首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of O 2 concentration on oil volatile compounds synthesized during the process to obtain virgin olive oil (VOO) was established. The study was carried out either on the whole process or within the main steps (milling and malaxation) of this process with two olive cultivars, Picual and Arbequina, at two ripening stages. Data show that O 2 control during milling has a negative impact on VOO volatile synthesis. This effect seems to depend on cultivar and on the ripening stage in cultivar Picual. Because most VOO volatiles are synthesized during olive fruit crushing at the milling step, O 2 control during malaxation seems to affect just slightly the volatile synthesis. The highest effect was observed when control of O 2 concentration was performed over the whole process. In this case, the content of volatile compounds of oils obtained from both cultivars and ripening stages showed quite similar trends.  相似文献   

2.
The aim of this work was to determine whether the lipoxygenase (LOX) activity is a limiting factor for the biosynthesis of virgin olive oil (VOO) volatile compounds during the oil extraction process. For this purpose, LOX activity load was modified during this process using exogenous LOX activity and specific LOX inhibitors on olive cultivars producing oils with different volatile profiles (Arbequina and Picual). Experimental data suggest that LOX activity is a limiting factor for the synthesis of the oil volatile fraction, this limitation being significantly higher in Picual cultivar than in Arbequina, in line with the lowest content of volatile compounds in the oils obtained from the former. Moreover, there is evidence that this limitation of LOX activity takes place mostly during the milling step in the process of olive oil extraction.  相似文献   

3.
The relationship between the content of nonesterified polyunsaturated fatty acids and the contents of oil aroma compounds that arise during the process to obtain virgin olive oil (VOO) was studied in two olive cultivars, Picual and Arbequina, producing oils with distinct aroma profiles and fatty acid compositions. Results suggest that the biosynthesis of VOO aroma compounds depends mainly on the availability of nonesterified polyunsaturated fatty acids, especially linolenic acid, during the process and then on the enzymatic activity load of the lipoxygenase/hydroperoxide lyase system. Both availability of substrates and enzymatic activity load seem to be cultivar-dependent.  相似文献   

4.
Alcohol acyltransferase catalyzes the esterification of volatile alcohols with acyl-CoA derivatives to produce volatile esters typically present in the aroma of some fruits. This enzyme was detected in extracts from the pericarp tissues of ripe olive fruits using hexanol and acetyl-CoA as the substrates. Alcohol acyltransferase showed a very low activity level in these fruits, with an optimum pH value at 7.5 and high K(m) values for hexanol and acetyl-CoA. The substrate specificity of this enzyme for various alcohols was also studied. The involvement of the studied enzyme in the biogenesis of the volatile esters present in the aroma of virgin olive oil was discussed.  相似文献   

5.
Olive stoning during the virgin olive oil (VOO) mechanical extraction process was studied to show the effect on the phenolic and volatile composition of the oil. To study the impact of the constitutive parts of the fruit in the composition of olive pastes during processing, the phenolic compounds and several enzymatic activities such as polyphenoloxidase (PPO), peroxidase (POD), and lipoxygenase (LPO) of the olive pulp, stone, and seed were also studied. The olive pulp showed large amounts of oleuropein, demethyloleuropein, and lignans, while the contribution of the stone and the seed in the overall phenolic composition of the fruit was very low. The occurrence of crushed stone in the pastes, during malaxation, increased the peroxidase activity in the pastes, reducing the phenolic concentration in VOO and, at the same time, modifying the composition of volatile compounds produced by the lipoxygenase pathway. The oil obtained from stoned olive pastes contained higher amounts of secoiridoid derivatives such as the dialdehydic forms of elenolic acid linked to (3,4-dihydroxyphenyl)ethanol and (p-hydroxyphenyl)ethanol (3,4-DHPEA-EDA and p-HPEA-EDA, respectively) and the isomer of the oleuropein aglycon (3,4-DHPEA-EA) and, at the same time, did not show significant variations of lignans. The stoning process modified the volatile profile of VOO by increasing the C6 unsaturated aldehydes that are strictly related to the cut-grass sensory notes of the oil.  相似文献   

