首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
水葫芦沼液对青菜生长及AsA-GSH循环影响的动态研究   总被引:2,自引:0,他引:2  
以青菜为材料,研究了在青菜整个生长周期内,不同比例水葫芦沼液对青菜生长的影响及其体内AsA-GSH循环影响的动态变化。结果表明,使用不同比例沼液代替化肥对青菜的株高及生物量产生不同的影响,其中,以25%沼液替代化肥的处理效果最好,在不同的采样时期,其株高和生物量均显著大于对照,当沼液使用比例大于50%时,株高和生物量均随着沼液使用比例的增加而降低;处理后总量Vc、还原型抗坏血酸(AsA)和脱氢抗坏血酸(DHA)的变化趋势不同,25%沼液替代化肥处理45和60 d时,总量Vc与对照相比显著增加;AsA虽然有所增加(除了30 d时),但与对照差异不显著;DHA含量均显著大于对照。当沼液使用比例大于50%时,总量Vc、AsA和DHA与对照相比均显著降低;在AsA循环中的抗坏血酸过氧化物酶(APX)、抗坏血酸氧化酶(AAO)和脱氢抗坏血酸还原酶(DHAR)活性变化趋势相似,均随着处理时间增加呈先增加后降低的趋势,其中以25%沼液替代化肥处理30 d酶活性最高,而单脱氢抗坏血酸还原酶(MDHAR)活性则随着处理时间的增加而增加,以25%沼液替代化肥的处理效果最好;在还原型谷胱甘肽(GSH)循环中的氧化型谷胱甘肽(GSSG)和GSH含量随着处理时间的增加而增加,以25%沼液替代化肥的处理效果最好,与对照相比差异显著,而谷胱甘肽还原酶(GR)活性随着处理时间增加呈先增加后降低的趋势,其中以25%沼液替代化肥处理45 d酶活性最高。说明用适量的水葫芦沼液替代化肥对青菜进行处理,有助于植株的生长,同时增加了体内AsA-GSH代谢循环,提高了青菜的抗氧化防御能力。  相似文献   

2.
为了揭示土壤重金属镉(Cd)对植物的毒害机理,采用温室盆栽试验方法,研究了不同浓度(0, 0.3, 1, 3, 10, 30和50 mg/kg)Cd污染土壤对石竹幼苗生长以及对抗坏血酸-谷胱甘肽(AsA-GSH)循环的影响。结果表明,石竹幼苗的分蘖数、株高和生物量表现出显著的“低促高抑”的现象,这缘于土壤Cd低浓度(≤1 mg/kg)胁迫和胁迫的初期,石竹叶片的超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDAR)、脱氢抗坏血酸还原酶(DHAR)和谷胱甘肽还原酶(GR)等抗氧化酶活性提高,以抵抗体内逐渐增多的活性氧(ROS);随着Cd浓度的增加和镉胁迫时间的延长,石竹叶片中的超氧阴离子(O2)和过氧化氢(H2O2) 等ROS爆发,SOD、APX、MDAR、DHAR和GR等抗氧化酶活性迅速降低,抗坏血酸(AsA)和谷胱甘肽(GSH)含量减少,过多的ROS不能被石竹自身的抗氧化系统有效地清除,最终导致膜脂过氧化受到逆境伤害。另外,试验结果验证了APX是清除H2O2的重要酶,GR是生成GSH的重要酶,MDAR还原MDHAR是AsA-GSH循环中再生AsA的主要途径。  相似文献   

