首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Polar stratospheric clouds (PSCs) play a key role in stratospheric ozone depletion. Surface-catalyzed reactions on PSC particles generate chlorine compounds that photolyze readily to yield chlorine radicals, which in turn destroy ozone very efficiently. The most prevalent PSCs form at temperatures several degrees above the ice frost point and are believed to consist of HNO(3) hydrates; however, their formation mechanism is unclear. Results of laboratory experiments are presented which indicate that the background stratospheric H(2)SO(4)/H(2)O aerosols provide an essential link in this mechanism: These liquid aerosols absorb significant amounts of HNO(3) vapor, leading most likely to the crystallization of nitric acid trihydrate (NAT). The frozen particles then grow to form PSCs by condensation of additional amounts of HNO(3) and H(2)O vapor. Furthermore, reaction probability measurements reveal that the chlorine radical precursors are formed readily at polar stratospheric temperatures not just on NAT and ice crystals, but also on liquid H(2)SO(4) solutions and on solid H(2)SO(4) hydrates. These results imply that the chlorine activation efficiency of the aerosol particles increases rapidly as the temperature approaches the ice frost point regardless of the phase or composition of the particles.  相似文献   

2.
The stratospheric concentration of trace gases released in the atmosphere as a result of human activities is increasing at a rate of 5 to 8 percent per year in the case of the chlorofluorocarbons (CFCs), 1 percent per year in the case of methane (CH(4)), and 0.25 percent per year in the case of nitrous oxide (N(2)O). The amount of carbon dioxide (CO(2)) is expected to double before the end of the 21st century. Even if the production of the CFCs remains limited according to the protocol for the protection of the ozone layer signed in September 1987 in Montreal, the abundance of active chlorine (2 parts per billion by volume in the early 1980s) is expected to reach 6 to7 parts per billion by volume by 2050. The impact of these increases on stratospheric temperature and ozone was investigated with a two-dimensional numerical model. The model includes interactive radiation, wave and mean flow dynamics, and 40 trace species. An increase in CFCs caused ozone depletion in the model, with the largest losses near the stratopause and, in the vertical mean, at high latitudes. Increased CO(2) caused ozone amounts to increase through cooling, with the largest increases again near 45 kilometers and at high latitudes. This CO(2)-induced poleward increase reduced the CFC-induced poleward decrease. Poleward and downward ozone transport played a major role in determining the latitudinal variation in column ozone changes.  相似文献   

3.
Simulation of recent southern hemisphere climate change   总被引:4,自引:0,他引:4  
Recent observations indicate that climate change over the high latitudes of the Southern Hemisphere is dominated by a strengthening of the circumpolar westerly flow that extends from the surface to the stratosphere. Here we demonstrate that the seasonality, structure, and amplitude of the observed climate trends are simulated in a state-of-the-art atmospheric model run with high vertical resolution that is forced solely by prescribed stratospheric ozone depletion. The results provide evidence that anthropogenic emissions of ozonedepleting gases have had a distinct impact on climate not only at stratospheric levels but at Earth's surface as well.  相似文献   

4.
Chain decomposition of ozone by hydroxyl and hydroperoxyl radicals has been observed. The rate constant at 3000 degrees K for OH + O(3)-->HO(2) + O(2) is 8 x 10(-14) cubic centimeters per second. The rate constant for HO(2) + O(3)--> OH + 2O(2), is 3 x 10(-15) cubic centimeters per second. These results have implications concerning stratospheric ozone.  相似文献   

5.
Profiles of stratospheric ozone and chlorine monoxide radical (C1O) have been obtained from balloon measurements of atmospheric limb thermal emission at millimeter wavelengths. The C1O measurements, important for assessing the predicted depletion of stratospheric ozone by chlorine from industrial sources, are in close agreement with present theory, The predicted decrease of C1O at sunset was measured. A tentative value for the stratospheric abundance of hydrogen peroxide was also determined.  相似文献   

6.
Simple, steady-state models for ozone photochemistry, radiative heat balance, and eddy-diffusive mass transport can be combined to estimate water-induced changes in the stratospheric ozone concentrations and temperatures, the integrated ozone column, the solar power transmitted to the earth's surface, and the surface temperature. These changes have been computed parametrically for mixing fractions of water vapor between 3 x 10(-6) and 6.5 x 10(-6). With added water from the exhausts of projected fleets of stratospheric aircraft, the ozone column may diminish by 3.8 percent, the transmitted solar power increase by 0.07 percent, and the surface temperature rise by 0.04 degrees K in the Northern Hemisphere. Due to a cancellation of terms, temperatures in the lower stratosphere remain essentially unchanged. These results are sensitive to the form of the water profile and emphasize the potential role of convective transients near 30 kilometers.  相似文献   

