首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Canadian Basin of the Arctic Ocean, largely ice covered and isolated from deep contact with the more dynamic Eurasian Basin by the Lomonosov Ridge, has historically been considered an area of low productivity and particle flux and sluggish circulation. High-sensitivity mass-spectrometric measurements of the naturally occurring radionuclides protactinium-231 and thorium-230 in the deep Canada Basin and on the adjacent shelf indicate high particle fluxes and scavenging rates in this region. The thorium-232 data suggest that offshore advection of particulate material from the shelves contributes to scavenging of reactive materials in areas of permanent ice cover.  相似文献   

2.
Increasing river discharge to the Arctic Ocean   总被引:10,自引:0,他引:10  
Synthesis of river-monitoring data reveals that the average annual discharge of fresh water from the six largest Eurasian rivers to the Arctic Ocean increased by 7% from 1936 to 1999. The average annual rate of increase was 2.0 +/- 0.7 cubic kilometers per year. Consequently, average annual discharge from the six rivers is now about 128 cubic kilometers per year greater than it was when routine measurements of discharge began. Discharge was correlated with changes in both the North Atlantic Oscillation and global mean surface air temperature. The observed large-scale change in freshwater flux has potentially important implications for ocean circulation and climate.  相似文献   

3.
Trajectory shifts in the Arctic and subarctic freshwater cycle   总被引:1,自引:0,他引:1  
Manifold changes in the freshwater cycle of high-latitude lands and oceans have been reported in the past few years. A synthesis of these changes in freshwater sources and in ocean freshwater storage illustrates the complementary and synoptic temporal pattern and magnitude of these changes over the past 50 years. Increasing river discharge anomalies and excess net precipitation on the ocean contributed approximately 20,000 cubic kilometers of fresh water to the Arctic and high-latitude North Atlantic oceans from lows in the 1960s to highs in the 1990s. Sea ice attrition provided another approximately 15,000 cubic kilometers, and glacial melt added approximately 2000 cubic kilometers. The sum of anomalous inputs from these freshwater sources matched the amount and rate at which fresh water accumulated in the North Atlantic during much of the period from 1965 through 1995. The changes in freshwater inputs and ocean storage occurred in conjunction with the amplifying North Atlantic Oscillation and rising air temperatures. Fresh water may now be accumulating in the Arctic Ocean and will likely be exported southward if and when the North Atlantic Oscillation enters into a new high phase.  相似文献   

4.
A long-term climatic change 4.0 x 10(5) to 3.0 x 10(5) years ago is recorded in deep-sea sediments of the Angola and Canary basins in the eastern Atlantic Ocean. In the Angola Basin (Southern Hemisphere) the climatic signal shows a transition to more humid ("interglacial") conditions in equatorial Africa, and in the Canary Basin (Northern Hemisphere) to more "glacial" oceanic conditions. This trend is confirmed by comparison with all well-documented marine and continental records from various latitudes available; in the Northern Hemisphere, in the Atlantic north of 20 degrees N, climate merged into more "glacial" conditions and in equatorial regions and in the Southern Hemisphere to more "interglacial" conditions. The data point to a more northern position of early Brunhes oceanic fronts and to an intensified atmosphere and ocean surface circulation in the Southern Hemisphere during that time, probably accompanied by a more zonal circulation in the Northern Hemisphere. The mid-Brunhes climatic change may have been forced by the orbital eccentricity cycle of 4.13 x 10(5) years.  相似文献   

5.
Oxygen isotope records of cores from the central Arctic Ocean yield evidence for a major influx of meltwater at the beginning of the last deglaciation 15.7 thousand years ago (16,650 calendar years B.C.). The almost parallel trends of the isotope records from the Arctic Ocean, the Fram Strait, and the east Greenland continental margin suggest contemporaneous variations of the Eurasian Arctic and Greenland (Laurentide) ice sheets or increased export of low-saline waters from the Arctic within the East Greenland Current during the last deglaciation. On the basis of isotope and carbon data, the modern surface- and deep-water characteristics and seasonally open-ice conditions with increased surface-water productivity were established in the central Arctic at the end of Termination lb about 7.2 thousand years ago or 6,000 calendar years B.C.).  相似文献   

