首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Atlantic salmon population in the River Otra, southern Norway was lost during the 1960's due to acid rain and industrial and municipal pollution. The industrial and municipal pollution sources were sanitized by 1995. A concurrent reduction in acid deposition has during the last 10 years raised pH from 5.2 to 5.7 and reduced inorganic monomeric Al from 71 to 28µg Al L?1 above the industrial area. The water quality improvement resulted in salmon fry again being caught from 1995. Physiological measurements (blood parameters and seawater tolerance) performed on smolts of Atlantic salmon exposed within the river during the spring of 1999 suggests that the smolts were fully smoltified and seawater tolerant, despite having moderate gill morphological changes and having moderate high gill Al concentrations (70–80 µg Al g?1 dw). The smolt quality measured suggests that the river again can support a native salmon population, provided no negative change in water quality. Winter episodes and acid tributaries within the watershed can, however, offset the recovery process.  相似文献   

2.
Physiological stress, measured as changes in plasma chloride, and mortality were measured on different year-classes of landlocked and migratory Atlantic salmon, two strains of brown trout, and brook trout, in a flow-through system with acidic Al-rich soft water. The oldest year-classes of salmon were smolts. Water from Lake Byglandsfjord (pH = 5.9), was enriched 1 th inorganic Al (as AlCl3) and H2SO4 to pH = 5.1, total Al = 225 ug L?1 , and labile Al = 135 ug L?1 . As a reference, lake water was limed by means of a shellsanj filter to pH = 6.2, increasing Ca-concentration from 1.0 to 1.5 mg L?1. During the 83 hr experiment, neither mortality nor physiological stress occurred in any species or year-class in the limed water. In the acid water, no mortality occurred on any stage of brown trout or brook trout. Among the migratory and landlocked salmon, however, 5% of the alevins died after 49 and 70 hr, respectively. All smolts of both the landlocked and the migratory salmon died after 83 and 35 hr, respectively, the co responding loss rate of plasma chloride was ?0.76 and ?1.26 meq Cl hr?1. Brook trout, however, increased plasma ion concentration during the experimental period, and hence showed no stress.  相似文献   

3.
Experimental addition of phosphate to enclosures in an acidified lake in Southern Norway was performed to study the effect on nitrate, pH and labile aluminium along a gradient of phosphate from 4–19 µg P L?1. Nitrate decreased from 180 µg L?1 to below detection limit after three weeks at P-concentrations > 17 µg L?1, due to phytoplankton uptake. pH increased from 4.9 to 5.2, corresponding to a 50% decrease of H+-equivalents from 12 to 6 µg P L?1 due to algal uptake of H+-ions when assimilating NO3 ?-ions. Due to the increased pH and probably also precipitation with phosphate, concentrations of labile aluminium decreased from 150 to 100 µg L?1 within the P-interval 4–19 µg L?1. Algal biomass increased from 0.5 to 6 µg chlorophyll a L?1 along the same P-gradient. The results suggest that moderate P-addition (< 15 µg P L?1 to avoid eutrophication problems) can improve water quality in moderately acidified lakes, and also increase nitrate retention in strongly acidified lakes. In humic lakes, the treatment will be less efficient due to light limitation of primary production and the presence of organic acids.  相似文献   

4.
Ecological and toxicological data from field studies on acidic rivers of Nova Scotia were examined to review the effects of low pH on Atlantic salmon (Salmo salar) populations in waters rich in organic acids where noexchangeable forms of Al dominate at all times. There were no survival of salmon past the dry stage at pH <4.7, and survival rates for salmon from egg to smolt only increased at pH >4.9. Annual production of juvenile salmon and potential yield of smolts were lower at pH 4.7 to 5.4 than at pH 5.6 to 6.3 because of reduced densities attributable to the high mortality of fry at pH ≤5.0. However, acidity episodes to pH <4.7 also resulted in mortality of parr, reducing densities and often completely eliminating year-classes. The physiological responses of juvenile salmon to chronic acid conditions and to acute acidity typical of episodic events were also reviewed in relation to toxicity. Decreased in plasma Na and Cl were well correlated with ambient pH, but not with exchangeable Al concentrations in rivers. These plasma electrolytes provided reliable indicators of the thresholds for sublethal effects on ionoregulatory mechanisms. There was no morphological evidence of damage or lesions in gill epithelia, indicating that accumulation of Al in the gills of parr was not a significant factor in the lethal effects observed in acidic rivers. High organic matter content in the water apparently protected gills from adverse Al effects. Toxicity was considered to result from the effect of low ambient pH on branchial ionoregulatory mechanisms.  相似文献   

