首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seedlings of 13 cultivars of oilseed rape ( Brassica napus ) were inoculated with 10 isolates of Leptosphaeria maculans. Three virulent isolates were identified which gave a resistant reaction on some cultivars normally considered susceptible. Further experiments to compare these with standard isolates confirmed the existence of a differential host-pathogen interaction. The breeding line 78/271, plus the cultivars Quinta, Garant, Norli and possibly Elvira differentiated the isolates tested while Jet Neuf, Rafal, Primor, Doral, Hercules, Rapora, Liraglu and Erra did not. The relevance of these findings to breeding for canker resistance in oilseed rape is discussed.  相似文献   

2.
Latent infection of winter oilseed rape by Leptosphaeria maculans   总被引:2,自引:2,他引:0  
Plants of oilseed rape, cultivars Primer and Jet Neuf, were grown in a glasshouse and inoculated at G.S. 2.4–2.7 with pycnidiospores or ascospores of Leptosphaeria maculans. The plants were kept for a further 2–4 weeks at 14°C and then transferred, together with uninoculated plants, to a polythene tunnel in winter. The majority of stems of inoculated plants did not have macroscopic symptoms of L. maculans infection 6 weeks after inoculation. Examination of whole mounts of peripheral tissue and transverse sections of fixed and embedded portions of these stems revealed intercellular septate fungal hyphae, often deep in non-necrotic cortical tissue, in symptomless inoculated plants but not in uninoculated plants. L. maculans was recovered following surface sterilization of adjacent portions of the same stems. When symptomless inoculated plants were transferred to a glasshouse at 18–20°C, cankers soon developed. The significance of these latent mycelial infections to canker development in the field is discussed.  相似文献   

3.
Phoma stem canker (blackleg), caused by Leptosphaeria maculans , is an important disease on oilseed rape (canola, rapeseed, Brassica napus , Brassica juncea , Brassica rapa ) causing seedling death, lodging or early senescence in Australia, Canada and Europe, but not in China. The two forms of L. maculans (A group and B group) that occur on oilseed rape are now considered to be separate species. The epidemiology and severity of phoma stem canker differs between continents due to differences in the pathogen population structure, oilseed rape species and cultivars grown, climate and agricultural practices. Epidemics are most severe in Australia, where only the A group occurs, and can be damaging in Canada and western Europe, where both A and B groups occur, although their proportions vary within regions and throughout the year. Epidemics are slight in China, where the A group has not been found. Dry climates (Australia, western Canada) lengthen the persistence of infected debris and may synchronize the release of airborne ascospores (after rain) with seedling emergence. L. maculans spreads from cotyledon and leaf infections down petioles to reach the stem, with infections on cotyledons and leaves early in the season producing the most damaging stem cankers at the stem base (crown). Development of both crown cankers and phoma stem lesions higher up stems is most rapid in regions with high temperatures from flowering to harvest, such as Australia and Canada. Breeding for resistance (genetic, disease escape or tolerance), stubble management, crop rotation and fungicide seed treatments are important strategies for control of phoma stem canker in all areas. Fungicide spray treatments are justified only in regions such as western Europe where high yields are obtained, and accurate forecasts of epidemic severity are needed to optimize their use.  相似文献   

