr均未构成污染。  相似文献   

10.
Eurasian Soil Science - Background concentrations of heavy metals (Cu, Zn, Ni, Co, Fe, Mn, Cr, Pb, Hg, Cd, Ba, Sr, and Sc) in soils and bottom sediments were determined for the background and...  相似文献   

11.
Wet Deposition of Trace Metals in Singapore   总被引:3,自引:0,他引:3  
The concentrations of 12 trace metals (Al, Cd, Cr, Cu, Co, Fe,Mn, Ni, Pb, Zn, V, and Ti) in wet depositions are reported. Eighty four rainwater samples were collected using an automated wet-only sampler in Singapore for one year (2000) and subjected to chemical analysis using ICP-MS. Based on the volume-weighted meanconcentrations measured, the trace metals were classified into three groups: Al and Fe with an average concentration of largerthan 15 μg L-1, Cr, Cu, Mn, Ni, Pb, Zn, V, and Ti withconcentrations between 1 and 10 μg L-1, and finally Co and Cd with concentrations lower than 1 μg L-1. Elementenrichment factors were calculated to distinguish between naturaland anthropogenic sources. The calculation of crustal enrichmentfactors with Al as the reference element indicated that while Ti,Fe and Mn originated from crustal sources, the remaining trace metals (Cd, Cr, Co, Cu, Ni, Pb, Zn and V) were mainly derived from anthropogenic sources. The removal of the trace metals from the atmosphere by precipitation was influenced by the rainfall amount as well as pH. The magnitude of the measured average annual wet deposition fluxes of Al, Fe, and combustion-generatedelements such as V, Ni, and Cu is higher than that reportedfor other sites outside Singapore, owing to abundant rainfallthroughout the year in this region.  相似文献   

12.
Increasing concerns about potential environmental effects of ethylenediaminetetraacetic acid (EDTA) accumulation in soils require better understanding of its behavior and its effect on trace element mobilization. In this study we investigated the effect of EDTA on soil trace element mobilization in undisturbed soil columns taken from a heavy metal contaminated field. The columns were leached by EDTA solutions of different concentrations under unsaturated, steady‐state conditions. The transport of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sn, Zn) and EDTA was monitored by regularly collecting the leachates. After the termination of the leaching experiment the soil columns were divided into 5 layers to determine trace elements and EDTA concentrations in the soil. The results revealed that the soil analysis alone was not suitable to infer mobilization or immobilization patterns in relation to the EDTA concentration, as the mobilized fraction was too small in relation to the total trace metal concentrations in the soil. Analysis of the leachates displayed that after 2–4 pore volumes the EDTA output concentration reached about 80% of the input concentration. The trace element concentrations in the leachates showed that some elements were mobilized by EDTA (Cd, Cu, Fe, Pb, Co, Ni, Zn) while others were immobilized (Mn, Cr, Mo, Sn) in the soil columns after EDTA application.  相似文献   

13.
The objective of this study was to investigate changes of total concentrations and various extract-defined Al and heavy metal fractions in Slovak agricultural soils during the last 25 years. We compared 7 stored soil samples collected between 1966 and 1970 with samples collected in 1994 at the same sites. Seven fractions of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined with a sequential extraction procedure in all samples. Total concentrations of Cd, Zn, Mn, Ni, and Cu were lower in the 1994 samples; those of Al, Fe, Pb, and Cr were higher. Based on the initial concentrations, the average total concentration changes were: Cd(-10,3%)<Zn(-7,2%)<Mn(-4,8%)<Ni(-2,3%)<Cu(-1,4%)<Al(+2,1%)<Fe(+2,9%)<Cr(+7,4%)<Pb(+8,3%). This row is consistent with the decrease in metal mobility. The differences in salt-extractable metals showed the same pattern; however, changes were more pronounced than for total concentrations. The results suggest that decreases during the last 25 years are caused by higher leaching than deposition rates and increases vice versa. The highest increase in Cr and Pb concentrations is observed in the EDTA-extractable fraction, which mainly characterizes organically bound metals.  相似文献   

14.
Purpose

Heavy metals are among the most common environmental pollutants, which can be introduced into coastal areas from natural and anthropogenic sources, and thereby possibly impact marine organisms and human population. Therefore, the aim of this study was to evaluate the pollution level of Montenegrin coastal sediments by determining the concentrations of 10 metals and metalloids (Fe, Mn, Zn, Cu, Ni, Pb, Cr, Cd, As, and Hg) during one whole decade.