3.
以匍匐翦股颖品种“Penn-A4”为材料,研究以不同浓度的油菜素内酯(EBR)、水杨酸(SA)和乙烯(ET)组合的外源复合激素和3个连续诱导时间(5、7、10 d)为变量,通过测定病情指数、防治效果、抗氧化酶活性及抗坏血酸-谷胱甘肽循环变化,分析外源复合激素及连续诱导时间对匍匐翦股颖抗褐斑病的诱导效应。结果表明,不同激素组合和不同连续诱导时间处理均可提高匍匐翦股颖的抗病性,其中ET+EBR组合连续诱导处理7 d的病情指数最低,为13.36,显著低于其他处理,此时防治效果为40.51%;另外,此组合诱导处理后,匍匐翦股颖幼苗叶片的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)分别比对照(CK)提高了130.53%、197.40%和101.66%;抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)、谷胱甘肽还原酶(GR)活性分别比对照(CK)提高了316.26%、41.95%和80.34%;脱氧抗坏血酸(AsA)、氧化型谷胱甘肽(GSH)含量以及脱氧抗坏血酸/氧化型抗坏血酸(AsA/DHA)、氧化型谷胱甘肽/还原型谷胱甘肽(GSH/GSSG)也均高于对照(CK)和其他处理。表明EBR、SA和ET三种物质组成的复合外源物可以诱导匍匐翦股颖抗褐斑病,其中ET+EBR组合连续诱导处理7 d的效果最好。该研究结果为新型复合诱导抗病剂的应用推广提供了技术支持。  相似文献   

4.
以溶液培养法研究了不同浓度(0、5、10、20 mg·L-1)铜处理下梭鱼草(Pontederia cordata)叶片抗氧化酶活性、抗氧化物质及非蛋白巯基化合物含量的变化,明确铜处理下梭鱼草叶片细胞氧化还原状态的调控活性,为揭示梭鱼草对铜处理的耐性与解毒机制提供理论基础。结果表明:随铜浓度增加和处理时间延长,叶片丙二醛(malondialdehyde,MDA)含量呈上升趋势,超氧化物歧化酶(superoxide dismutase,SOD)、抗坏血酸过氧化物酶(ascorbate peroxidase,APX)、谷胱甘肽还原酶(glutathione reductase,GR)活性均呈先上升后下降趋势,过氧化物酶(peroxidase,POD)、脱氢抗坏血酸还原酶(dehydroascorbate reductase,DHAR)活性均呈上升趋势,而较长时间铜处理导致过氧化氢酶(catalase,CAT)活性显著下降(P<0.05)。铜处理初期可诱导叶片中抗坏血酸(ascorbic acid,AsA)的积累,而低浓度铜(≤10 mg·L^-1)对叶片脱氢抗坏血酸(dehydroascorbic acid,DHA)含量无显著影响(P>0.05)。随胁迫时间延长,叶片非蛋白巯基总肽(total non-protein thiol,NPT)、谷胱甘肽(glutathione,GSH)含量增加,植物螯合肽(phytochelatins,PCs)含量则呈先上升后降低趋势。低浓度(≤10 mg·L^-1)、短时间铜处理可以增强梭鱼草叶片细胞氧化还原状态的调控活性,提高细胞抗氧化胁迫能力,增强植株对铜处理的耐性。然而,这种促进效应会被较高浓度、较长时间铜处理破坏。  相似文献   

5.
硒缺乏对肉仔鸡体内含硫化合物代谢的影响   总被引:2,自引:0,他引:2  
以肉仔鸡为实验动物模型研究了硒缺乏对含硫化合物代谢的影响。试验结果表明:硒缺乏不但降低肉仔鸡组织器官中硒含量及GSH—PX酶活性,而且还使血浆及胰脏中游离胱氨酸水平下降,胰脏及肝脏中谷胱甘肽总量下降,而肝脏中金属硫蛋白含量却上升。蛋氨酸供给不足会降低肝脏及胰脏硒沉积量、谷胱甘肽水平和GSH—PX酶活性。要使四周龄肉仔鸡有最大的血浆及肝脏硒含量、高的GSH—PX酶活性,日粮硒供给水平应在0.35PPm左右。  相似文献   