4.
The relationship between severity of blackleg, or phoma stem canker ( Leptosphaeria maculans/L. biglobosa ), and subsequent primary inoculum production on oilseed rape ( Brassica napus ) stubble was investigated at two sites in France over 3 years. The quantity of primary inoculum produced in the following year increased with canker severity, from 1·9 to 10·8 pseudothecia cm−2 on stubble with the least and most severe cankers, respectively. Stubble incubated at Le Rheu (cooler, more rain) had 1·7 times more pseudothecia than stubble incubated at Grignon. Stubble collected at Grignon had 2·7 times more pseudothecia than that collected at Le Rheu. The use of Darmor, a cultivar with a good level of quantitative resistance, reduced the severity of canker in the field, but not the subsequent inoculum production for stubble of the same canker severity class. At both sites, maturation of pseudothecia occurred after 63–75 days of incubation and increased with canker severity with a mean of 0·5 and 3% mature pseudothecia appearing per favourable day, on stubble with the least and most severe cankers, respectively. A simplified procedure for pseudothecial quantification proved satisfactory: for all three observers, most (91–96%) of the fructifications counted as pseudothecia were real pseudothecia. Only a few (4–14%) of the fructifications considered as non-pseudothecia were in fact pseudothecia of L. maculans . The total area occupied by pseudothecia, which was simpler and faster to evaluate, was correlated (coefficient of determination, R 2 = 71%) with the number of counted pseudothecia. The results presented here make it possible to forecast the quantity of available primary inoculum for a given disease severity.  相似文献   

5.
Field experiments in Europe have shown that Chinese cultivars of winter oilseed rape ( Brassica napus ) are very susceptible to the pathogen Leptosphaeria maculans (cause of phoma stem canker). Climatic and agronomic conditions in China are suitable for L. maculans since the closely related but less damaging pathogen L. biglobosa occurs on the winter and spring oilseed rape crops there. Major gene resistance to L. maculans is not durable; when introduced into commercial oilseed rape cultivars it is rapidly rendered ineffective by changes in the pathogen population. The threat to Chinese oilseed rape production from L. maculans is illustrated by the way in which L. maculans has spread into other areas of the world where previously only L. biglobosa was present, such as Canada and Poland. Models were developed to describe the spread (in space and time) of L. maculans across Alberta province, Canada, based on survey data collected over a 15-year period. These models were used to estimate the potential spread of L. maculans across the Yangtze river oilseed rape growing areas of China and its associated costs. Short-term strategies to prevent occurrence of severe phoma stem canker epidemics in China include training of extension workers to recognise symptoms of the disease and use of PCR-based diagnostics to detect the pathogen on imported seed. Long-term strategies include the introduction of durable resistance to L. maculans into Chinese oilseed rape cultivars as a component of an integrated disease management programme. The costs of such strategies in relation to costs of a phoma stem canker epidemic are discussed.  相似文献   

6.
The A and B groups (aggressive and non-aggressive) of Leptosphaeria maculans were compared in studies of host range, infection phenotypes and epidemiology. Isolates of both groups infected a wide range of cruciferous hosts including Brassica napus, B. rapa, B. oleracea, B. juncea, B. carinata. B. nigra, Thlaspi arvense and Raphanus sativus. On cotyledons, B-group isolates were generally more aggressive than A-group isolates, causing local lesions and subsequent systemic invasion of the majority of test species. On susceptible stems, A-group isolates caused cortical lesions; B-group isolates, if they reached the stem, usually caused pith lesions with no external symptoms. In a susceptible line of B. napus , CrGC5, systemic infections of the leaf and petiole were similar with both groups, but the B-group rarely entered the stem to form cortical lesions or cankers. At two different field locations, natural epidemics caused by the two groups on oilseed rape leaves were similar in overall pattern, B-group lesions occurred slightly later but the incidence increased more rapidly and reached a maximum slightly earlier than that of the A group. The two groups differed markedly in stem infection patterns. Infection of the cortex near the base of the stem and the development of a typical stem canker was caused entirely by the A group. However the B group often caused considerable damage to the pith. Superficial chlorotic lesions on stems and inflorescences were mainly attributable to the B group. In view of the stem pith infection by the B group without external symptoms, its importance on oilseed rape may have been underestimated previously.  相似文献   

