首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Almond is a highly heterozygous species with a high number of S‐alleles controlling its gametophytic self‐incompatibility system (GSI). In this work, we have analysed 14 Spanish local almond cultivars for S‐RNase allele diversity. Five new S‐RNase alleles were identified by cloning and sequencing, S31 (804 bp) in ‘Pou de Felanitx’ and ‘Totsol’, S32 (855 bp) in ‘Taiatona’, S33 (1165 bp) in ‘Pou d’Establiments’ and ‘Muel’, S34 (1663 bp) in ‘Pané‐Barquets’ and S35 (1658 bp) in ‘Planeta de les Garrigues’. Additionally, seven already known almond alleles could be recognized in the local cultivars studied. The high number of new alleles identified reveals the wide diversity of almond germplasm still existing and requiring characterization, and points to the possibility of new findings by a wider study focusing on other provenances. The almond S‐RNases have been compared to those of other Prunus species, showing a high identity and confirming that the S‐RNase gene in this genus presents a probable common ancestor.  相似文献   

2.
3.
The work aimed to develop a reliable and convenient PCR approach for determining incompatibility S genotypes in almond. Initially, genomic DNAs of 24 accessions of known S genotype were amplified with novel consensus primers flanking the first and second introns of the S‐RNase gene. The PCR products separated on agarose showed length polymorphisms and correlated well with the reference alleles S1‐S23 and Sf. In addition, to improve discrimination between alleles of similar sizes, the same sets of primers but fluorescently labelled were used, and the products sized on an automated sequencer. These fluorescent primers were particularly informative in the case of the first intron, variation in the length of which has not been used previously for S genotyping in almond. Some reference alleles showed the same patterns with first and second intron primers, and others showed a microsatellite‐like trace. Subsequently, the S genotypes of 26 cultivars not genotyped previously and of four of uncertain genotype were determined. An allele described in Australian work as putative S10 was shown to be a ‘new’ allele and ascribed to S24 and evidence of five more ‘new’S alleles was found, for which the labels S25‐S29 are proposed. This PCR approach should be useful for genotyping in other Prunus crops.  相似文献   

4.
Incompatibility and resistance to woolly apple aphid in apple   总被引:1,自引:0,他引:1  
The study investigated the reported linkage of the locus for resistance to woolly apple aphid with the locus for incompatibility. Apple seedlings from the cross ‘Northern Spy’(heterozygous for resistance) בTotem’(susceptible) were scored for resistance, and for incompatibility genotype, by analysis of stylar ribonucleases, and for Got‐1, the isoenzyme marker for incompatibility. Cosegregation analysis provided no evidence that the loci for resistance and incompatibility are linked. Two rootstock cultivars,‘M9’and ‘Merton 789′, which in early work had been reported to give poor set in crosses with ‘Northern Spy’, were found to have the same incompatibility genotype as ‘Northern Spy’, namely S1S3.‘M4’and ‘Irish Peach’, two other cultivars that had given poor set when crossed on to ‘Northern Spy’, appeared to be homozygous at the incompatibility locus and to have the genotypes S3S3 and S1S1, respectively.  相似文献   

5.
In previous work the existence of proteins with RNase activity associated with S alleles in apricot was demonstrated. These proteins were inherited as described previously for the inheritance of self‐compatibility in this species. In this study, new cultivars have been genotyped for self‐compatibility using this method and it has been demonstrated that in all self‐compatible cultivars examined, the self‐compatibility allele is the same and is associated with an RNase with high activity. Homozygous self‐compatible individuals have been detected among established cultivars as well as among seedlings following breeding activity. This germplasm is of great value within the breeding programme because only self‐compatible seedlings will be produced. The number of S alleles in apricot appears to be low and only eight different alleles have been found in the large number of different cultivars screened. Furthermore, there are alleles present in the Spanish population that are also found in the genetic pool of North American cultivars. The screening of a progeny from the cross between the American cultivar ‘Goldrich’ and the Spanish cultivar ‘Pepito’ demonstrated the existence of the common allele S2 (detected previously by examining RNases), which was confirmed by the segregation of self‐compatibility in the progeny.  相似文献   