6.
In this study, the effect of dietary antioxidants on the plasma oxidative status of growing birds fed a diet rich in polyunsaturated fatty acids was investigated. One‐day‐old broilers were fed for 42 days a diet containing 4% linseed oil and supplemented with single plant extracts rich in antioxidants (natural tocopherols, rosemary, grape seed, green tea, tomato) or a combination of some of these plant extracts, in two different total doses (100 and 200 mg product/kg feed). A diet with synthetic antioxidants with and without α‐tocopheryl acetate (200 mg/kg feed) were also included. The plasma oxidative status was evaluated measuring the ferric reducing ability of plasma (FRAP), the superoxide dismutase (SOD) and glutathione peroxidase (GSH‐Px) activity. Lipid peroxidation was measured by thiobarbituric acid‐reactive substances (TBARS). No significant effect of the dietary treatments was observed for FRAP as well as for TBARS. However, diet affected GSH‐Px activity (p = 0.002) and a trend for an effect on SOD activity was observed (p = 0.084). A higher GSH‐Px activity was found for 200 mg/kg tomato extract and natural α‐tocopherol in relation to the corresponding 100 mg/kg treatment, and the lowest GSH‐Px activity was measured for the synthetic antioxidants treatment. The lowest and highest SOD activity were found for the 200. and 100 mg/kg treatment with tomato extract respectively. In conclusion, the oxidative status and lipid oxidation of plasma in broilers was not affected by feeding natural antioxidant extracts at the doses in the present study, but some changes in antioxidant enzyme activities were observed, of which the implication remains to be elucidated.  相似文献   

7.
The early steps of insulin receptor (IR) signaling (tyrosine phosphorylation of IR beta-subunit, IRS-1 and Shc and PI 3'-kinase activity) have been characterized in two target tissues in the chicken: liver and muscle. The signaling cascade appeared to depend on nutritional status in the liver, but not in muscle (with a possible exception for a minor tyrosine phosphorylation of the 52 kDa Shc isoform). In this study, we compared the responses of the liver and muscle to exogenous insulin (10 or 1000 mU/kg) in chickens and rats. In the liver, IRS-1 and Shc proteins were present in smaller amounts and the regulatory subunit p85 of PI 3'-kinase was present in larger amounts in chickens than in rats. In the basal state (saline injection), the level of tyrosine phosphorylation of IR was lower, and that of Shc higher, in chickens than in rats. PI 3'-kinase activity in chickens was half that in rats. Insulin activated all components of the cascade in a dose-dependent manner in both species. A different pattern was observed in the muscle. In the basal state, the levels of tyrosine phosphorylation of IR and of PI 3'-kinase activity were much higher in chickens than in rats (by factors of 2 and 30, respectively). Insulin strongly activated all components of the cascade in rats (but with no significant increase in the phosphorylation of Shc). No activation was observed in chickens (with only a slight but significant increase in the tyrosine phosphorylation of Shc). The insulin cascade therefore appears to respond normally in chicken liver but to be refractory in chicken muscle. The large amount of p85 and high levels of PI 3'-kinase activity in muscle may contribute to this situation, making chicken muscle an interesting model of insulin resistance.  相似文献   

8.
S-adenosylmethionine (SAMe), an important hepatic metabolite and glutathione (GSH) donor, has been studied mechanistically in vitro, in humans with clinical liver disease, and in experimental animal models of liver disease. Collective findings encourage its therapeutic use in necroinflammatory and cholestatic liver disorders. A chronic longitudinal study (pre- and posttreatment parameters compared) was undertaken with 15 clinically healthy cats given a stable 1,4-butanedisulfonate (S'S isomer) SAMe salt (enteric coated tablets providing 180 mg SAMe), dosage 48 mg/kg PO q24h, on an empty stomach for 113 days. Routine physical and clinicopathologic assessments, red blood cell (RBC) osmotic fragility, liver function and histology, hepatic concentrations of reduced GSH (RGSH) and its oxidized disulfide form (GSSG), protein, glycogen, and deoxyribonucleic acid, GSH concentrations in RBCs, total bile acids in serum and bile, oxidative membrane products (TBARS) in RBCs and liver, and plasma SAMe concentrations were evaluated. SAMe administered PO significantly increased plasma SAMe concentrations, and peak concentrations usually occurred 2-4 hours after dosing. Chronic SAMe administration did not change peak or cumulative plasma SAMe concentrations and did not [corrected] cause overt signs of toxicity. A positive influence on RBC and hepatic redox status (RBC TBARS reduced 21.1% [P < .002], liver GSH increased 35% [P < .002], liver RGSH: GSSG ratio increased 69% [P < .03]) and improved RBC resilience to osmotic challenge (P < .03) were observed. Results prove that this SAMe PO product is enterically available and suggest that it imparts biologic effects that might be useful for attenuating systemic or hepatic oxidant challenge.  相似文献   