7.
Pretreatment of the first true leaves of oilseed rape plants ( Brassica napus cv. Bristol) with menadione sodium bisulphite (MSB) locally and systemically induced resistance, as shown by reduced lesion size and number, to infection by the fungal pathogen Leptosphaeria maculans , the causal agent of stem canker. Using a known systemic activator of salicylic acid-dependent PR-1 induction, acibenzolar- S -methyl (BTH; S -methylbenzo[1,2,3]thiadiazole-7-carbothiate) as a comparison, real-time PCR expression analysis of genes encoding a pathogenesis-related protein 1 ( PR-1 ) and an ascorbate peroxidase ( APX ) demonstrated a systemic enhancement of APX expression in MSB-pretreated plants, with no effect on PR-1 expression, suggesting augmented reactive oxygen species production in MSB-pretreated plants. The results demonstrate MSB to be an effective resistance activator in oilseed rape, and potentially useful for the control of stem canker.  相似文献   

8.
Stem canker of crucifers is caused by an ascomycete species complex comprising of two main species, Leptosphaeria maculans and L. biglobosa. These are composed of at least seven distinct subclades based on biochemical data or on sequences of internal transcribed spacer (ITS), the mating type MAT1-2 or fragments of actin or beta-tubulin genes. In the course of a wide-scale characterization of the race structure of L. maculans from Western Australia, a few isolates from two locations failed to amplify specific sequences of L. maculans, i.e., the mating-type or minisatellite alleles. Based on both pathogenicity tests and ITS size, these isolates were classified as belonging to the L. biglobosa species. Parsimony and distance analyses performed on ITS, actin and beta-tubulin sequences revealed that these isolates formed a new L. biglobosa subclade, more related to the Canadian L. biglobosa 'canadensis' subclade than to the L. biglobosa 'australensis' isolates previously described in Australia (Victoria). They are termed here as L. biglobosa 'occiaustralensis'. These isolates were mainly recovered from resistant oilseed rape cultivars that included the Brassica rapa sp. sylvestris-derived resistance source, but not from the susceptible cv. Westar. The pathogenicity of L. biglobosa 'occiaustralensis' to cotyledons of most oilseed rape genotypes was higher than that of L. biglobosa 'canadensis' or L. biglobosa 'australensis' isolates.  相似文献   

9.
The survival of Leptosphaeria maculans , which causes phoma stem canker (blackleg), on oilseed rape residues ( Brassica napus ) in South Australia was investigated. Using a quantitative polymerase chain reaction (PCR) assay for L. maculans DNA, the pathogen was mainly detected in the upper 5 cm of the soil profile, including residues on the soil surface. As the size of organic matter particles in the soil decreased, so did the quantity of L. maculans detected in them. To obtain representative data for a field, at least 30 subsamples needed to be collected over the 0·81 ha area studied. In a survey of 49 commercial fields in South Australia, most L. maculans was detected in fields 1 year after oilseed rape had been grown, with less detected after 2 years and negligible amounts 3 years or more after cropping. The diagnostic DNA-based assay for L. maculans reduced the time and cost of studying L. maculans survival in soil and increased the sensitivity and accuracy of results compared with estimates of propagule number of colony-forming units on a semiselective medium.  相似文献   

10.
ABSTRACT Leptosphaeria maculans, the causal agent of stem canker of oilseed rape (Brassica napus), develops gene-for-gene interactions with oilseed rape, and four L. maculans avirulence (AVR) genes (AvrLm1, AvrLm2, AvrLm4, and alm1) were previously genetically characterized. Based on the analysis of progeny of numerous in vitro crosses between L. maculans isolates showing either already characterized or new differential interactions, this work aims to provide an overview of the AVR genes that may specify incompatibility toward B. napus and the related species B. juncea and B. rapa. Two novel differential interactions were thus identified between L. maculans and B. napus genotypes, one of them corresponding to a complete resistance to European races of L. maculans. In both cases, a single gene control of avirulence was established (genes AvrLm3 and AvrLm7). Similarly, a single gene control of avirulence toward a B. rapa genotype, also resistant to European L. maculans isolates, was demonstrated (gene AvrLm8). Finally, a digenic control of avirulence toward B. juncea was established (genes AvrLm5 and AvrLm6). Linkage analyses demonstrated that at least four unlinked L. maculans genomic regions, including at least one AVR gene cluster (AvrLm1-AvrLm2-AvrLm6), are involved in host specificity. The AvrLm3-AvrLm4-AvrLm7 region may correspond either to a second AVR gene cluster or to a multiallelic AVR gene.  相似文献   