7.
T Koop  KS Carslaw 《Science (New York, N.Y.)》1996,272(5268):1638-1641
Polar stratospheric clouds (PSCs) are important for the chemical activation of chlorine compounds and subsequent ozone depletion. Solid PSCs can form on sulfuric acid tetrahydrate (SAT) (H2SO4·4H2O) nuclei, but recent laboratory experiments have shown that PSC nucleation on SAT is strongly hindered. A PSC formation mechanism is proposed in which SAT particles melt upon cooling in the presence of HNO3 to form liquid HNO3-H2SO4-H2O droplets 2 to 3 kelvin above the ice frost point. This mechanism offers a PSC formation temperature that is defined by the ambient conditions and sets a temperature limit below which PSCs should form.  相似文献   

8.
Three simultaneous observations of atomic chlorine (Cl) and the chlorine monoxide radical (ClO) are reported which encompass the altitude interval between 25 and 45 kilometers. Together, Cl and ClO form a gas-phase catalytic cycle potentially capable of depleting stratospheric ozone. Observed Cl and C1O densities, although variable, imply that chlorine compounds constitute an important part of the stratospheric ozone budget. The results are compared with recent models of stratospheric photochemistry which have been used as a basis for predicting ozone depletion resulting from fluorocarbon release.  相似文献   

9.
Data obtained from measurements of the stratospheric aerosol at Laramie, Wyoming (41 degrees N), indicate that the background or nonvolcanic stratospheric sulfuric acid aerosol mass at northern mid-latitudes has increased by about 5 +/- 2 percent per year during the past 10 years. Whether this increase is natural or anthropogenic could not be determined at this time because of inadequate information on sulfur sources, in particular, carbonyl sulfide, which is thought to be the dominant nonvolcanic source of stratospheric sulfuric acid vapor. An increase in stratospheric sulfate levels has important climatic implications as well as heterogeneous chemical effects that may alter the concentration of stratospheric ozone.  相似文献   

10.
The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (HCl and ClONO(2)) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl(2)O(2) throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO(3), and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.  相似文献   

11.
Hydrofluorocarbons, many of which contain a CF(3) group, are one of the major substitutes for the chlorofluorocarbons and halons that are being phased out because they contribute to stratospheric ozone depletion. It is critical to ensure that CF(3) groups do not cause significant ozone depletion. The rate coefficients for the key reactions that determine the efficiency of the CF(3) radical as a catalyst for ozone loss in the stratosphere have been measured and used in a model to calculate the possible depletion of ozone. From these results, it is concluded that the ozone depletion potentials related to the presence of the CF(3) group in hydrofluorocarbons are negligibly small.  相似文献   

12.
Dramatic springtime depletions of ozone in polar regions require that polar stratospheric air has a high degree of dynamical isolation and extremely cold temperatures necessary for the formation of polar stratospheric clouds. Both of these conditions are produced within the stratospheric winter polar vortex. Recent aircraft missions have provided new information about the structure of polar vortices during winter and their relation to polar ozone depletions. The aircraft data show that gradients of potential vorticity and the concentration of conservative trace species are large at the transition from mid-latitude to polar air. The presence of such sharp gradients at the boundary of polar air implies that the inward mixing of heat and constituents is strongly inhibited and that the perturbed polar stratospheric chemistry associated with the ozone hole is isolated from the rest of the stratosphere until the vortex breaks up in late spring. The overall size of the polar vortex thus limits the maximum areal coverage of the annual polar ozone depletions. Because it appears that this limit has not been reached for the Antarctic depletions, the possibility of future increases in the size of the Antarctic ozone hole is left open. In the Northern Hemisphere, the smaller vortex and the more restricted region of cold temperatures suggest that this region has a smaller theoretical maximum for column ozone depletion, about 40 percent of the currently observed change in the Antarctic ozone column in spring.  相似文献   

13.
The feasibility of using negative ion chemistry to mitigate stratospheric ozone depletion by chlorine-containing radicals, as proposed recently, is addressed here. Previous in situ measurements of the negative ion composition of the stratosphere show that chlorine-containing ions represent only a small fraction of total ions. New measurements of the negative ion temporal evolution in the stratosphere show that the fractional abundance of chlorine-containing ions is never greater than 1 percent at any time in the ion evolution. On the basis of these and other arguments, using negative ion chemistry to mitigate ozone depletion by chlorine-containing compounds is not feasible.  相似文献   