5.
Liming to neutralize acidic surface waters involves a possible risk of toxicity to fish due to precipitation or changes in speciation of Al. We report the response of captive brown trout to the experimental liming of an acid stream rich in Al. Within 15 m of lime dosing 0.22 µm filterable Al fell from 580 to 230 µg L?1, and to 120 jig L?1, within 30 m, though total Al was unchanged. After 24 hr, fish mortality was 100% at untreated acidic sites, 80% up to 30 m downstream of liming, declining to zero within 100 m. Mortality was 70% at 15 m below the confluence of an acidic tributary with the limed stream, despite little change in pH or total Al concentration. Mortalities were significantly correlated with concentrations of Al and Fe in gill tissues, and with 0.22 µm filterable Al and Fe in the water, but not with particulate Al or Fe. AI(OH)4 ?, precipitating A1 or polymeric hydrolysis products are all possible causes of the observed toxicity. Iron may have also have contributed, but the stream concentrations of this metal were relatively low. The practical conclusion is that changes in Al chemistry, where waters of differing acidity mix, may be important in some circumstances where river systems are limed selectively.  相似文献   

6.
Fathead minnows (Pimephales promelas) were exposed to a range of pH and A1 concentrations in soft water (8 mg Ca L?1) to determine effect levels at various life stages. The tested pH levels ranged from 8.0 through 5.2 and inorganic monomeric Al from 15 through 60 μg L?1. Reproductive processes including spawning, embryogenesis and early larval survival were more sensitive to acid stress than were juvenile growth and survival. Juvenile survival was significantly reduced at pH 5.2 + 60 μg Al L?1 (P <0.05). Spawning success was reduced at pH 6.0 and 5.5 (P <0.10) and failed completely at pH 5.2, regardless of Al concentration. An apparant beneficial effect of added Al was observed during spawning at pH 7.5 + 35 μg Al L?1, but this effect was not significantly greater than at pH 7.5 + 15 μg Al L?1. A significant (P <0.05) decrease in larval survival occurred at pH 6.0 + 15 μg Al L?1 and lower compared to the survival at pH 7.5 + 15 μg Al L?1. Aluminum at 30 μg L?1 provided protection resulting in short term increased embryo-larval survival at pH 5.5. The effect of parental exposure on progeny survival was assessed by an interchange of embryos from the spawning treatment to all tested exposure conditions. When reared at pH 8.0 + 15 μg Al L?1 through 6.0 + 15 μg Al L?1 or at pH 5.5 + 30 μg Al L?1, parental exposure did not significantly influence progeny survival. However, survival was significantly reduced among progeny from brood fish reared at pH 5.5 + 15 μg Al L?1 as compared to those spawned at pH 6.0 + 15 μg Al L?1 and above, or at pH 5.5 + 30 μg Al L?1 (P <0.05). Juvenile or 14 d larval growth effects were not detected under any exposure condition (P >0.05). Ultimately, fathead minnow young-of-the-year recruitment and production potential can be expected to diminish when environmental pH falls to 6.0, and to fail completely at 5.5 and lower.  相似文献   

7.
In Norway, a variable pH target (pH 6.2–6.4 during most of the year, but 6.4 during the smoltification period) is used to reduce the cost of liming salmon rivers. Here we test the adequacy of this liming strategy. Atlantic salmon presmolts exposed to sublethal acidic water (pH 5.9, <25 µg Ali·L?1) for more than 3 months showed impaired sewater tolerance, elevated gill-Al concentrations, severe gill tissue changes, elevated blood plasma glucose concentrations, but no effect on blood plasma chloride. It is usually assumed that smolt will recover from prior aluminum (Al) exposure if water quality is restored. Recovery rate is here used as an indirect measure of water quality improvements achieved after treating acid water (pH 5.8, 85 µg Ali·L?1) with lime to reach pH-target levels of 6.0 – 6.3. Fish were exposed in a channel-tank set-up for >210 hrs in water aged from 1 minute up to 2 hours after treatment (in a flow through system). More Al was eliminated from the gills when the fish were exposed to pH 6.3 than to pH 5.8 or 6.0, and when water was aged after pH increase. Recovery, defined as return of normal gill morphology, blood homeostasis and establishment of seawater tolerance was achieved within 210 hrs in channels treated with lime to pH 6.3, while a similar recovery was not obvious at lower pH values. Liming to pH 6.3 detoxified Al better than pH 6.1.  相似文献   