6.
The photoperiod‐insensitive barley mutant ‘Atsel’, carrying the recessive gene ea7, was studied together with the donor variety ‘Atlas’ (wild‐type, Ea7) under different daylengths with the aim of analysing pleiotropic effects. Grown under long and short photoperiods ‘Atsel’ flowered about 10 days and 34 days, respectively, earlier than ‘Atlas’. The significantly shorter life‐cycle of the photoperiod‐insensitive mutant resulted in several changes of plant morphology. Tillering, plant height, number of leaves and number of internodes were reduced. A lower number of florets per main spike was observed for ‘Atsel’, but only in the long photoperiod experiment. Finally, photoperiod insensitivity combined with a lower grain yield per plant was most pronounced under long‐day treatment. The data are comparable with results obtained from single chromosome recombinant lines of wheat that have differences in their photoperiod response caused by the genes Ppd1 or Ppd2.  相似文献   

7.
This report describes the conversion of a restriction fragment length polymorphism (RFLP) marker (the 2B12a locus). linked to the Sd1 aphid resistance gene, to a polymerase chain reaction (PCR) based marker. A section of the 2BI2 probe was sequenced and two primers were designed lo amplify this sequence in the cultivars‘Prima’and‘Fiesta’: all the amplification products were the same size. After sequencing. two specific 24-mer oligonueleotides were synthesized (DdARM-51 and DdAR.M-32) to exploit a single base-pair difference. These primers were used to screen 44 plants from the‘Prima’x‘Fiesta’family and generated a single amplification product (196bp). in approximately half of the seedlings, which was linked to the resistance gene Sd1,. The DdARM primer combination was used to evaluate a range of apple cultivars and selections, including some varieties derived from‘Cox’and alternative sources of resistance reported in the literature. In parallel with this work, the phenotypic response of the same genotypes was either confirmed or determined in replicated glasshouse tests. The sequence characterized amplified regions (.SCAR) marker was amplified in all the resistant plants, with the exception of‘Northern Spy’and 3760 (the sources of Sd2 and Sd3 resistance, respectively), but never in the susceptible plants. The possible role of this marker in a marker-assisted breeding strategy, and its compatibility with a SCAR marker linked to the I, gene for resistance to apple scab. is discussed.  相似文献   

8.
There are two cytoplasmic male sterility (CMS)‐systems in chives (Allium schoenoprasum L.), which can be employed in hybrid breeding. However, the probability for selection of maintainer genotypes from German open pollinated varieties is not known. Therefore, the allelic frequencies of the restorer genes X and T involved in CMS1 were determined in 12 German commercial chive varieties by test crossing single plants to male sterile, temperature‐insensitive genotypes [(S1)xxT] for segregation analyses of offspring. Temperature sensitive genotypes [(S1)xxT_] are able to produce pollen at higher temperatures, and should therefore be excluded from hybrid breeding to avoid self‐pollination of the maternal parent. The mean value of the frequency of the non‐restoring allele x in the populations examined was 0.62. The mean value of the allele t, which is responsible for the temperature insensitivity, was 0.9. As a consequence of these allelic frequencies about one‐third of all plants of the chive varieties examined were designated CMS1 maintainer genotypes, leading to the production of temperature insensitive male sterile lines. The incidence of CMS2 maintainers in the German varieties examined was nearly four times lower than CMS1 maintainers. The mean value of the frequency of the non‐restoring allele st2 involved in the CMS2‐system was 0.29.  相似文献   

9.
Primers amplifying a range of Prunus S-alleles   总被引:2,自引:1,他引:2  
Although various consensus polymerase chain reaction (PCR) primers have been reported for identifying Prunus S‐alleles, they have been developed from and optimized on a limited set of alleles, which may limit their applicability to a broader allele range. To develop a primer set for use across the genus, degenerate consensus primers were designed from conserved regions of 27 S‐RNase sequences available from five Prunus species. The primers were tested in 15 previously genotyped cultivars of cherry, almond and apricot, representing alleles S1 to S6 in each crop and also Sc in apricot. Comparisons were made with previously published primers tested in the same 15 cultivars under reported reaction conditions. The new primers generated an amplification product for each of the 19 S‐alleles whereas those previously available amplified no more than 14. The primers will be useful for genotyping and genetic studies in cultivars and wild populations.  相似文献   

