首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In beef heifers weaned between 3 and 4 mo of age and fed a high-concentrate diet, approximately 50% reach puberty before 300 d of age (precocious puberty). The objectives of this experiment were 1) to determine whether precocious puberty could be induced experimentally by weaning heifers early and feeding a high-concentrate diet, and 2) to determine the dynamics of secretion of LH associated with precocious puberty. Crossbred Angus and Simmental heifer calves were weaned at 73 +/- 3 d of age and 115 +/- 3 kg of BW and fed a high-concentrate (60% corn; HI, n = 9) or control diet (30% corn; CONT, n = 9). Heifers were fed individually, and target BW gains were 1.50 and 0.75 kg/d for the HI and CONT treatments, respectively. Heifers were weighed every 2 wk. Blood samples were collected weekly and assayed for progesterone concentration to determine age at puberty. Serial blood samples were collected at 20-min intervals for 24 h at mean ages of 102, 130, 158, 172, 190, 203, 217, 231, and 259 d and assayed for LH concentration to evaluate the dynamics of secretion of LH. Heifers fed the HI diet exhibited greater BW gain (P < 0.01) than CONT heifers (1.27 +/- 0.05 vs. 0.85 +/- 0.05 kg/d, respectively). As a result, BW in the HI treatment was greater (P < 0.01) than in the CONT treatment by 188 d of age and remained different through the end of the experiment. Precocious puberty occurred in 8 of 9 heifers fed the HI diet and 0 of 9 heifers fed the CONT diet. Age at puberty was reduced in the HI (P < 0.01) compared with the CONT heifers (262 +/- 10 vs. 368 +/- 10 d of age, respectively). Body weight at puberty was also reduced in the HI (P < 0.05) compared with the CONT treatment (327 +/- 17 vs. 403 +/- 23 kg, respectively). Heifers attaining puberty during the experiment continued with subsequent luteal phases as evidenced by cyclic patterns of progesterone concentrations. Frequency of pulses of LH (pulses/24 h) increased with age (P < 0.01) for both treatments. Heifers in the HI treatment exhibited a greater number of pulses of LH (P < 0.01) than those in the CONT treatment by 190 d of age and in all subsequent collection periods (treatment x age, P < 0.05). Mean LH concentrations also increased with age (P < 0.01) for both treatments but did not differ between treatments. In conclusion, precocious puberty induced by early weaning and feeding of a high-concentrate diet is preceded by increasing frequency of pulses of LH.  相似文献   

2.
The objectives of this study were to quantify the phenotypic variation in residual feed intake (RFI) in pregnant beef heifers offered a grass silage diet and to characterize their productivity. Seventy-three pregnant (mean gestation d 198, SD = 27 d) Simmental and Simmental × Holstein-Friesian heifers (mean initial BW 548, SD = 47.5 kg) were offered grass silage ad libitum. Heifer DMI, BW, BCS, skeletal measurements, ultrasonic fat and muscle depth, visual muscularity score, rumen fermentation, total tract digestibility, blood metabolite and hematology variables, feeding, and activity behavior were measured during an 84-d feed intake study. After parturition calf birth weight, calving difficulty, cow serum IgG, hematology variables, and calf humoral immune status were measured. In a subset of cows (n = 28), DMI, milk yield and various body composition variables were also measured approximately 3 wk postpartum. Phenotypic RFI was calculated for each animal as the difference between actual DMI and expected DMI. Expected DMI was computed for each animal by regressing average daily DMI on conceptus-adjusted mean BW(0.75) and conceptus-adjusted ADG over an 84-d period. Within breed, heifers were ranked by RFI into low (efficient), medium, and high (inefficient) groups by dividing them into thirds. Heifers with high RFI had 8.8 and 17.1% greater (P < 0.001) DMI than medium and low RFI groups, respectively. The RFI groups did not differ in ADG or BW (P > 0.05). Residual feed intake was positively correlated with DMI (r = 0.85) but not with feed conversion ratio, ADG, or BW. The RFI groups did not differ (P > 0.05) in skeletal size, BCS, ultrasonic fat depth, total tract digestibility, calf birth weight, calving difficulty, serum IgG concentrations, or milk yield. Visual muscularity scores, initial test and postpartum ultrasonic muscle depth were negatively correlated with RFI (P < 0.05). Including mean ultrasonic muscle depth into the base RFI regression model increased its R(2) (0.29 to 0.38). Pearson rank correlation between RFI and muscle-adjusted RFI was 0.93. The results show that efficient RFI heifers consumed less feed without any compromise in growth, body composition, or maternal traits measured.  相似文献   