11.
Williams  & Fitt 《Plant pathology》1999,48(2):161-175
Stem canker or blackleg of brassicas, caused by Leptosphaeria maculans , is one of the most damaging diseases of winter oilseed rape in the UK. Airborne ascospores, released in autumn and winter, initiate leaf infections which may lead to colonization of the petiole and, later in the season, formation of stem lesions and cankers. Although isolates of the pathogen differ in ability to cause damaging stem cankers, this is not readily apparent from leaf spotting or stem lesion symptoms. However, several cultural, biochemical and genetic characteristics appear to be associated with the ability to form damaging stem cankers and isolates can be assigned to one of two groups, termed A and B, on the basis of differences in these characteristics. To investigate the relationship between leaf spotting symptoms and subsequent stem canker formation, and to improve understanding of the epidemiology of this pathogen, it is desirable to differentiate between the stem canker forming A group and the less damaging B group of L. maculans . Characterization of isolate type is also important in seed testing and crop breeding programs, particularly in countries such as Canada and Poland where the A type is not ubiquitous. This article reviews methods, including plant assays, assessments of growth characteristics in vitro , isozyme analyses, secondary metabolite profiling, serology, and nucleic acid analyses, that can be used to differentiate the A and B groups.  相似文献   

12.
In June/July 2001, 2002, 2003 and 2006, regional variation in distribution of the pathogens Leptosphaeria maculans and L. biglobosa that are causally associated with phoma stem canker was surveyed on winter oilseed rape crops in England. In 2001–2003, when isolates from basal cankers were visually identified as L. maculans or L. biglobosa based on cultural morphological characteristics, 70% were L. maculans and 30% L. biglobosa . In 2001, 2002, 2003 and 2006, when amounts of DNA of each species in basal cankers were determined by quantitative PCR, the abundance of L. maculans DNA was greater than that of L. biglobosa DNA in 77% of samples. When regional differences in amounts of L. maculans and L. biglobosa DNA were mapped geostatistically, quantities of L. maculans DNA were greater in cankers from southern England and those of L. biglobosa DNA were greater in northern England. A comparison with geostatistically mapped predictions made using a weather-based model describing stages in development of phoma stem canker epidemics suggested that these differences in Leptosphaeria populations may have been a consequence of differences in temperature after onset of leaf spotting between northern and southern England. Both PCR and morphological evidence suggested that the abundance of L. maculans in England has increased since the last surveys in the 1980s. Implications of these surveys for control of phoma stem canker are discussed.  相似文献   

13.
Blackleg disease (phoma stem canker) of Brassica napus (canola, oilseed rape) is caused by the fungus Leptosphaeria maculans . In some regions of Australia, resistance in oilseed rape cultivars derived from B. rapa subs . sylvestris (e.g. cv. Surpass 400) became ineffective within three years of commercial release. The genetic control of avirulence in L. maculans towards cv. Surpass 400 is described. When Australian field isolates were screened on this cultivar, three phenotypic classes were observed; virulent, intermediate and avirulent. Analysis of crosses between fungal isolates varying in their ability to infect cv. Surpass 400 demonstrated the presence of two unlinked avirulence genes, AvrLm1 and AvrLmS . Complementation of isolates (genotype avrLm1 ) with a functional copy of AvrLm1 , and genotyping of field isolates using a molecular marker for AvrLm1 showed that virulence towards Rlm1 is necessary, but not sufficient, for expression of a virulent phenotype on cv. Surpass 400. Taken together, these data strongly suggest that cv. Surpass 400, with ' sylvestris -derived' resistance, contains at least two resistance genes, one of which is Rlm1 .  相似文献   