6.
Arctic Ocean Gravity Field Derived From ERS-1 Satellite Altimetry   总被引:1,自引:0,他引:1  
The derivation of a marine gravity field from satellite altimetry over permanently ice-covered regions of the Arctic Ocean provides much new geophysical information about the structure and development of the Arctic sea floor. The Arctic Ocean, because of its remote location and perpetual ice cover, remains from a tectonic point of view the most poorly understood ocean basin on Earth. A gravity field has been derived with data from the ERS-1 radar altimeter, including permanently ice-covered regions. The gravity field described here clearly delineates sections of the Arctic Basin margin along with the tips of the Lomonosov and Arctic mid-ocean ridges. Several important tectonic features of the Amerasia Basin are clearly expressed in this gravity field. These include the Mendeleev Ridge; the Northwind Ridge; details of the Chukchi Borderland; and a north-south trending, linear feature in the middle of the Canada Basin that apparently represents an extinct spreading center that "died" in the Mesozoic. Some tectonic models of the Canada Basin have proposed such a failed spreading center, but its actual existence and location were heretofore unknown.  相似文献   

7.
Enhanced modern heat transfer to the Arctic by warm Atlantic Water   总被引:3,自引:0,他引:3  
The Arctic is responding more rapidly to global warming than most other areas on our planet. Northward-flowing Atlantic Water is the major means of heat advection toward the Arctic and strongly affects the sea ice distribution. Records of its natural variability are critical for the understanding of feedback mechanisms and the future of the Arctic climate system, but continuous historical records reach back only ~150 years. Here, we present a multidecadal-scale record of ocean temperature variations during the past 2000 years, derived from marine sediments off Western Svalbard (79°N). We find that early-21st-century temperatures of Atlantic Water entering the Arctic Ocean are unprecedented over the past 2000 years and are presumably linked to the Arctic amplification of global warming.  相似文献   

8.
An empirical model of carbon flux and (14)C-derived ages of the water in the Canada Basin of the Arctic Ocean as a function of depth was used to estimate the long-term rate of primary production within this region. An estimate can be made because the deep waters of the Canadian Basin are isolated from the world oceans by the Lomonosov Ridge (sill depth about 1500 meters). Below the sill, the age of the water correlates with increased nutrients and oxygen utilization and thus provides a way to model the average flux of organic material into the deep basin over a long time period. The (14)C ages of the deep water in the Canada Basin were about 1000 years, the carbon flux across the 1500-meter isobath was 0.3 gram of carbon per square meter per year, and the total production was 9 to 14 grams of carbon per square meter per year. Such estimates provide a baseline for understanding the role of the Arctic Ocean in global carbon cycling.  相似文献   

9.
Ocean general circulation theories predict that the position of the boundary between subtropical and subpolar gyres (and therefore the position of the Gulf Stream-North Atlantic Current system and the subpolar-subtropical front) is set by the line of zero "Ekman pumping," where there is no convergence or divergence of water in the directly wind-forced surface layer of the ocean. In the present-day North Atlantic Ocean this line runs southwest to northeast, from off the Carolinas to off Ireland. However, during the last ice age (18,000 years ago) the subpolar-subtropical boundary ran more zonally, directly toward Gibraltar. A numerical atmospheric general circulation model indicates that the field of Ekman pumping 18,000 years ago was modified by the presence of a continental ice cap more than 3 kilometers thick such that the line of zero Ekman pumping overlaid the paleogyre boundary. These results demonstrate that the presence of a thick continental ice sheet could have caused changes in sea surface temperatures in the North Atlantic during Quaternary glaciations by altering wind patterns.  相似文献   