10.
S. Mohring    V. Horstmann  E. Esch 《Plant Breeding》2005,124(2):105-110
Using primers annealing to S locus sequences the cleaved amplified polymorphic sequences (CAPS) method was applied to develop a marker and to characterize different alleles at the self‐incompatibility locus in Brassica napus. A segregating F2 population from a cross of a self‐incompatible (SI) and a self‐compatible parent, as well as seven SI lines representing four different S alleles were used. Several primers specific to the S locus in B. oleracea and B. campestris, chosen from the literature, allow polymerase chain reaction (PCR) amplification of genomic DNA. However, only one primer pair amplified a single specific and reproducible PCR fragment of the expected length in B. napus. Digestion with restriction endonucleases revealed polymorphisms for two CAPS markers absolutely linked to the S locus. Using the codominant marker efMboI it was possible to discriminate all three F2 genotypes. With this marker and an additional marker using another primer pair it was possible to distinguish between three of the four different S alleles and five of the seven SI lines, respectively.  相似文献   

11.
Summary Protein stylar extracts of 16 cultivars of sweet cherry (Prunus avium), from the 10 different incompatibility groups to which incompatibility alleles have been assigned, were separated on acrylamide gels using isoelectric focusing (IEF) and were stained for ribonuclease activity. When two cultivars from the same incompatibility group were analyzed they gave identical zymograms and the cultivars of the 10 different incompatibility groups gave in all eight distinct zymograms. The ribonuclease polymorphism could be correlated with the reported S allele constitutions of the cultivars. Three ribonuclease bands were identified that each consistently corresponded to one of the six known incompatibility alleles (S 1, S2 and S 6), a fourth band apparently corresponded to S 3 and to the combination of S 4 and S 5, and a fifth band to S 4 and S 5 in other combinations. Thus, it seems that S alleles of cherry have ribonuclease activity and that IEF is useful for distinguishing S allele constitutions. The ribonuclease pattern of Summit, a cultivar of unknown incompatibility group, indicated its incompatibility genotype to be S 1S2, and this was confirmed by controlled pollination. The same band corresponded to S 4 and S 4', the mutant allele in self-compatible cultivars. IEF and ribonuclease staining promise to be useful tools for exploring the incompatibility relationships of cherry cultivars and perhaps of other self-incompatible Prunus crops.  相似文献   

12.
Waxy (Wx) protein is a key enzyme for synthesis of amylose in endosperm. Amylose content in wheat grain influences the quality of end‐use products. Seven alleles have been described at the Wx‐D1 locus, but only two of them (Wx‐D1b, Wx‐D1e) were genotyped with codominant markers. The waxy wheat line K107Wx1 developed by treating ‘Kanto 107’ seeds with ethyl methanesulphonate carries the Wx‐D1d allele. However, no molecular basis supports this nomenclature. In the present study, DNA sequence analysis confirmed that a single nucleotide polymorphism in the sixth exon of Wx‐D1 changed tryptophan at position 301 into a termination codon. Based on this sequence variation, a PCR‐based KASP marker was developed to detect this point mutation using 68 BC8F1 plants and 297 BC8F2 lines derived from the cross ‘Ningmai 14’*9/K107Wx1. Combined with codominant markers for the Wx‐A1 and Wx‐B1 alleles, waxy and non‐waxy near‐isogenic lines were distinguished. The KASP marker was efficient in identifying the mutant allele and can be used to transfer waxiness to elite lines.  相似文献   

13.
To clarify incompatibility relationships among almond cultivars, 35 were analysed for stylar ribonucleases, which have previously been shown to correlate with incompatibility S alleles. Stylar proteins were extracted and separated electrophoretically and the zymograms compared with ladders of ribonucleases corresponding to the 12 S alleles previously reported. Sixteen cultivars showed a band corresponding to two of the known ribonucleases, 17 showed one known ribonuclease and one ‘new’ band, and two showed two new bands. Twelve new ribonucleases were detected; 11 were attributed to new S alleles (S13 to S23) and a mutant form of S7 was attributed to S7A. Genotypes were proposed for nine cultivars of five incompatibility groups that had not been genotyped previously, VII, X, XI, XII and XIII. Twenty‐four cultivars of unknown incompatibility relationships were provisionally genotyped: six of these could be assigned to existing groups and two new groups were established, XIV and XV, along with group O of cultivars with unique genotypes. Test crosses confirmed that eight pairs of cultivars showing similar zymograms were indeed cross‐incompatible, including the two representatives of each of the two new groups. Virtually all self‐incompatible cultivars of known genotype are listed in a table. The data should be useful for planning cultivar combinations for orchards and for designing crosses for breeding programmes.  相似文献   