9.
To evaluate the residual target tissues for better monitoring of amantadine abuse in broiler chickens, 22‐day‐old commercial Arbor Acres broiler chickens were, respectively, fed with 10, 20, and 40 mg/kg of amantadine for five consecutive days. Plasma, breast, and liver tissue samples from the chickens were collected 0, 4, 16, 24, 48, 96, 144, and 312 h after amantadine withdrawal. The high‐performance liquid chromatography–tandem mass spectrometry method was used to detect the concentrations of amantadine. The highest concentration was found in the chicken liver and it took the longest time for amantadine to vanish by metabolism. In the high‐dose group, amantadine residues were still detected 312 h after amantadine withdrawal. As the amantadine dose increased, amantadine residues in the chicken liver were more slowly to disappear than in other tissues. Even if approximately the same concentration of amantadine residues was found in chicken breast and plasma samples, it took a shorter time before the residues were eliminated. In the medium‐ and high‐dose groups, the concentrations of amantadine residues in chicken liver samples were substantially higher than those in chicken breast and plasma samples, and it took more time to eliminate them. Therefore, the chicken liver can be used as a target tissue to detect illegal use of amantadine.  相似文献   

10.
采用营养液栽培,研究了外源一氧化氮(NO)供体硝普钠(SNP)对150mmol/LNaCl胁迫下黑麦草幼苗叶片抗坏血酸-谷胱甘肽(ASA-GSH)循环中抗氧化酶活性和抗氧化物质及丙二醛(MDA)和H2O2含量的影响。结果表明,正常条件下100μmol/LSNP略微降低了黑麦草幼苗叶片的MDA和H2O2含量,NO信号转导途径关键酶鸟苷酸环化酶(GC)抑制剂亚甲基蓝(MB)促进了MDA和H2O2水平的提高。NaCl胁迫下,SNP显著缓解了MDA和H2O2的积累,提高了抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)和脱氢抗坏血酸还原酶(DHAR)活性及还原型抗坏血酸(ASA)、谷胱甘肽(GSH)含量,降低脱氢抗坏血酸(DHA)和氧化型谷胱甘肽(GSSG)含量,使ASA/DHA和GSH/GSSG提高,却对单脱氢抗坏血酸还原酶(MDAR)活性无显著影响;MB逆转了SNP对NaCl胁迫下MDA、H2O2、ASA、GSH、DHA、GSSG含量和APX、GR活性及ASA/DHA和GSH/GSSG的调节作用,对MDAR和DHAR活性无显著影响。由此表明,NO可能通过GC介导参与盐胁迫下黑麦草叶片ASA-GSH循环中APX、GR活性和ASA、GSH含量及ASA/DHA、GSH/GSSH的调节,缓解盐胁迫诱导的氧化伤害,提高植株的耐盐性。  相似文献   