14.
Measurements from the winter of 1994-95 indicating removal of total reactive nitrogen from the Arctic stratosphere by particle sedimentation were used to constrain a microphysical model. The model suggests that denitrification is caused predominantly by nitric acid trihydrate particles in small number densities. The denitrification is shown to increase Arctic ozone loss substantially. Sensitivity studies indicate that the Arctic stratosphere is currently at a threshold of denitrification. This implies that future stratospheric cooling, induced by an increase in the anthropogenic carbon dioxide burden, is likely to enhance denitrification and to delay until late in the next century the return of Arctic stratospheric ozone to preindustrial values.  相似文献   

15.
Observations at Thule, Greenland, that made use of direct light from the moon on 2,3, 4,5, and 7 February 1988 revealed nighttime chlorine dioxide (OClO) abundances that were less than those obtained in Antarctica by about a factor of 5, but that exceeded model predictions based on homogeneous (gas-phase) photochemistry by about a factor of 10. The observed time scale for the formation of OClO after sunset strongly supports the current understanding of the diurnal chemistry of OClO. These data suggest that heterogeneous (surface) reactions due to polar stratospheric clouds can occur in the Arctic, providing a mechanism for possible Arctic ozone depletion.  相似文献   

16.
Over the past 40 years, Southern Hemisphere circumpolar westerly winds have strengthened. In his Perspective, Karoly highlights the modeling study by Gillett and Thompson, who show that these observed Southern Hemisphere climate changes in spring and summer can be explained as a response to stratospheric ozone depletion over Antarctica. The observed strengthening of the circumpolar westerlies in winter is less likely to be the response to springtime Antarctic ozone depletion, but may be due in part to increasing atmospheric greenhouse gases. Understanding the different causes and practical impacts of these trends in Southern Hemisphere circulation is an important next step for climate researchers.  相似文献   

17.
Severe reduction of stratospheric ozone over Antarctica has focused increasing concern on the biological effects of ultraviolet-B (UVB) radiation (280 to 320 nanometers). Measurements of photosynthesis from an experimental system, in which phytoplankton are exposed to a broad range of irradiance treatments, are fit to an analytical model to provide the spectral biological weighting function that can be used to predict the short-term effects of ozone depletion on aquatic photosynthesis. Results show that UVA (320 to 400 nanometers) significantly inhibits the photosynthesis of a marine diatom and a dinoflagellate, and that the effects of UVB are even more severe. Application of the model suggests that the Antarctic ozone hole might reduce near-surface photosynthesis by 12 to 15 percent, but less so at depth. The experimental system makes possible routine estimation of spectral weightings for natural phytoplankton.  相似文献   

18.
Laboratory studies of heterogeneous reactions important for ozone depletion over Antarctica are reported. The reaction of chlorine nitrate (ClONO(2)) with H(2)0 and hydrogen chloride (HCl) on surfaces that simulate polar stratospheric clouds [ice and nitric acid (HNO(3))-ice and sulfuric acid] are studied at temperatures relevant to the Antarctic stratosphere. The reaction of ClONO(2) on ice and certain mixtures of HNO(3) and ice proceeded readily. The sticking coefficient of ClONO(2) on ice of 0.009 +/- 0.002 was observed. A reaction produced gas-phase hypochlorous acid (HOCl) and condensed-phase HNO(3); HOC1 underwent a secondary reaction on ice producing dichlorine monoxide (Cl(2)O). In addition to the reaction with H(2)0, ClONO(2) reacted with HCl on ice to form gas-phase chlorine (Cl(2)) and condensed-phase HNO(3.) Essentially all of the HCl in the bulk of the ice can react with ClONO(2) on the ice surface. The gaseous products of the above reactions, HOCl, Cl(2)0, and Cl(2), could readily photolyze in the Antarctic spring to produce active chlorine for ozone depletion. Furthermore, the formation of condensed-phase HNO(3) could serve as a sink for odd nitrogen species that would otherwise scavenge the active chlorine.  相似文献   

19.
Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204-gigahertz, millimeter-wave receiver. Data taken at latitude 42 degrees N on 17 days between 10 January and 18 February 1980 yield an average chlorine oxide column density of approximately 1.05 x 10(14) per square centimeter or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of 14 July 1977) made over the past 4 years at 32 degrees N. We find less chlorine oxide below 35 kilometers and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer.  相似文献   

20.
Simultaneous global measurements of nitric acid (HNO(3)), water (H(2)O), chlorine monoxide (CIO), and ozone (O(3)) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO(3) was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H(2)O after mid-July. By mid-August, near the time of peak CIO, abundances of gas-phase HNO(3) and H(2)O were extremely low. The concentrations of HNO(3) and H(2)O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO(3) or H(2)O were observed in the 1992-1993 Arctic winter vortex. Although CIO was enhanced over the Arctic as it was over the Antarctic, Arctic O(3) depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone "hole" is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号