8.
In Plastic Lake, Ontario, stocked rainbow trout (Salmo gairdneri) have failed to survive, one endemic fish species has become extinct and annual fish kills included up to five species, but especially pumpkinseeds (Lepomis gibbosus). The potential toxicity of Plastic Lake water was assessed by holding (hatchery) rainbow trout in the major inlet stream, the outlet, and in a portion of the outlet stream acidified to the pH of inlet No. 1. Stress on rainbow trout was assessed by measuring plasma and muscle concentrations of Na + Cl?, and K+, plus gill A1 concentration. Trout held in Plastic Lake inlet No. 1 showed a rapid loss of plasma Na+ from 138 to 85 meq.L?1and Cl? from 120 to 75 meq.L?1 within 24 hr. Gill A1 concentration increased from 20 to 105 μg.g?1 dry weight. Trout held in the outlet steam showed only slight loss of plasma Na+ and Cl? and no accumulation of Al on the gills. Trout held in the acidified outlet showed a significant loss of ions with plasma Na+ depressed from 140 to 115 meq.L?1 and plasma Cl? from 125 to 95 meq.L?1over 24 hr. Gill Al concentration increased from 18 to 30 μg.g?1 dry weight. The differences in stress response of rainbow trout held in the inlet and acidified outlet are likely due primarily to the difference in Al species concentrations in the two waters.  相似文献   

9.
Acidic, Al-rich soft water (pH=5.1, Ca=1.0 mg L?1 and labile Al=160 μg Al L?1) was treated by addition of soda (Na 2Co3) and lime slurry (CaCO3). Seven different water qualities of each type of treatment, covering the pH-range 5.1 to 8.2, were prepared in a flow-through system. Smolts of Atlantic salmon (Salmo salar L.) were used as test fish. In both types of treatment, mortality occurred at all pH-levels below 6.05. Above pH 6.05 no mortality occurred using lime slurry. Using soda, 10 % mortality occurred within 48 hr at pH above 7 due to the toxicity of aluminate at low levels of Ca. Plasma chloride levels indicated no physiological stress in the pH-range 6.45 to 7.0.  相似文献   

10.
Liming detoxifies aluminum in a time-dependent process following the increase in pH. Transformation of Ali into non-reactive or colloidal forms of Al reduces toxicity. To investigate the effects of pH on the detoxification rate, Atlantic salmon (Salmo salar) parr were exposed in four identical channel-tank setups differing only in mixing ratio (30:70, 16:84 or 6:94) between acid (pH 5.6, total Ali 90 µg Al·L?1) and non-acid water (pH 6.3, total Ali 3 µg Al·L?1). Two channels had identical mixing ratio (30:70), but differed with respect to pH (6.0 or >6.4) due to addition of lime. Fish were exposed for 140 hrs. in waters aged from 1 minute and up to 4 hours after mixing. Ali decreased within minutes after mixing at pH 6.4. The detoxification process required hours at pH 6.0. Al accumulation onto fish gills and fish homeostasis was related to Ali. The data suggest that the detoxification process, and therefore the water body affected by ongoing polymerization, was strongly influenced by pH, where a pH target for liming set at pH 6.4 detoxified water faster than a pH target of pH 6.0.  相似文献   

11.
Aluminum was added as aluminum sulfate (alum) to Lake 114, a small, shallow lake of the Experimental Lakes Area, northwestern Ontario, in spring and summer point-source additions. Aluminum and H+ gradients were established during the additions, with high Al and low pH (about 1000 μg L?1 Al, pH 4.7) near the alum sources, and background conditions (< 50 μg L?1 Al, pH 5.7) further from the sources. Approximately 80% of the added Al was lost from the water column in two weeks. Phosphorus concentrations remained unchanged during the additions, whereas lake alkalinity decreased and sulfate increased close to the sources. Dissolved organic carbon (DOC) concentrations decreased slightly (from 540 μM L?1 to about 500 μM L?1) near the alum source during the summer addition.  相似文献   