Materials and methods

Sediment samples were collected from 11 sites along the Montenegrin coast during the 2005–2016 exposure to different levels and sources of anthropogenic impact. The extent of pollution was estimated by determining total element concentrations in the sediment. Mineralized samples were analyzed for Cu, Ni, Fe, Mn, Cr, As, Pb, Zn, Cd, and Hg. Pollution status was evaluated using the contamination factor, pollution load index, and geo-accumulation index, as well as statistical methods, such as Pearson correlation coefficient (r) and cluster analysis (CA).

Results and discussion

This study showed that concentrations of individual metals at some locations were extremely high. The metal concentrations (in mg kg?1) ranged as follows: Fe 1995–45,498; Mn 135–1139; Zn 10–1596; Cu 3.8–2719; Ni 2.94–267; Pb 0.1–755; Cr 2.5–369; Cd 0.1–5.4; As 0.1–39.1; and Hg 0.01–14.2. The calculated concentration factor and pollution load index indicates enrichment by either natural processes or anthropogenic influences. The geo-accumulation index value (Igeo) showed that one location was strongly or extremely polluted (3.78?<?Igeo ≤?6.15) with Hg in all investigated years, while extreme Igeo values for four bioactive elements, Pb, Cd, Cu, and Zn, were found in only a few single samples.

Conclusions

On the basis of the obtained values, it can be concluded that generally higher metal contents were distributed in Boka Kotorska Bay sites, although some extreme values were also recorded at the locations outside of the Bay. Geo-accumulation index and pollution load index showed that the metal levels were high enough to pose risk to the ecosystem.

  相似文献   

15.
为掌握福建闽江河口湿地重金属污染特征,对闽江河口湿地不同监测点重金属污染状况进行全面调查采样,利用综合污染指数法和地累积指数法对重金属污染状况进行评价。结果表明,福建闽江河口湿地重金属污染比较严重,除Ni和Cr外,Cu、Pb、Zn、Cd、Mn均超过土壤环境质量标准(I级)。除Ni和Cr单项污染指数无污染外,其他监测点均有不同程度的重金属污染,污染程度表现为Pb〉Cu〉Zn〉Cd;综合污染指数除潭头港和鳝鱼滩为轻度污染,其他6个监测点均达到中度污染以上,表明闽江河口湿地存在严重的重金属复合污染。地累积指数除Pb、Zn、Cd污染达到中或轻度污染水平,其他重金属均无污染。  相似文献   

16.
We present the concentrations and distribution patterns of nine acid leachable trace metals (ALTMs) Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, and Cd in the soil samples from the five century old Pachuca-Mineral de Monte mining district of the Central Mexico. The ALTMs do not show any significant correlation with pH, EC, CaCO3, and organic carbon. The metal concentration indicates three distinct distribution patterns. Fe, Mn, Cr, Pb, and Zn show enrichment in the high altitude region of the northern and central part of the study area. Likewise, Cu and Cd are enriched in the northern mountainous terrains. Both these groups show strong positive correlation with Mn indicating that they are associated with Mn-bearing minerals. However, we relate the first group of metals to excessive vehicular transportation and second group to mining waste dumps. The third group of ALTMs Co and Ni indicates its direct relationship to ore processing activities. Comparison of ALTMs concentrations from this study and various other studies throughout the world suggests the need to take precautionary measures of surface soil in high altitude areas to avoid metal enrichments and its subsequent environmental problems.  相似文献   