10.
The isotopic composition of neodymium has been determined in seawaters from the Drake Passage. The Antarctic Circumpolar Current, which controls interocean mixing, flows through this passage. The parameter epsilon(Nd)(0) which is a function of the ratio of neodymium-143 to neodymium-144, is found to be uniform with depth at two stations with a value which is intermediate between the values for the Atlantic and the Pacific and indicates that the Antarctic Circumpolar current consists of about 70 percent Atlantic water. Cold bottom water from a site in the south central Pacific has the neodymium isotopic signature of the waters in the Drake Passage. By using a box model to describe the exchange of water between the Southern Ocean and the ocean basins to the north together with the isotopic results, an upper limit of approximately 33 million cubic meters per second is calculated for the rate of exchange between the Pacific and the Southern Ocean. Concentrations of samarium and neodymium were also determined and found to increase approximately linearly with depth. These results suggest that neodymium may be a valuable tracer in oceanography and may be useful in paleo-oceanographic studies.  相似文献   

11.
Influence of the Atlantic subpolar gyre on the thermohaline circulation   总被引:2,自引:0,他引:2  
During the past decade, record-high salinities have been observed in the Atlantic Inflow to the Nordic Seas and the Arctic Ocean, which feeds the North Atlantic thermohaline circulation (THC). This may counteract the observed long-term increase in freshwater supply to the area and tend to stabilize the North Atlantic THC. Here we show that the salinity of the Atlantic Inflow is tightly linked to the dynamics of the North Atlantic subpolar gyre circulation. Therefore, when assessing the future of the North Atlantic THC, it is essential that the dynamics of the subpolar gyre and its influence on the salinity are taken into account.  相似文献   

12.
Two additional interpretations are given for the important data of D. B. Ericson on the correlation of coiling directions of Globigerina pachyderma in late Pleistocene North Atlantic sediments with ocean surface temperatures. One interpretation relates the distribution of this species to the distribution and circulation of ocean water masses. On the basis of our ice-age theory, our second interpretation uses the data and correlations of Ericson to establish temperature limits of a thermal node, a line on which glacial and interglacial temperatures were equal, for the North Atlantic Ocean. This line crosses the strait between Greenland and Scandinavia. Further, Ericson's interpretation of the 7.2 degrees C isotherm implies that the glacial-stage surface waters of the Arctic Ocean were between 0 degrees and 3.5 degrees C.  相似文献   

13.
Human-induced Arctic moistening   总被引:1,自引:0,他引:1  
The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.  相似文献   

14.
Decline of subpolar North Atlantic circulation during the 1990s   总被引:1,自引:0,他引:1  
Observations of sea surface height reveal that substantial changes have occurred over the past decade in the mid- to high-latitude North Atlantic Ocean. TOPEX/Poseidon altimeter data show that subpolar sea surface height increased during the 1990s, and the geostrophic velocity derived from altimeter data exhibits declining subpolar gyre circulation. Combining the data from earlier satellites, we find that subpolar circulation may have been weaker in the late 1990s than in the late 1970s and 1980s. Direct current-meter observations in the boundary current of the Labrador Sea support the weakening circulation trend of the 1990s and, together with hydrographic data, show that the mid- to late 1990s decline extends deep in the water column. Analysis of the local surface forcing suggests that the 1990s buoyancy forcing has a dynamic effect consistent with altimetric and hydrographic observations: A weak thermohaline forcing allows the decay of the domed structure of subpolar isopycnals and weakening of circulation.  相似文献   

15.
The chlorofluoromethanes (CFMs: CCl(2)F(2) and CCl(3)F), methyl chloroform (CH(3)CCl(3)), and carbon tetrachloride (CCl(4)) have been measured in deep waters of the Arctic Ocean. Oceanic and atmospheric inventories of these compounds result from known anthropogenic releases; because the CFMs and CCl(4) are also chemically nonreactive, they can be used as transient tracers of ocean circulation. The input history of CCl(4) is longer than that of any other transient tracer identified to date( approximately 70 years). This long input history, together with an e-folding time scale of increase(tau) of approximately 28 years, makes CCl(4) potentially the most useful tracer for calibrating models of the oceanic uptake of the fossil-fuel CO(2) transient(tau approximately 25 years). The bottom water of the Nansen Basin, Arctic Ocean, has detectable CCl(4) but undetectable CFM(s) and CH(3)CCl(3), which suggests either that the bottom water is approximately 50 years old, or that there is a small, nonanthropogenic component of atmospheric CCl(4)(<6 parts per trillion by volume).  相似文献   