12.
The concentrations of Al in fish gills has been used as a measure of fish exposure to this metal in acidified waters. This experiment was designed to determine if other fish tissues also accumulate Al and thus possibly contribute to the cause of death. Rainbow trout (Salmo gairdneri) were exposed to the following fours test conditions for 48 hr or until death: (1) pH 6.8, <0.001 mg.L?1 Al (n=6); (2) pH 5.2, <0.001 mg1L?1 Al (n=2);(3) pH 5.2,1.0 mg.L?1 Al (n=5); (4) pH 6.8, 1.0 mg.L?1 Al (n=3). The trout were held in synthetic, low Ca water prior to, and during, experimentation. Esophagus-stomach, gonad, gall bladder, gill (left and right), heart, intestine, kidney, liver, muscle (epaxial), and spleen were digested in a 4:1 mixture of HNO3:HClO4 and analyzed by Inductively Coupled Plasma Emission Spectrophotometry. Elevated Al concentrations were found in gill and gastrointestinal tissues. Left and right gills of fish exposed to pH 5.2, 1.0 mg.L?1 Al were the only tissues found to be significantly different (p<0.01) between the test conditions. The mean total Al concentrations of these test 3 fish, for the left and right gill were 3.61 and 4.33 mg.g?1 Al dw. The Al concentration in thle gastrointestinal tissues of the fish exposed to pH 6.8 at 1.0 mg.L?1 Al was greater than that of the control fish, but not statistically significant. These results suggest that the analysis of whole gill remains an effective indicator of Al exposure in fishes at low pH.  相似文献   

13.
It is possible to predict acid rain events and melts of acid snow some 12 to 24 hr in advance, including estimation of the magnitude and duration of such events. This is sufficient notice to permit monitoring of stream chemistry and fish plasma and muscle ions before acid stress, and to continue this monitoring throughout and after specific events. Such a program has been in place for 2 yr in waters tributary to the Milford Bay Trout Hatchery, Ontario. During one snow melt in February 1984 surface waters showed a decline to pH 4 and associated negative ANC. Rainbow trout held in such water lost plasma Na and Cl rapidly and died within 28 hr. The hatchery water supply, consisting of a mixture of spring and surface water, showed a decline in alkalinity from 300 to 30 μeq.L?1, and a pH change from 6.6 to 5.4, during snow melt. Total A1 concentration increased from 42 to 222 μg.L?1 during snow melt with the “reactive” component increasing from 17 to 112 μg.L?1. Rainbow trout held in this water did not show physiological stress. More rapid run-off of melt water could be expected to exhaust all of the alkalinity in the hatchery water supply permitting the pH to decline and A1 concentration to rise to levels lethal to the hatchery stock of rainbow trout.  相似文献   

14.
The effects of pH (c. 7.0, 5.4, 4.5 and 4.0), nominal Al levels (0 and 8 μmol L?1) and Ca levels (10 and 50 μmol L?1) on Na influx, efflux and netflux of brown trout have been investigated using artificial lake water of known composition. Low pH had little effect on influx, but tended to increase efflux, particularly in the low Ca treatments. A nominal addition of 8 μmol Al L?1 at pH 4.5 and 4.0 reduced influx significantly. Efflux was unaffected. Aluminium addition at pH c. 7.0 and 5.4 had no such effect. The measured Al concentrations at the end of the static 8 hr flux measuring experiments were markedly lower than the nominal amount of A1 added to the start.  相似文献   