11.
This study investigated the hypothesis that dietary concentrations of methionine (Met), as a precursor of cysteine which is a constituent of glutathione (GSH), affect tissue antioxidant concentrations and the antioxidant defence system in pigs. Forty‐five piglets (DanZucht × Pietrain) were allotted to three groups of similar mean body weight (11.0 ± 0.9 kg). The basal diet was composed of barley, wheat, corn starch, soybean oil, sucrose, cellulose and a mineral supplement with suboptimal concentrations of Met and was supplemented with dl ‐Met to reach 0.16%, 0.20% and 0.24% of dietary Met and 0.40%, 0.44% and 0.48% of dietary Met and cysteine in groups 0.16, 0.20 and 0.24 respectively. After 3 weeks, at slaughter, samples of liver, jejunum mucosa and plasma were collected. Feed intake and weight gains increased and feed:gain ratio decreased when dietary Met concentrations increased. The Trolox equivalent antioxidant capacity (TEAC), concentrations of GSH and thiobarbituric acid reactive substances (TBA‐RS) and the activity of the glutathione peroxidase (GPx) in liver and jejunum mucosa were similar in all groups (p > 0.05). Relative mRNA concentrations of selected target genes of the nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2), the master regulator of the antioxidant response, and of the nuclear factor ‘kappa‐light‐chain‐enhancer’ of activated B‐cells (NF‐κB), the master regulator of inflammation, were largely unaffected both in jejunum and liver. In conclusion, inflammation‐ and oxidative stress‐related pathways on the molecular level, and concentrations of lipid peroxidation products, of antioxidants and of enzymes involved in the antioxidant defence system were mostly unaffected by dietary Met concentration in gut and liver. These findings suggest that suboptimal dietary Met concentrations did not influence the antioxidant defence system of gut and liver in healthy piglets.  相似文献   

12.
日粮添加谷氨酰胺对早期断奶仔猪抗氧化能力的影响   总被引:40,自引:1,他引:39  
本试验选用大长北母猪产仔猪45头,21日龄断奶并宰杀5头公仔猪作为哺乳对照,其余40头随机分为试验组和对照组,每组20头公母各半。试验组日粮添加1.2%的谷氨酰胺,以研究添加GLN对早期断奶仔猪血浆GLN浓度以及血浆、肝脏、肠粘膜、肠系膜淋巴结和脾脏中GSH和SOD水平的影响。结果表明:试验组仔猪28日龄和35日龄血浆GLN水平极显著高于对照组(P<0.01);试验组仔猪,血浆还原型谷胱甘肽水平35日龄和49日龄时高于对照组(P<0.01);肝脏和肠系膜淋巴结中还原型谷胱甘肽35日龄时高于对照组(P<0.01,P<0.05),49日龄时有增加但差异不显著;肠道和脾脏中还原型谷胱甘肽含量与对照组相比有增加,但差异不显著。添加谷氨酰胺后,仔猪35日龄时肝脏和49日龄脾脏中SOD均极显著低于未添加组(P<0.01)。由此可见,日粮中添加GLN可以缓解由于早期断奶引起的血浆GLN水平降低,并对维持体内还原型谷胱甘肽起重要作用。  相似文献   

13.
The content of collagen and the distribution of hepatic stellate cells (HSCs) were studied to elucidate the occurrence of sex‐dependent variations in the liver of developing embryos and growing chickens. Chick embryos from embryonic days (e) 12 to e20 and chicks at 1, 4 and 8 weeks were analyzed. Liver tissue was processed using NaOH maceration and freeze‐dried to obtain the collagen fiber specimens. HSCs were identified by double fluorescent immunohistochemistry for desmin and vimentin. There were no sex‐dependent variations in the percentage of collagen fiber per liver weight and HSC area during embryonic stages. However, the content of collagen fiber increased during embryonic development in both sexes. On the other hand, the area of HSCs significantly increased in growing males but did not show any change in females. Importantly, sex differences were observed in both collagen fiber content and HSC area in the liver at 8 weeks. These results indicate that the occurrence of collagen content variations takes place at 8 weeks in chicken liver, suggesting that a sex‐dependent hormone may play an important role on the collagen production of HSCs in the growing chicken liver.  相似文献   