6.
The effect of hot-water treatments of olive fruits before processing on the biosynthesis of virgin olive oil aroma was investigated by quantifying the variation within the major classes of volatile compounds. Data showed that hot-water treatments gave rise to changes in the volatile aroma profile of virgin olive oil from the three olive cultivars under study, Manzanilla, Picual, and Verdial. Different effects by thermal treatments were observed according to cultivar. In general, these changes are mainly due to a decrease in the contents of C(6) aldehydes and C(5) compounds. Contents of C(6) alcohols and esters remained constant or decreased slightly when the temperature of the treatment was increased. Thus, heat treatments seemed to promote a partial deactivation of the lipoxygenase/hydroperoxide lyase enzyme system, whereas other enzymatic activities, within the lipoxygenase pathway, such as alcohol dehydrogenase and alcohol acyltransferase, remained apparently unaffected as a consequence of heat treatments.  相似文献   

7.
Results obtained in a set of experiments point to an effective participation of olive seeds in the biosynthesis of olive oil aroma through the lipoxygenase pathway during the extraction process to produce virgin olive oil. Data showed that olive seeds should contain enzymatic activities metabolizing 13-hydroperoxides other than hydroperoxide lyase, giving rise to a net decrease in the content of C6 unsaturated aldehydes during the olive oil extraction process. Olive seeds seem also to supply this process with alcohol dehydrogenase activity, being more specific for saturated C6 aldehydes and not acting on C5 alcohols. Moreover, olive seeds would be responsible for the biosynthesis of 30-50% esters during the olive oil extraction process of intact fruits. Thus, olive seeds would afford a load of alcohol acyltransferase activity that might be quite unspecific in terms of substrate, producing any kind of esters.  相似文献   

8.
Enzymatic extracts from olive pulp (Olea europea L.) were used to characterize lipoxygenase (LOX) activity in order to determine its role in the biogenesis of the volatile compounds that influence the aroma of extra virgin olive oil. The LOX activity was tested spectrophotometrically at an optimal pH of 6.0 in three olive cultivars, Ascolana Tenera, Kalamata, and FS17. The trend of the LOX activity was determined as a function of pH and temperature; the kinetic constants of the enzyme were also determined. The highest LOX activity was observed in the FS17 fruit, which had the highest concentrations of C(5) and C(6) compounds (aldehydes, alcohols, and ketones), followed by Kalamata and Ascolana T., respectively. Given the direct relationship between enzymatic activity and the quantity of aromas measured in the fruit, it is hypothesized that olive LOX is involved in the formation of C(5) and C(6) volatile compounds. To study the mechanism of the movement of the aromas from the fruit to the oil, which was obtained by simple mechanical extraction, the headspace of the oil for each cultivar was analyzed as well as the aromatic composition in order to compare it with the aromas of the fruit.  相似文献   

9.
Carrot root oil (SCO), obtained by supercritical fluid carbon dioxide (SC-CO2) extraction, was characterized and compared to a commercial carrot oil (MCO) and a virgin olive oil (VOO) (cv. Coratina). SCO showed much higher contents of carotenes, phenolics, waxes, phytosterols, and sesquiterpene and monoterpene volatiles. In SCO, the most prominent components present in the fully investigated analytical fractions (fatty acids, triglycerides, waxes, phytosterols, long-chain aliphatic alcohols, superior triterpene alcohols, and volatiles) were, respectively, linolenic acid, trilinolein, waxes C38, beta-sitosterol, campesterol and stigmasterol, 1-hexacosanol, 24-methylencycloartanol and cycloartenol, beta-caryophyllene, alpha-humulene, alpha-pinene, and sabinene. In VOO, the major constituents of the above analytical classes were, respectively, oleic acid, trilinolein, waxes C36, unsaturated volatile C6 aldehydes (trans-2-hexenal most markedly), and the same prominent sterols and superior alcohols found in SCO. In MCO, which also contained a proportion of unknown plant oil, several components showed magnitudes that were lower compared to SCO but higher with respect to VOO. The last had the aliphatic and triterpene alcohol concentration higher compared to that of both SCO and MCO. Several chemometric methods, applied to different analytical data sets, proved to be effective in grouping the three oil kinds.  相似文献   