14.
R. Uptmoor    W. Wenzel    K. Ayisi    G. Donaldson    A. Gehringer    W. Friedt    F. Ordon 《Plant Breeding》2006,125(5):532-534
In order to define the variation of the genomic proportion of the recurrent parent [G(RP)] and its relation to yield, G(RP) of individual BC1 plants of two sorghum populations composed of a high‐yielding cultivar as recurrent parent (RP) and a donor with superior drought resistance or grain quality, respectively, was estimated using AFLPs and SSRs. G(RP) in BC1 ranged from 0.53 to 0.95 and averaged to 0.76 in the population (NP4453 × ‘SV‐2’) × ‘SV‐2’. G(RP) varied between 0.60 and 0.86 and averaged to 0.74 in the BC1 of (ICV‐219 × ‘SV‐2’) × ‘SV‐2’. Results show that plants with a G(RP) equivalent to BC2 (0.875) or BC3 (0.938), respectively, can be selected from BC1. Yield performance of BC1S1 families was tested in field trials carried out in South Africa. The correlation between yield and G(RP) in BC1 was low. Selection according to G(RP) did not result in an effective preselection for yield.  相似文献   

15.
Genetic analysis of four self-incompatible lines in Brassica napus   总被引:3,自引:0,他引:3  
G. S. Yang    C. B. Chen    G. L. Zhou    C. N. Geng    C. Z. Ma    J. X. Tu  T. D. Fu 《Plant Breeding》2001,120(1):57-61
Reciprocal hybridization between four self-incompatible lines of Brassica napus: 271, 181, 184 and ‘White Flower’, revealed incompatibility. The reciprocal F1s obtained by bud pollination showed self-incompatible reactions, and no segregation for self-incompatibility was observed in all the reciprocal F2 populations, indicating that lines 271, 181, 184 and ‘White Flower’ were genetically identical with regard to self-incompatibility. Observations of self-incompatibility in 17 hybrids from crosses between line 271 and 17 varieties of B. napus showed 10 of the F1 hybrids to be self-compatible, while four were partially self-compatible and three were self-incompatible. Genetic analysis based on F2 and BC1 populations from five self-compatible F1 hybrids and two self-incompatible F1 hybrids suggested the existence of at least two loci controlling the self-incompatibility of line 271: one is the S locus, with dominant and recessive relationships between the S alleles, and the other is the suppressor (sp) of the S locus. The sp locus is genetically different from the S locus, and also shows dominant and recessive relationships between the sp alleles.  相似文献   

16.
S-allele identification by PCR analysis in sweet cherry cultivars   总被引:3,自引:0,他引:3  
Gametophytic self‐incompatibility, governed by the S‐locus, operates in sweet cherry. The knowledge of the S‐genotype of sweet cherry cultivars is therefore essential to establish productive orchards by defining compatible combinations. The isolation of sweet cherry S‐R Nases has allowed the use of different molecular techniques to characterize the S‐genotypes of sweet cherry cultivars. Previously, incompatibility group assignment could only be carried out on mature trees through pollination tests. In this work, PCR analysis with primers designed on the conserved sequences of sweet cherry S‐R Nases has been used to characterize the S‐genotype of 71 sweet cherry cultivars, including 26 cultivars whose S‐allele constitution had not been previously described. This approach has allowed the detection of alleles that had not been amplified by PCR before, to identify six putative new S‐alleles, to define three new self‐incompatibility groups and to compile the standards for a PCR‐based S‐allele typing method in sweet cherry.  相似文献   