15.
Abstract

Arsenic (As) is a deadly poison at high concentrations. It is mysterious in the sense that people are exposed to it most of the time through drinking groundwater, fortunately at much lower concentrations than the deadly levels, and usually without knowing it. Arsenic content in alluvial aquifers of Punjab varied from 3.5 to 688 µg L?1. Arsenic status of groundwater is classified into low (<10 µg L?1), moderate (≥10 to <25 µg L?1), high (≥25 to <50 µg L?1), and very high (>50 µg L?1). In zone I, the concentration of As in groundwater varied from 3.5 to 42 µg L?1 with a mean value of 23.4 µg L?1. On the basis of these limits, only 8% of samples were low, whereas 51 and 41% of the total samples collected from this region fall in the moderate and high As categories. The concentration of As in groundwater of zone II varied from 9.8 to 42.5 µg L?1 with a mean value of 24.1 µg L?1. Arsenic concentration in the alluvial aquifers of the central plain of zone II is 2 and 52% in the low and moderate limits. In this region, 46% of groundwater sites contain high As concentrations. Arsenic concentrations in the aridic southwestern parts are significantly different from other two provinces. The As concentration ranged from 11.4 to 688 µg L?1 with average value of 76.8 µg L?1. Eleven percent of the aquifers of the southwestern region of zone III are in the moderate category, 54% in the high, and 35% in the very high. According to safe As limits (<10 µg L?1), only 3 and 1% of the groundwater samples collected from zones I and II were fit for dinking purposes with respect to As content. In the aridic southwest, zone III, all water samples contained As concentrations greater than the safe limits and thus are not suitable for drinking purposes. The presence of elevated As concentrations in groundwater are generally due to the results of natural occurrences of As in the aquifer materials. The concentration of other competitive oxyanions in waters such as phosphate, sulfate, and borate also depressed the adsorption of As on the sorption sites of aquifer materials and thereby eventually elevate the As concentration in groundwaters. In groundwater of alluvial aquifers of Punjab, released from sulfide oxidation and oxyhydroxide of iron, elevated (>10 µg L?1) concentrations of As were widespread because of high pH (>8.0) and higher concentrations of phosphate, borate, sulfate, and hydroxyl anions. It is conclusively evident that geochemical conditions, such as pH, oxidation–reduction, associated or competing ions, and evaporative environments have significant effects on As concentration in groundwater. These conditions influence how much As is dissolved or precipitated into the water and how much is bound to the aquifer materials or the solid particles in water.  相似文献   

16.
Laboratory studies were conducted to test the ability of brook charr (Salvelinus fontinalis) alevins, the earliest free-swimming life stage of the species, to detect and avoid toxic levels of H+ and inorganic Al. Alevins were tested in steep gradient choice tanks using a range of H+ (pH 4.0 to 5.5) and Al (0 to 500 μg L?1) concentrations in low Ca (2.0 mg L?1) water. The young brook charr actively avoided acidic water with a pH < 5.0. Aluminum additions of 500 μg L?l increased the avoidance response. The observed behavioral response of alevins to low pH and elevated levels of Al, may be of significant adaptive advantage in systems undergoing acidification.  相似文献   

17.
Soil solutions were taken from three forest areas with granite bedrock in Japan (Abukuma, Tateyama and Hiroshima) to investigate pH values, forms of Al and the molar BC/Al ratios. In each area, 10 sites were chosen for study. At each site, a target tree was selected, and two soil solution samples were taken from 10 cm depth at points 10 cm and 100 cm from the trunk of the tree to evaluate the effects of stemflow and throughfall on soil solution chemistry. Values of pH of samples taken 10 cm from the trunks (referred to as S samples) and 100 cm from the trunks (referred to as T samples) ranged from 3.66 to 6.52 and from 4.55 to 6.48, respectively. For Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) trees, S samples showed lower pH than T samples, whereas the inverse relation was observed for broadleaf trees. In the Abukuma and Tateyama areas, the concentrations of monomeric Al (Alm) were mostly below 30 µmol L?1. In the Hiroshima area, however, extremely high Alm concentrations (up to 293 µmol L?1) were observed at some sites. The molar ratio of BC (= Ca + Mg + K) to inorganic monomeric Al was higher than 1 for all samples, except for an S sample from the Hiroshima area having a ratio of 0.72.  相似文献   

18.
In order to test whether major reductions in acid inputs had improved water quality sufficiently for fish populations to recover, we stocked wild European perch (Perca fluviatilis) in three highly acidified lakes that had previously supported this species, and in one limed lake. The fish, which were introduced from a local lake (donor lake), generally ranged from 12 to 16 cm in total length, and were stocked at densities of 117–177 fish ha?1. The untreated lakes were highly acid, with minimum pH values and maximum inorganic aluminium concentrations (Ali) during the spring of 4.6–4.7 and 118–151 µg L?1 respectively. In the limed lake, the corresponding values for pH and Ali ranged between 5.8 and 6.6 and 5 and 19 µg L?1 respectively. Gill-netting in two subsequent years after the introduction yielded only a few recruits (0+) and one adult in one of the three acidified lakes in one year only. However, stocked perch reproduced successfully in both years in the limed lake. There was a significant linear relationship between the catches (CPUE) of juvenile perch (age 0+) in the different lakes in the autumn and the water quality in May (time of hatching), both in terms of Ali (r 2=0.934, P<0.05) and pH (r 2=0.939, P<0.05). Our data suggest unsuccessful recruitment in waters of pH <5.1 and Ali>60 µg L?1.  相似文献   