10.
Thermal stabilities of main enzymes involved in the biosynthesis of virgin olive oil (VOO) aroma through the lipoxygenase (LOX) pathway were studied in crude enzymatic preparations. Kinetic parameters of thermal inactivation for LOX were determined graphically and were shown to be compatible with the presence of two LOX isoenzymes (LOXlab and LOXres) having different thermal stabilities and displaying relative activities of 88 and 12% each. Data on hydroperoxide lyase (HPL) suggest the existence of just one HPL isoform. Thermal stabilities of LOX and HPL enzymatic activities in crude preparations seem to explain the observed decrease of volatile contents in VOO aroma as a consequence of heat treatments of olive fruit. Moreover, differences in thermal stability of LOXlab and LOXres would justify the distinct pattern of reduction of C6 and C5 compound contents observed in the aroma of these oils.  相似文献   

11.
The operative conditions of malaxation such as temperature and time of exposure of olive pastes to air contact (TEOPAC) affect volatile and phenolic composition of virgin olive oil (VOO) and, as a consequence, its sensory and healthy qualities. In this paper, optimal temperature and TEOPAC during malaxation were studied, in lab scale, in two Italian cultivars using phenolic compounds, volatile composition, and sensory analysis of VOO as markers. The optimal temperature and TEOPAC, selected by response surface modeling,were cultivar-dependent being 30 min of TEOPAC at the lowest temperature investigated (22 degrees C) and 0 min of TEOPAC at 26 degrees C for Frantoio and Moraiolo cultivars, respectively.  相似文献   

12.
Field-grown olive trees (Olea europaea L. cv. Leccino) were used over two growing seasons to determine the effect of deficit irrigation regimes on virgin olive oil (VOO) quality. Drip irrigation was managed to maintain a predawn leaf water potential (PLWP): (a) higher than -1.1 MPa (full irrigation: FI); (b) between -1.0 and -3.3 MPa (deficit irrigation: DI); (c) higher than -4.2 MPa (severe deficit irrigation: SI). The fruit yield and oil yield of DI trees were over 90% of those of FI treatments in both years, respectively, whereas yields of SI trees ranged from 61 to 76%. The irrigation regime had minor effects on the free acidity, peroxide value, and fatty acid composition of VOO. The concentrations of phenols and o-diphenols in VOO were negatively correlated with PLWP. The concentrations of the dialdehydic form of decarboxymethyl elenolic acid linked to (3,4-dihydroxyphenyl)ethanol (3,4-DHPEA-EDA), the isomer of the oleuropein aglycon (3,4-DHPEA-EA), and the dialdehydic form of decarboxymethyl elenolic acid linked to (p-hydroxyphenyl)ethanol (p-HPEA-EDA) were lower in FI than in SI treatments. The concentrations of lignans (+)-1-acetoxipinoresinol and (+)-1-pinoresinol were unaffected by the irrigation regime. The tree water status had a marked effect on the concentration of volatile compounds, such as the C(6)-saturated and unsaturated aldehydes, alcohols, and esters.  相似文献   

13.
Pink Lady apples were harvested at commercial maturity and stored at 1 degrees C and 92% relative humidity under either air or controlled atmosphere conditions (2 kPa O 2:2 kPa CO 2 and 1 kPa O 2:1 kPa CO 2) for 27 weeks. Data on the emission of volatile compounds and on the activity of some related enzymes in both skin and flesh tissues were obtained during subsequent shelf life at 20 degrees C. Major effects of storage atmosphere and poststorage period were observed on the emission of volatile esters and their precursors. Changes in the production of volatile esters were partly due to alterations in the activity of alcohol o-acyltransferase, but the specific esters emitted by fruit after storage also resulted largely from modifications in the supply of the corresponding substrates. Samples stored under air were characterized by higher availability of acetaldehyde, whereas those stored under CA showed enhanced emission of the alcohol precursors ethanol and 1-hexanol (2 kPa O 2) and 1-butanol (1 kPa O 2), with accordingly higher production of ethyl, hexyl, and butyl esters. Multivariate analysis revealed that a large part of the observed differences in precursor availability arose from modifications in the activity of the enzymes considered. Higher pyruvate decarboxylase activity in air-stored fruit possibly accounted for higher acetaldehyde levels in these samples, while storage under 1 kPa O 2 led to significantly decreased lipoxygenase activity and thus to lessened production of 1-hexanol and hexyl esters. Low acetaldehyde availability together with enhanced hydroperoxide lyase and alcohol dehydrogenase levels in these fruits are suggested to have led to higher emission of 1-butanol and butyl esters.  相似文献   