3.
Six experiments were conducted to evaluate dietary cation-anion difference (DCAD) in concentrate diets on urinary pH, feedlot performance, and N mass balance. In Exp. 1, 15 wether lambs (33.5 ± 3.0 kg) in five 3 × 3 Latin squares were fed a basal diet of 82.5% dry-rolled corn (DRC), 7.5% alfalfa hay, 5% molasses, and 5% supplement with different proportions of anionic and cationic salts. The DCAD was -45, -24, -16, -8, 0, +8, +16, +24, +32, and +40 mEq per 100 g of DM with the control basal diet (DCAD = +8) included in each square. Urinary pH increased (cubic, P < 0.01) as DCAD increased and DMI increased linearly (P < 0.01) with increasing DCAD. In Exp. 2 and 3, 8 Holstein steers (312 ± 24 kg) were used in 2 consecutive 4 × 4 Latin squares. Steers were fed either the same basal diet as Exp. 1 or a basal diet with 20% wet distillers grains (WDGS) replacing DRC. In Exp. 2, DCAD was adjusted to -2, -12, and -22 mEq per 100 g of DM from the basal diet (DCAD = +8) and DCAD was adjusted in Exp. 3 to -12, -22, and -32 mEq per 100 g of DM from the basal WDGS diet (DCAD = -2). Urinary pH decreased linearly as DCAD decreased (P < 0.01) in both experiments, whereas DMI decreased linearly in Exp. 2 (P = 0.02) but not Exp. 3 (P = 0.96). In Exp. 4, 6 crossbred steers (373 ± 37 kg) were used in a 2-period crossover design. Steers were fed the same basal diet as Exp. 3 with DCAD of -16 (NEG) and +20 (POS) mEq per 100 g of DM. Urinary pH and DMI (P < 0.05) were less for cattle fed the NEG diet compared with POS. In 2 experiments, steers (n = 96 each) were fed NEG or POS as calves (260 ± 22 kg of BW) for 196 d from November to May (Exp. 5) or as yearlings (339 ± 32 kg of BW) for 145 d from June to October (Exp. 6). Final BW, DMI, ADG, and HCW were not different (P > 0.11) among treatments in either experiment. Efficiency of BW gain was increased (P = 0.05) for steers fed NEG compared with POS in Exp. 5 but was not different (P = 0.11) in Exp. 6. Amount of N intake, retention, excretion, and manure N (kg/steer) were not different (P > 0.11) among treatments in either experiment. Manure pH (soil, feces, and urine) was decreased (P < 0.01) in pens fed NEG compared with POS in both experiments. Amount of N lost (kg/steer) was not different (P = 0.44) in Exp. 5, but tended (P = 0.09) to be 10.6% greater for POS compared with NEG in Exp. 6. Urinary pH was decreased by reducing DCAD, but this had minimal effect on N losses in open feedlot pens in these experiments.  相似文献   

4.
Two hundred ninety-nine Angus-based, nulliparous heifers (253 ± 2 kg initial BW) from 3 production years were utilized to compare traditional postweaning dry lot (DL) development with a more extensive winter grazing system utilizing a combination of corn residue and winter range (EXT). Heifers developed in the DL were offered a common diet after the weaning period for 208 d in yr 1, 194 d in yr 2, and 150 d in yr 3 until breeding. Heifers developed in EXT grazed corn residue for 135 d in yr 1, 106 d in yr 2, and 91 d in yr 3, and then fed in the DL until breeding (yr 1) or grazed dormant winter grass for approximately 60 d before being fed in the DL (yr 2 and 3). All 3 years, heifers were estrus synchronized, with timed AI performed in yr 1. In yr 2 and 3, estrus was detected and those detected in estrus were artificially inseminated approximately 12 h later. Heifers were exposed to bulls 10 d after the last AI for 60 d while grazing summer pasture. During the winter grazing period, EXT heifers gained less (P = 0.01) BW than DL heifers and EXT heifers had lighter (P = 0.02) BW at breeding. Fewer (P < 0.01) EXT heifers reached puberty before breeding. Conception to AI was not different (P = 0.23); however, AI pregnancy rate tended (P = 0.08) to be less in EXT heifers. Final pregnancy rates were not different (P = 0.38) between treatment groups. Although EXT heifers had lighter (P = 0.02) BW at pregnancy diagnosis; however, they did compensate with greater (P = 0.05) ADG after breeding, resulting in similar (P = 0.22) precalving BW. Winter development system did not influence (P > 0.10) percentage of calving in the first 21 d, calf birth date, and calf birth BW, or dystocia score. Pregnancy rate after the second breeding season was not different (P = 0.56) between treatments. Heifer development using extended winter grazing reduced (P < 0.01) the cost of producing a pregnant heifer by $45 compared with DL.  相似文献   