19.
Abstract

Hydroponic studies with soybean (Glycine max [L.] Merr.) have shown that µmol L?1 additions of Mg2+ were as effective in ameliorating Al rhizotoxicity as additions of Ca2+in the mmol L?1 concentration range. The objectives of this study were to assess the ameliorative effects of Mg on soybean root growth in acidic subsoils and to relate the soil solution ionic compositions to soybean root growth. Roots of soybean cultivar Plant Introduction 416937 extending from a limed surface soil compartment grew for 28 days into a subsurface compartment containing acid subsoils from the Cecil (oxidic and kaolinitic), Creedmoor (montmorillonitic) and Norfolk (kaolinitic) series. The three Mg treatments consisted of native equilibrium soil solution concentrations in each soil (50 or 100 µmol L?1) and MgCl2 additions to achieve 150 and 300 µmol L?1 Mg (Mg150 and Mg300, respectively) in the soil solutions. Root elongations into Mg-treated subsoils were compared with a CaCO3 treatment limed to achieve a soil pH value of 6. Subsoil root growth responses to the Mg treatments were less than for the lime treatments. Root length relative to the limed treatments for all subsoils (RRL) was poorly related to the activity of the soil solution Al species (Al3+ and Al-hydroxyl species) and Mg2+. However, the RRL values were more closely related to the parameters associated with soil solution Ca activity, including (Ca2+), (Al3+)/(Ca2+) and (Al3+)/([Ca2+] + [Mg2+]), suggesting that Ca could be a primary factor ameliorating Al and H+ rhizotoxicity in these subsoils. Increased tolerance to Al rhizotoxicity of soybean by micromolar Mg additions to hydroponic solutions, inducing citrate secretion from roots to externally complex toxic Al, may be less important in acid subsoils with low native Ca levels.  相似文献   

20.
Leaching of Cd and Zn in polluted acid, well‐drained soils is a critical pathway for groundwater pollution. Models predicting future groundwater contamination with these metals have rarely been validated at the field scale. Spodosol profiles (pH 3.2–4.5) were sampled in an unpolluted (reference) field and in a field contaminated with Cd and Zn through atmospheric deposition near a zinc smelter. Average metal concentrations in the upper horizons were 0.2 mg Cd kg?1 and 9 mg Zn kg?1 in the unpolluted field, and 0.8 mg Cd kg?1 and 71 mg Zn kg?1 in the contaminated field. Isotopic dilution was used to measure the labile concentration of Cd and Zn, and the metal transport was modelled using measured sorption parameters that describe the distribution between the labile metal pool (instead of the total metal pool) and the solution phase obtained by centrifugation. Solutions were also collected by wick samplers in two polluted and one unpolluted profile at a depth of 70 cm. Concentrations in these solutions were in the order of 15 µg Cd litre?1 and 0.8 mg Zn litre?1 for the polluted profiles, and 1 µg Cd litre?1 and 0.04 mg Zn litre?1 for the unpolluted profile. The concentrations in these solutions agreed well with those in soil solutions obtained by centrifugation, which supported the use of the local equilibrium assumption (LEA). Present‐day Cd profiles in the polluted field were calculated with the LEA, based on the emission history of the nearby smelter and taking spatial variability into account. Observed and predicted depth profiles agreed reasonably well, but total Cd concentrations in the topsoil were generally underestimated by the model. This may be attributed to the presence of non‐labile Cd in the atmospheric deposition, which was not accounted for in the retrospective modelling. The large concentrations of non‐labile Zn in the topsoil of the polluted field were also indicative that metals in the atmospheric deposition were (partly) in a sparingly soluble form, and that release of these non‐labile metals is a slow process. The presence of non‐labile metals should be taken into account when evaluating metal mobility or predicting their transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号