14.
Quantitative resistance to Leptosphaeria maculans in Brassica napus was investigated in field and controlled environments using cultivars Darmor (with quantitative resistance) and Eurol (without quantitative resistance). In field experiments, numbers of phoma leaf spot lesions in autumn/winter and severity of stem canker the following summer were assessed in three growing seasons. There were no differences between Darmor and Eurol in number of leaf lesions in autumn/winter. However, stem cankers were less severe on Darmor than Eurol at harvest the following summer. In controlled-environment experiments, development of leaf lesions at different temperatures (5–25°C) and wetness durations (12–72 h) was investigated using ascospore inoculum; symptomless growth of L. maculans along leaf petioles towards the stem was quantified using quantitative PCR and visualized using GFP-expressing L. maculans ; growth of L. maculans within stem tissues was investigated using GFP-expressing L. maculans . There were more leaf lesions on Darmor than Eurol, although there was no difference between Darmor and Eurol in L. maculans incubation period. There were no differences between Darmor and Eurol in either distance grown by L. maculans along leaf petioles towards the stem or quantity of L. maculans DNA in leaf petioles, but L. maculans colonized stem tissues less extensively on Darmor than Eurol. It was concluded that quantitative resistance to L. maculans operates during colonization of B. napus stems by the pathogen.  相似文献   

15.
The response of cotyledons of oilseed rape ( Brassica napus ssp. oleifera ) accessions to infection by isolates of Peronospora parasitica under controlled conditions was assessed on a 0–7 scale (disease reaction). In interactions scored 0–3, 4–5 and 6–7, the host was considered resistant, partially resistant and susceptible, respectively. Accession RES-26, selected from the spring oilseed rape cultivar Janetzkis, was partially resistant to isolate R1 and resistant to isolate P003 of P. parasitica , which distinguishes it from three previously described differential response groups ('A', 'B' and 'C') of accessions in B. napus . The resistance of RES-26 to isolate P003 seemed to be conditioned by a single, partially dominant gene and the resistance of RES-02, which belongs to group 'A' (resistant to R1 and P003), by two independent partially dominant genes. The gene for resistance to P003 in RES-26 is either closely linked, allelic or identical to one of the two genes for resistance in RES-02. Resistance of RES-02 to R1 is conditioned by a single, incompletely dominant gene. The genes for resistance to isolates R1 and P003 in RES-02 are either closely linked, allelic or identical. The cotyledonary leaves of each seedling responded independently when inoculated simultaneously each with a different isolate of the pathogen.  相似文献   

16.
The fungus Leptosphaeria maculans causes blackleg (phoma stem canker), one of the most serious diseases of oilseed rape. The role of pycnidiospores produced during asexual reproduction is poorly documented and limits the understanding of the pathogen's population dynamics. The objectives of this study were to assess rain-splash dispersal of pycnidiospores of L. maculans from phoma leaf spots, and transmission of the disease from oilseed rape stubble carrying pycnidia. The work was conducted in still air with either a drop generator or a rain simulator. The impact of simulated incident drops on phoma leaf spots resulted in the dispersal of L. maculans pycnidiospores within splash droplets. Ninety per cent of the spores were collected within 14 cm of the source and a few were regularly observed up to 40 cm. Pycnidiospores produced on oilseed rape stubble and dispersed by simulated rain infected oilseed rape trap plants in a spatial pattern that matched the spatial dispersal of the pycnidiospores. In the field, rain-splash dispersal of pycnidiospores could increase the pathogen population and may enhance sexual reproduction by facilitating the mating of initially spatially separated isolates of opposite mating type.  相似文献   