17.
T. Sonneveld    T. P. Robbins    K. R. Tobutt 《Plant Breeding》2006,125(3):305-307
A novel polymerase chain reaction (PCR) approach to determine and confirm the self‐incompatibility (S) genotype of cherries is reported. The method involves PCR amplification with a new pair of consensus primers that immediately flank the first intron of cherry S‐RNases, one of which is fluorescently labelled. Fluorescent amplification products range from 234 to c. 460 bp and can be sized accurately on an automated sequencer. Thirteen S alleles reported in sweet cherry can be distinguished, except for S2 and S7, which have an amplification product of exactly the same size. S13, which is also amplified, gives a microsatellite‐like trace which shows minor intra‐allelic length variation. This method gives fast and accurate results and should be especially useful for medium/high‐throughput genotyping of wild and cultivated cherries.  相似文献   

18.
The amount of genetic variation among inbred lines and testcrosses, and covariation between both genetic materials, are of crucial importance for selection efficiency in hybrid breeding. To estimate these quantitative genetic parameters for resistance of winter rye (Secale cereale) to head blight caused by Fusarium culmorum, 88 three-way cross hybrids, produced by crossing each of 44 S2 Carsten inbred lines with two unrelated Petkus single-cross testers, were evaluated along with the parental lines over 2 years. Resistance traits were head-blight rating and grain weight per spike relative to the non-inoculated control. Significant genotypic variation occurred among lines and in both testcross series. S2 lines displayed considerably more variation than testcross series. Genotype × environment interaction was more marked among the inbred lines, while estimates of heritability were similar for both genetic materials. Testcrosses showed heterosis for head-blight resistance. No relationship existed between S2 lines and the two testcross series for any resistance trait. This might be caused by an association between inbreeding and Fusarium-head-blight susceptibility and different inbreeding depression among the S2 population. The phenotypic correlations between the testcross series were moderate for both traits (r = 0.58, P < 0.01). In conclusion, Fusarium-head-blight resistance has to be selected at the respective heterozygosity levels.  相似文献   

19.
Sweet cherry (Prunus avium L.) has stylar gametophytic self‐incompatibility, which is controlled by the multi‐allelic S‐locus and encompasses the highly polymorphic genes for the S‐ribonuclease (S‐RNase) and S‐haplotype‐specific F‐box (SFB), which are female and male determinants, respectively. The self‐compatible mutant SFB4′ corresponds to an allele variant of SFB4 and presents a frameshift mutation. Even though male‐determinant molecular markers can discriminate between SFB4 and SFB4′ alleles, the methods required are laborious, time‐consuming and expensive, and not suitable for massive analysis and integration into breeding programmes. Our aim was to develop molecular markers for the evaluation of self‐compatibility alleles in sweet cherry, that could be used as a high‐throughput screening strategy to identify SFB4 and SFB4′ alleles, based on a marker for male determinacy. Our results were consistent using primers flanking the mutation responsible for the SFB4′ allele. We designed a specific molecular marker and confirmed it in sweet cherry commercial varieties. This new molecular marker is feasible for self‐compatibility alleles in the male determinant in sweet cherry‐assisted breeding programs.  相似文献   

20.
M. López    M. Romero    F. J. Vargas    M. Mnejja    P. Arús    I. Batlle 《Plant Breeding》2005,124(5):502-506
To verify the compatibility behaviour of the almond cultivar ‘Francolí’ and to clarify its S genotype a combination of pollination tests, stylar ribonuclease and allele specific PCR analysis was used. ‘Francolí’ was released from IRTA's breeding programme in 1994, having been putatively raised from the cross ‘Cristomorto’ (S1S2) × ‘Gabaix’ (S10S25). This cultivar was also reported to be self‐incompatible but revealing only one S band in the zymograms after S‐RNases analysis. ‘Francolí’ sets nuts after test crossing with two S1S25 cultivars, having a different genotype from that earlier reported. ‘Francolí’ was also observed to be self‐compatible after selfing flowers in the field and in the laboratory. ‘Francolí’ was re‐assigned the S1Sf genotype after test crossing, stylar ribonuclease and PCR data analysis. After microsatellite analysis, the self‐compatible ‘Tuono’ (S1Sf) cultivar is suggested as the male parent of ‘Francolí’ instead of the earlier reported ‘Gabaix’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号