16.
利用来自英国Hadley气候预测和研究中心的HadlSST海温资料,对北大西洋海域的SST(Sea Surface Temperature)季节特征及整体变化趋势进行研究.研究表明,该海域的SST在8和10月相对较高,2和5月相对偏低,8和10月的SST比2和5月高出5℃左右;SST由低纬向高纬递减,在北极达到最低,等值线呈东西带状分布;在中低纬海域,同一纬度的SST大洋西岸高于大洋东岸,在高纬度海域,同一纬度的SST则是大洋东岸高于大洋西岸;1870 ~ 2009年期间,北大西洋海域逐年、逐夏季、透冬季的SST均呈显著性线性递增,递增趋势分别为0.003 4、0.0048、0.002 7℃/a,逐夏季的递增趋势明显强于逐冬季的递增趋势;北大西洋海域的SST逐年、逐夏季、逐冬季均存在共同的2.09 ~2.25、2.73 ~3.00、3.46 ~3.75年的显著性变化周期以及45年以上的长周期震荡.  相似文献   

17.
We examined the number of tropical cyclones and cyclone days as well as tropical cyclone intensity over the past 35 years, in an environment of increasing sea surface temperature. A large increase was seen in the number and proportion of hurricanes reaching categories 4 and 5. The largest increase occurred in the North Pacific, Indian, and Southwest Pacific Oceans, and the smallest percentage increase occurred in the North Atlantic Ocean. These increases have taken place while the number of cyclones and cyclone days has decreased in all basins except the North Atlantic during the past decade.  相似文献   

18.
A computer model of coupled ice sheet-ice shelf behavior was used to evaluate whether observed changes in atmospheric CO(2) concentration could have caused the advance and retreat of Pleistocene ice sheets in the Eurasian Arctic. For CO(2) concentrations below a threshold of approximately 250 parts per million, an extensive marine-based ice sheet covering Scandinavia, the Barents, Kara, and East Siberian seas, and parts of the Arctic Ocean developed in the model simulations. In the simulations, climatic warming associated with the Holocene rise of atmospheric CO(2) was sufficient to collapse this widespread glaciation and restore present-day ice conditions.  相似文献   

19.
Spatial Variability of Turbulent Mixing in the Abyssal Ocean   总被引:3,自引:0,他引:3  
Ocean microstructure data show that turbulent mixing in the deep Brazil Basin of the South Atlantic Ocean is weak at all depths above smooth abyssal plains and the South American Continental Rise. The diapycnal diffusivity there was estimated to be less than or approximately equal to 0.1 x 10(-4) meters squared per second. In contrast, mixing rates are large throughout the water column above the rough Mid-Atlantic Ridge, and the diffusivity deduced for the bottom-most 150 meters exceeds 5 x 10(-4) meters squared per second. Such patterns in vertical mixing imply that abyssal circulations have complex spatial structures that are linked to the underlying bathymetry.  相似文献   

20.
Gordon AL 《Science (New York, N.Y.)》1985,227(4690):1030-1033
During November and December 1983, two anticyclonic eddies were observed west of the Agulhas Retroflection, apparently spawned at the retroflection. The western eddy, centered 300 kilometers southwest of Cape Town, has a winter cooled core encircled by warm Indian Ocean water. Between Cape Town and the "Cape Town Eddy" is a net geostrophic transport of Indian Ocean thermocline water (14 x 10(6) cubic meters per second) into the South Atlantic Ocean. This circulation configuration, similar to that observed by earlier researchers, suggests that Indian-Atlantic thermocline exchange is a common occurrence. Such a warmwater link between the Atlantic and Indian oceans would strongly influence global climate patterns. The Indian Ocean water is warmer than the adjacent South Atlantic water and thus represents a heat input of 2.3 x 10(13) to 47 x 10(13) watts into the Atlantic. The large uncertainty arises from the unknown partition between two possible routes for the return flow from the Atlantic to the Indian Ocean: cooler South Atlantic thermocline water or much colder North Atlantic Deep Water. In either case, interocean mass and heat exchange of thermocline water at the Agulhas Retroflection is a distinct likelihood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号