5.
Precocious puberty (<300 d of age) can be successfully induced in a majority of heifers with early weaning and continuous feeding of a high-concentrate diet. The objective of this experiment was to determine the relative effects of timing of feeding a high-concentrate diet on age at puberty in early-weaned heifers. Sixty crossbred Angus and Simmental heifer calves were weaned at 112 +/- 2 d of age and 155 +/- 3 kg of BW and were fed a receiving diet for 2 wk. Heifers were blocked by age and BW, and assigned randomly to receive a high-concentrate (60% corn; H) or control (30% corn; C) diet during phase 1 (mean age 126 to 196 d) and H or C during phase 2 (mean age 196 to 402 d), resulting in 4 treatments (HH, n = 15; HC, n = 15; CH, n = 15; and CC, n = 15). Blood samples were collected weekly beginning at a mean age of 175 d and assayed for progesterone concentration to determine age at puberty. After 56 d on the experimental diets, BW of heifers fed the H diet during phase 1 were greater (P < 0.05) than those of heifers fed the C diet (mean age of 182 d; treatment x mean age, P < 0.01). After 70 d on the new diets (mean age of 266 d), heifers fed the H diet during phase 2 reached heavier BW (P < 0.05) than heifers fed the C diet, when compared within phase 1 diet groups (HH > HC; CH > CC). Body weights in HC and CH treatments differed from a mean age of 169 through 238 d, after which BW did not differ between these treatments. The ADG over the entire experimental period was greatest for the HH treatment (1.2 +/- 0.04 kg/d; P < 0.05), followed by the HC and CH treatments (1.0 +/- 0.03 and 1.0 +/- 0.02 kg/d, respectively), which were not different, and the CC treatment gained the least (0.7 +/- 0.04 kg/d; P < 0.05). Precocious puberty occurred in 67, 47, 47, and 20% of heifers in the HH, HC, CH, and CC treatments, respectively (HH > CC; P < 0.05). Mean age at puberty for the HH and HC treatments (271 +/- 17 and 283 +/- 17 d of age, respectively) was earlier (P < 0.05) than for the CC treatment (331 +/- 11 d of age). Age at puberty in the CH treatment (304 +/- 13 d of age) was intermediate to and not different from the other treatments. Heifers fed the H diet during phase 1 attained puberty earlier (P < 0.05) than heifers fed the C diet during phase 1. In conclusion, increasing dietary energy intake in early-weaned heifers, through feeding a high-concentrate diet from 126 to 196 d of age, decreased age at puberty regardless of the diet fed after 196 d of age.  相似文献   

6.
Three experiments were conducted to evaluate supplementation of dried distillers grains with solubles (DGS) to spring-calving beef cows (n = 120; 541 kg of initial BW; 5.1 initial BCS) consuming low-quality forage during late gestation and early lactation. Supplemental treatments included (DM basis) 1) 0.77 kg/d DGS (DGSL); 2) 1.54 kg/d DGS (DGSI); 3) 2.31 kg/d DGS (DGSH); 4) 1.54 kg/d of a blend of 49% wheat middlings and 51% cottonseed meal (POS); and 5) 0.23 kg/d of a cottonseed hull-based pellet (NEG). Feeding rate and CP intake were similar for DGSI and POS. In Exp. 1, cows were individually fed 3 d/wk until calving and 4 d/wk during lactation; total supplementation period was 119 d, encompassing 106 d of gestation and 13 d of lactation. Tall-grass prairie hay (5.6% CP, 50% TDN, 73% NDF; DM basis) was fed for ad libitum intake throughout the supplementation period. Change in cow BW and BCS during gestation was similar for DGSI and POS (-5.0 kg, P = 0.61 and -0.13, P = 0.25, respectively) and linearly increased with increasing DGS level (P < 0.01). Likewise, during the 119-d supplementation period, BW and BCS change were similar for DGSI and POS (-72 kg, P = 0.22 and -0.60, P = 0.10) and increased linearly with respect to increasing DGS (P < 0.01). The percentage of cows exhibiting luteal activity at the beginning of breeding season (56%, P = 0.31), AI conception rate (57%, P = 0.62), or pregnancy rate at weaning (88%, P = 0.74) were not influenced by supplementation. In Exp. 2, 30 cows from a separate herd were used to evaluate the effect of DGS on hay intake and digestion. Supplementation improved all digestibility measures compared with NEG. Hay intake was not influenced by DGS (P > 0.10); digestibility of NDF, ADF, CP, and fat linearly increased with increasing DGS. In Exp. 3, milk production and composition were determined for cows (n = 16/treatment) of similar days postpartum from Exp. 1. Daily milk production was not influenced by supplementation (6.3 kg/d, P = 0.25). Milk fat (2.1%) and lactose (5.0%) were not different (P > 0.10). Milk protein linearly increased as DGS increased (P < 0.05) and was greater for DGSI compared with POS. Similar cow performance was achieved when cows were fed DGS at the same rate and level of CP as a traditional cottonseed meal-based supplement. Increasing amounts of DGS did not negatively influence forage intake or diet digestibility.  相似文献   