14.
A positive energy balance in dairy cows pre‐partum may decrease hepatic carnitine palmitoyltransferase (CPT) enzyme activity, which might contribute to disturbances of lipid metabolism post‐partum. The purpose of this study was to investigate whether skeletal muscle CPT activity can also be downregulated during positive energy balance. Mid‐lactating dairy cows were maintained on intravenous infusion of either saline (control) or glucose solutions that increased linearly over 24 days, remained at the 24‐day level until day 28 and were suspended thereafter. Liver and skeletal muscle biopsies, as well as four diurnal blood samples, were taken on days 0, 8, 16, 24, and 32, representing infusion levels equivalent to 0%, 10%, 20%, 30% and 0% of the net energy for lactation (NEL) requirement respectively. Glucose infusion increased serum insulin concentrations on day 16 and 24 while plasma glucose levels were increased at only a single time point on day 24. Serum beta‐hydroxybutyric acid concentrations decreased between day 8 and 24; whereas changes in non‐esterified fatty acids were mostly insignificant. Total lipid contents of liver and skeletal muscle were not affected by treatment. Hepatic CPT activity decreased with glucose infusion (by 35% on day 24) and remained decreased on day 32. Hepatic expression levels of CPT‐1A and CPT‐2 mRNA were not significantly altered but tended to reflect the changes in enzyme activity. In contrast to the liver, no effect of glucose infusion was observed on skeletal muscle CPT activity. We conclude that suppression of CPT activity by positive energy balance appears to be specific for the liver in mid‐lactating dairy cows.  相似文献   

15.
The purpose of this study was to investigate the short‐term effects of T‐2 toxin exposure (3.09 mg/kg feed) on lipid peroxidation and glutathione redox system of broiler chicken. A total of 54 Cobb 500 cockerels were randomly distributed to two experimental groups at 21 days of age. Samples (blood plasma, red blood cell, liver, kidney and spleen) were collected every 12 h during a 48‐h period. The results showed that the initial phase of lipid peroxidation, as measured by conjugated dienes and trienes in the liver, was continuously, but not significantly higher in T‐2 toxin‐dosed birds than in control birds. The termination phase of lipid peroxidation, as measured by malondialdehyde, was significantly higher in liver and kidney as a result of T‐2 toxin exposure at the end of the experimental period (48th hour). The glutathione redox system activated shortly after starting the T‐2 toxin exposure, which is supported by the significantly higher concentration of reduced glutathione and glutathione peroxidase activity in blood plasma at 24 and 48 h, in liver at 12, 24 and 36 h, and in kidney and spleen at 24 h. These results suggest that T‐2 toxin, or its metabolites, may be involved in the generation of reactive oxygen substances which causes an increase in lipid peroxidation, and consequently activates the glutathione redox system, namely synthesis of reduced glutathione and glutathione peroxidase.  相似文献   

16.
The effects of zinc–methionine (Zn‐Met) supplementation on growth, blood metabolites and gastrointestinal development were investigated in two experiments with sheep. The objective of Experiment 1 was to determine the effects of Zn‐Met supplementation on hormones and metabolites involved in growth and energy balance regulation, while Experiment 2 aimed to determine the effects of Zn‐Met on feed intake, body weight, gastrointestinal development and liver glycogen concentration in lamb. The animals were assigned to groups with different concentrations of dietary Zn‐Met (0, 0.4, 0.8 and 1.2 g/day) in both experiments. In Experiment 1, feeding different doses of Zn‐Met increased plasma insulin‐like growth factor 1 (IGF‐1) concentration, but it linearly decreased plasma growth hormone (GH). No differences were observed in blood cortisol, insulin and glucose concentrations among the treatments. In Experiment 2, addition of Zn‐Met to the diets did not lead to changes in the body weights of the lambs. Both average daily gain and dry matter intake (DMI) increased linearly with increasing concentrations of dietary Zn‐Met. Lambs receiving Zn‐Met showed higher liver glycogen concentrations than the control. While significant increases were observed in the villus height and crypt depth in the duodenum and jejunum as a result of Zn‐Met supplementation, no change was detected in blood glucose concentrations (p > 0.05). Our findings suggest that dietary Zn‐Met may improve growth, energy balance and gastrointestinal development in sheep.  相似文献   

17.
The effect of low dose T-2 toxin was investigated in chicken, duck and goose. The purpose of the present study was to investigate the effect of T-2 toxin on the lipid peroxidation and on the activity of glutathione redox system (amount of reduced and oxidised glutathione and the activity of glutathione peroxidase) in blood and liver. The treatment lasted days and two samples were taken, first at the time of lowest feed intake and second when the intake was the same as the control. It was found, that lipid per oxidation as detected by the amount of malondialdehyde increased in all of the species and tissues but the changes varied by species. The most sensitive species was goose followed by duck and chicken, and the most sensitive tissue was the liver followed by blood plasma and red blood cells.  相似文献   