14.
The aim of this work was to characterize the thermal inactivation parameters of recombinant proteins related to the biosynthesis of virgin olive oil (VOO) volatile compounds through the lipoxygenase (LOX) pathway. Three purified LOX isoforms (Oep2LOX1, Oep1LOX2, and Oep2LOX2) and a hydroperoxide lyase (HPL) protein (OepHPL) were studied. According to their thermal inactivation parameters, recombinant Oep1LOX2 and Oep2LOX2 could be identified as the two LOX isoforms active in olive fruit crude preparations responsible for the synthesis of 13-hydroperoxides, the main substrates for the synthesis of VOO volatile compounds. Recombinant Oep2LOX1 displayed a low thermal stability, which suggests a weak actuation during the oil extraction process considering the current thermal conditions of this industrial process. In addition, recombinant OepHPL could be identified as the HPL activity in crude preparations. The thermal stability was the highest among the recombinant proteins studied, which suggests that HPL activity is not a limiting factor for the synthesis of VOO volatile compounds.  相似文献   

15.
Regulation of ethylene biosynthesis or action has a major effect on volatiles production in apples. To understand the biochemical processes involved, we used Greensleeves apples from a transgenic line with a high suppression of ethylene biosynthesis. The study was focused at the level of the aroma volatile-related enzymes, including alcohol acyltransferase (AAT), alcohol dehydrogenase (ADH), and lipoxygenase (LOX) and at the level of amino acids and fatty acids as aroma volatile precursors in peel and flesh tissues. In general, volatile production, enzyme activity levels, and precursor availability were higher in the peel than the flesh and were differentially affected by ethylene regulation. AAT enzyme activity showed a clear pattern concomitant with ethylene regulation. Contrarily, ADH and LOX seem to be independent of ethylene modulation. Isoleucine, an important precursor of aroma compounds including 2-methylbutanoate esters, showed a major increase in the peel during ripening and responded significantly to ethylene regulation. Other important aroma volatiles precursors, like linoleic and linolenic acid, showed an accumulation during ripening associated with increases in aldehydes. The significance of these changes in relation to aroma volatile production is discussed.  相似文献   

16.
Mondial Gala apples were harvested at commercial maturity and stored at 1 degrees C under either air or controlled atmosphere (CA) conditions (2 kPa O2/2 kPa CO2 and 1 kPa O2/1 kPa CO2), where they remained for 3 or 6 months. Data on emission of selected volatile esters, alcohol precursors, and activity of some aroma-related enzymes in both peel and pulp tissues were obtained during subsequent shelf life of fruit and submitted to multivariate analysis procedures. CA storage caused a decrease in the emission of volatile esters in comparison to storage in air. Results suggest that lessened ester production was the consequence of modifications in activities of alcohol o-acyltransferase (AAT) and lipoxygenase (LOX) activities. For short-term storage, inhibition of lipoxygenase activity in CA stored fruit possibly led to a shortage of lipid-derived substrates, resulting in decreased production of volatile esters in spite of substantial ester-forming capacity that allowed for some recovery of fruit capacity for ester emission during the shelf life. For long-term storage, strong inhibition of AAT activity in CA stored fruit in combination with low LOX activities resulted in unrecoverable diminution of biosynthesis of volatile esters.  相似文献   