17.
Leptosphaeria maculans , the causal agent of phoma stem canker on oilseed rape, is an important pathogen in oilseed rape growing regions of the world, including Australia. Survival of L. maculans and associated mycobiota on oilseed rape stubble buried for 13 months in field soil and in sandy soil was studied under South Australian environmental conditions. Stubble weight decreased significantly by the end of the burial period, more so in field (53·7%) than in sandy soil (22%). Pseudothecia did not develop on stubble buried in field soil and few formed when buried in sandy soil. Moist incubation of stubble following retrieval from both media generated pseudothecia; however, pseudothecial development ceased on stubble that had been buried for 10 and 12 months in field and sandy soil, respectively. In total, 20 and 36 genera of fungi were isolated from stubble before and after burial, respectively. Alternaria spp., L. maculans and Stemphylium botryosum were isolated from 81·7, 70 and 60% of stubble pieces before burial, respectively. Isolation frequency of these species decreased significantly throughout the burial period in both media. Conversely, isolation frequency of Stachybotrys chartarum , Fusarium spp. and Trichoderma spp., having pre-burial frequencies of 26·7, 16·7 and 2·5%, respectively, increased over the burial period regardless of soil type. These findings suggest that inoculum production of L. maculans decreases with the increasing burial duration in field soil over 10 months, before ceasing, and this may be due to associated mycobiota.  相似文献   

18.
采用常规平板分离法, 从进境澳大利亚大麦中夹杂的油菜籽上获得1株疑似油菜茎基溃疡病菌的菌株01829?通过致病性测定?形态学观察?特异性引物扩增?ITS序列比对分析, 对01829进行了种类鉴定?结果表明:菌株01829在PDA培养基上生长较慢, 菌落边缘不整齐, 产生大量分生孢子器和分生孢子; 采用特异性引物对LMR1-D和Lmb分别进行PCR检测, 结果均有预期扩增片段产生; 基于ITS序列构建的系统发育树中, 菌株01829和GenBank中其他油菜茎基溃疡病菌相关序列聚在同一分支; 菌株01829接种油菜子叶和茎基部, 在子叶和茎基部接种部位分别引起叶斑和凹陷溃疡斑?根据上述试验结果, 将菌株01829鉴定为油菜茎基溃疡病菌, 这是我国口岸首次从进境澳大利亚大麦中截获油菜茎基溃疡病菌?  相似文献   

19.
Effects of pretreatment of Brassica napus leaves with ascospores of Leptosphaeria biglobosa or chemical defence activators [acibenzolar- S -methyl (ASM) or menadione sodium bisulphite (MSB)] on infection by ascospores of Leptosphaeria maculans (phoma stem canker) and development of disease were studied in controlled-environment (phoma leaf spot) and field (phoma leaf spot and stem canker) experiments. In controlled-environment experiments, pretreatment of oilseed rape leaves (cv. Madrigal) with L. biglobosa , ASM or MSB delayed the appearance of L. maculans phoma leaf spot lesions. These pretreatments also decreased the phoma leaf spot lesion area in both pretreated leaves (local effect) and untreated leaves (systemic effect). In winter oilseed rape field experiments in the 2002/03 and 2003/04 growing seasons, pretreatment with L. biglobosa or ASM in October/November decreased not only the number of phoma leaf spot lesions per leaf caused by L. maculans in autumn/winter, but also the severity of phoma stem canker in the subsequent spring/summer. Effects were greater in 2002/03 (when natural L. maculans ascospore release began in September 2002) than in 2003/04 (when ascospore release began in December following a period of dry weather in August/September 2003). These results suggest that pretreatment with biological or chemical defence activators can induce local and systemic resistance to L. maculans , with both short-term effects on the development of phoma leaf spotting and long-term effects on the development of stem canker 8 months later.  相似文献   

20.
The oilseed rape cultivar Cresor was resistant to 14 isolates of Peronospora parasitica derived from crops of Brassica napus in the UK. Segregation for resistance to one isolate among F2 plants and F3 progeny of crosses between Cresor and the susceptible cultivars Victor and Jet Neuf indicated that resistance was controlled by a single gene. There was evidence that genetic background and environment could influence the phenotypic expression of this resistance. Two sexual progeny isolates derived from a homothallic isolate of P. parasitica avirulent on Cresor were completely virulent on this cultivar. This suggested that the parental isolate was heterozygous at a matching locus or loci for avirulence and demonstrated the race-specific nature of the resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号