18.
The time course of GnRH pulse generator activity and plasma concentrations of energy substrates and insulin were simultaneously observed in female goats during 4-day fasting and subsequent refeeding in the presence or absence of estrogen for a better understanding of the mechanism of energetic control of gonadotropin secretion in ruminants. The GnRH pulse generator activity was electrophysiologically assessed with the intervals of characteristic increases in multiple-unit activity (MUA volleys) in the mediobasal hypothalamus. In estradiol-treated ovariectomized (OVX+E2) goats, the MUA volley intervals increased as fasting progressed. Plasma concentrations of non-esterified fatty acid and ketone body increased, while those of acetic acid and insulin decreased during fasting. The MUA volley intervals and plasma concentrations of those metabolites and insulin were restored to pre-fasting levels after subsequent refeeding. In ovariectomized (OVX) goats, changes in plasma metabolites and insulin concentrations were similar to those in OVX+E2 goats, but the MUA volley intervals were not altered. The present results demonstrated that fasting suppressed GnRH pulse generator activity in an estrogen-dependent manner. Changes in plasma concentrations of energy substrates and insulin during fasting were associated with the GnRH pulse generator activity in the presence of estrogen, but not in the absence of the steroid in female goats.  相似文献   

19.
Intracytoplasmic sperm injection (ICSI) is an assisted reproduction tool with several applications. Its effectiveness in bovines is lower than that in other species, mainly because of difficulties in the decondensation of the sperm nucleus after injection, and the presence of the acrosome and the plasma membrane which remain intact in this procedure. In this study, we assessed the effect of lysolecithin (LL) and Triton X‐100 (TX), in combination with glutathione (GSH) as sperm pretreatments prior to ICSI. The GSH‐LL and GSH‐TX groups showed 0% of spermatozoa with intact membrane (SYBR 14+/PI), in comparison with the control (63.3%) and GSH (65.7%) groups. The proportions of spermatozoa with damaged acrosome membrane in the GSH‐LL, GSH‐TX, GSH and control groups were 46%, 35.9%, 10.5% and 7.5%, respectively. Sperm chromatin decondensation analysis showed that the groups incubated for 3 hr with GSH presented greater decondensation (p < .05). Although fertilization was improved in all treatment groups evaluated, no differences were observed in the cleavage rate 72 hr after activation in the GSH (73.7%), GSH‐LL (80.2%) and GSH‐TX (77.8%) groups compared to the control (66.3%), neither in the blastocyst rate on day 8 (24.0%, 26.2%, 27.1% and 28.4% for the control, GSH, GSH‐LL and GSH‐TX groups, respectively). No differences were also observed in the total number of cells in all groups. In conclusion, although these sperm treatments promoted nuclear decondensation and induced plasma membrane disruption, these effects were not sufficient to improve bovine embryonic development after ICSI.  相似文献   

20.
Carnosine (β‐alanyl‐L‐histidine) and anserine (β‐alanyl‐1‐methyl‐L‐histidine) are dipeptides mainly found in skeletal muscle and brain of many vertebrates, and particularly high concentrations are observed in chicken pectoral muscles. It was reported that these peptides have many functions, such as antioxidant activity. In this study, we examined the effect of different levels of dietary histidine on carnosine and anserine contents in broiler muscles. The 14‐days‐old female Chunky strain broilers were given feeds containing three different levels of histidine; 67% (Low‐His), 100% (Control) and 200% (High‐His) of histidine requirement according to the NRC (1994). Chicks were fed experimental diets for 10 days. Both dipeptides in muscle were significantly decreased. In particular, carnosine was not detected at all in the Low‐His group and was significantly increased in the High‐His group. Both dipeptides were not detected in plasma. These results indicated the possibility to produce chicken meat with enhanced amount of these dipeptides by high histidine feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号