17.
Apple (Malus x domestica Borkh., cv. Gala) fruit treated with 0.5 microL x L(-1) 1-methylcyclopropene (MCP) or air (non-MCP) for 12 h at 20 degrees C were exposed to gamma radiation at doses of 0, 0.44, 0.88, or 1.32 kGy at 23 degrees C and then stored at 20 degrees C. Production of volatile compounds was measured on the day of irradiation and 1, 3, 7, 14, and 21 days after irradiation. Both MCP treatment and irradiation inhibited ethylene production. MCP treatment reduced production of all volatile esters and alcohols detected, whereas irradiation inhibited production of most, but not all, esters and some alcohols by non-MCP-treated fruit. The inhibition of volatile production following irradiation increased with dose. Production of methyl and propyl esters was inhibited more than that of other esters following irradiation or MCP treatment. The impact of irradiation on production of esters and alcohols by MCP-treated fruit was minimal. Non-MCP-treated fruit irradiated at 0.44 kGy produced the most esters during the 21-day period at 20 degrees C following irradiation, and the ester production rate in these fruit was comparable to that of the nonirradiated fruit 21 days after irradiation. Fruit treated with doses higher than 0.44 kGy did not recover their ability to produce volatile compounds. These results indicate both MCP and ionizing radiation inhibit production of many aroma compounds produced by ripening apple fruit.  相似文献   

18.
The sensory and health properties of virgin olive oil (VOO) are highly related to its volatile and phenolic composition. Oxygen control in the pastes during malaxation may be a new technological parameter to regulate enzymatic activities, such as polyphenoloxidase, peroxidase, and lipoxygenase, which affect the phenolic and volatile composition of VOO. In this work, we monitored CO2 and O2 concentrations during industrial-scale olive paste malaxation with various initial O2 concentrations within the malaxer headspace. Results show that the O2 concentration in the malaxer headspace did not affect CO2 production during processing, whereas a strong influence was observed on the changes of the phenolic composition of olive pastes and VOOs, with high correlation coefficient for the total phenols (R = 0.94), especially for oleuropein and demethyloleuropein derivatives (R = 0.81). In contrast, aroma production during malaxation was minimally affected by the O2 concentration in the malaxer headspace.  相似文献   

19.
'Frantoio' olive fruits were stored at low temperature (4 +/- 2 degrees C) for 3 weeks to investigate the effect of postharvest fruit storage on virgin olive oil quality. Volatile compounds and phenolic compounds explained the changes in sensory quality that could not be explained with quality indices (FFA, PV, K232, and K270). Increases in concentrations of ( E)-2-hexenal and hexanal corresponded to positive sensory quality, whereas increases in ( E)-2-hexenol and (+)-acetoxypinoresinol were associated with negative sensory quality. Volatile and phenolic compounds were also indicative of the period of low-temperature fruit storage. Oleuropein and ligstroside derivatives in olive oil decreased with respect to storage time, and their significant ( p < 0.05) change corresponded to changes in bitterness and pungency. ( Z)-2-Penten-1-ol increased during low-temperature fruit storage, whereas 2-pentylfuran decreased. Changes in volatile compounds, phenolic compounds, quality indices, and sensory notes indicated that virgin olive oil quality was lost within the first week of low-temperature fruit storage and regained at 2 weeks. This research suggests that low-temperature olive fruit storage may be beneficial, with a possibility of increasing oil yield and moderating the sensory quality of virgin olive oils. This study demonstrates that deeper insights into virgin olive oil quality changes during low-temperature fruit storage may be gained by studying volatile and phenolic compounds in addition to quality indices and physical appearance of the fruit.  相似文献   

20.
Static headspace (SHS), headspace solid phase microextraction (HS-SPME), headspace sorptive extraction (HSSE), and direct thermal desorption (DTD) were applied to the analysis of four French virgin olive oils from Corsica. More than 60 compounds were isolated and characterized by GC-RI and GC-MS. SHS was not suited to the characterization of olive oil volatile compounds because of low sensitivity. The SPME and HSSE techniques were successfully applied to olive oil headspace analysis. Both methods allow the characterization of volatile compounds (mainly C(6) aldehydes and alcohols), which contribute significantly to the "green" flavor note of virgin olive oils. The PDMS stir bar showed a higher concentration capacity than a DVB/CAR/PDMS SPME fiber due to the higher volume of polymeric coating. DTD was a very good tool for extracting volatile and especially semivolatile compounds, such as sesquiterpenes, but requires a significant investment like that for HSSE. Finally, SPME may be a more appropriate technique for routine quality control due to its operational simplicity, repeatability, and low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号