17.
畜禽养殖使用饲料中普遍添加了含有重金属的添加剂,畜禽对重金属的利用率低,绝大部分残留于粪便中,对生态环境和人类健康存在潜在风险。调查分析了太湖流域西岸区域养猪场饲料、猪粪和沼气化的沼渣和沼液9种重金属(Cr,Mn,Co,Ni,Cu,Zn,As,Cd,Pb),研究结果表明,猪饲料和猪粪中Cu,Zn,Pb,Cd和As重金属均超标严重,猪大小不同,使得猪饲料和猪粪中重金属含量差异较大。沼液中Cu,Zn,As含量分别为3.37,34.49,0.36 mg/L,均严重超标,沼渣中Cu,Zn,Pb,Cd和Ni,分别达到1 348.20,10 525.03,1 254.45,57.36和1 043.99 mg/kg,均也严重超标,沼气化工程后除了Pb,Cd和Co外,其他6种重金属可溶态含量都增大,因此沼肥均不宜直接施用农田,需通过相应处理实现沼肥安全农用。  相似文献   

18.
The relationships between heavy metal concentrations and physico-chemical properties of natural lake waters and also with chemical fractions of these metals in lake sediments were investigated in seven natural lakes of Kumaun region of Uttarakhand Province of India during 2003–2004 and 2004–2005. The concentrations of Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb in waters of different lakes ranged from 0.29–2.39, 10.3–38.3, 431–1407, 1.0–6.6, 5.3–12.1, 12.6–166.3, 0.7–2.7 and 3.9–27.1 μg l?1 and in sediments 14.3–21.5, 90.1–197.5, 5,265–6,428, 17.7–45.9, 13.4–32.0, 40.0–149.2, 11.1–14.6 and 88.9–167.4 μg g?1, respectively. The concentrations of all metals except Fe in waters were found well below the notified toxic limits. The concentrations of Cr, Mn, Ni, Cu, Zn, Cd and Pb were positively correlated with pH, electrical conductivity, biological oxygen demand, chemical oxygen demand and alkalinity of waters, but negatively correlated with dissolved oxygen. The concentrations of Cr, Ni, Zn, Cd and Pb in waters were positively correlated with water soluble + exchangeable fraction of these metals in lake sediments. The concentrations of Zn, Cd and Pb in waters were positively correlated with carbonate bound fraction of these metals in lake sediments. Except for Ni, Zn and Cd, the concentrations of rest of the heavy metals in waters were positively correlated with organically bound fraction of these metals in lake sediments. The concentrations of Cr, Mn, Ni, Cu and Zn in waters were positively correlated with reducible fraction of these metals in lake sediments. Except for Cd, the concentrations of rest of the metals in waters were positively correlated with residual fraction and total content of these heavy metals in lake sediments.  相似文献   

19.
以三江源区玉树县和玛多县为研究区,利用实验室测定的As、Cu、Pb、Zn、Cr、Cd、Hg元素含量和室内采集的土壤原始光谱及其4种转换形式,建立了光谱指标与重金属含量的多元回归模型,利用决定系数(R2)、相对分析误差(RPD)及均方根误差(RMSE)评价模型的精度。研究结果表明,土壤As、Cu、Pb、Zn、Cr、Cd含量与SOM、Fe、Mn、Al、Mg等元素具有显著相关关系,Hg元素则未达到显著性水平。As、Cu、Pb、Zn、Cr和Cd元素估算模型回归方程R2达到了0.5以上,均通过了显著性检验,其中Pb、Zn和Cr元素验证样本RPD均达到了1.4以上,模型具备粗略估算能力;As、Cu和Cd元素验证样本RPD均低于1.4,模型不具备粗略估算能力。Hg元素估算模型回归方程的R2为0.28,未能通过显著性检验,无法用于对Hg含量的估算。  相似文献   

20.
Local variability in the heavy metal concentrations of precipitation and seepage water from forest sites in the Solling Concentrations of Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in precipitation and seepage water have been measured continuously with local replicates during a 6-months period at a beech and a spruce forest site. Variation coefficients of the avarage concentrations were, in most cases, well below 30 %, being mainly caused by local differences. Comparison of means showed a significant increase of heavy metal concentration in the canopy drip of beech (Mn, Fe, Pb) and spruce (Cr, Mn, Fe, Ni, Zn, Pb) compared to bulk precipitation measured in the open field. Concentration of Mn, Co, Ni, Zn and Cd in the seepage water is significantly higher under spruce compared to beech. These results point at higher filter efficiency of the spruce canopy, compared with beech, for air pollutants, but a smaller retention capacity of the soil under spruce for heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号