7.
Angus x crossbred heifers (270 per trial) were used in an experiment conducted over one 105-d summer and one 104-d winter feeding period. Treatments were identical for each trial and included: 1) control, 2) estrogenic implant (E), 3) trenbolone acetate implant (TBA), 4) E + TBA (ET), 5) melengestrol acetate (MGA) in the feed, and 6) ET + MGA (ETM). Each treatment was replicated in five pens, with nine heifers per pen in each season. Initial weights (mean = 384 kg, SE = 57) were the same for each season. There were no treatment x season interactions for final BW, ADG, G:F, water intake, or carcass characteristics. Heifers receiving a growth-promoting agent were 11.6 kg (SE = 4.08) heavier and gained 0.108 kg/d (SE = 0.04) more (P < 0.05) than control heifers. Heifers receiving ET gained 0.09 kg/d (SE = 0.032) more (P = 0.05) than heifers not receiving ET. Heifers receiving ET (with and without MGA) had greater G:F (P < 0.05) than control, E, and TBA heifers. Carcass weights of ET-treated heifers were greater (P < 0.05) than carcass weights for unimplanted heifers, those fed MGA only, and heifers receiving either E or TBA implants. Marbling scores were increased (P < 0.05) by feeding MGA to ET-treated heifers. Water intake was greater (P < 0.01) in the summer (31 L/d) than in the winter (18 L/ d), with no difference among implant treatments. Heifers fed in the winter had heavier carcasses, less 12th-rib fat, greater marbling scores, larger LM area, and a greater incidence of liver abscesses than heifers finished in the summer (P < 0.01). A treatment x season interaction (P = 0.07) was evident for DMI during the 35-d coldest and hottest portions of the year. Heifers fed MGA and implanted with ET tended (P = 0.07) to have greater DMI in the summer but lesser DMI in the winter. In general, differences among growth-promotant programs were relatively similar over the entire summer and in winter.  相似文献   

8.
Crossbred heifers (initially 24 mo, approximate age and 378 +/- 32.1 kg BW) were used to evaluate the influence of pregnancy and advancing gestation on DMI, BW, carcass weight, ruminal characteristics, and visceral organ mass. Heifers (naturally serviced (n = 22; nonpregnant controls, n = 17), were grouped in common pens. Heifers were provided corn silage and hay-based diets formulated to provide 0.45 kg of ADG. Treatments were pregnancy and nonpregnancy; pregnant and nonpregnant heifers were slaughtered on d 40, 120, 200, and 270. Live weight at slaughter and BW change throughout the trial were not influenced by pregnancy (P > 0.1). Carcass weight per unit of BW was decreased due to pregnancy (P < 0.05) and an interaction was found in eviscerated BW (EvBW; P < 0.1), with the pregnant heifers having greater live weights, carcass weights, and EvBW at the d-200 slaughter period. Ruminal fluid fill and total fill (g/kg BW) declined as slaughter period advanced, resulting in the pregnant heifers having less fill at d 270 (P< 0.07). However, ME intake was not different between pregnant and nonpregnant heifers (P > 0.1) at any of the slaughter periods. Heart mass responded differently when nonpregnant and pregnant were analyzed over time and an interaction was detected as slaughter period advanced (P < 0.1). Liver, duodenum, jejunum, and large intestinal mass were not responsive to pregnancy (P > 0.1). Data indicate that ruminal fill is altered by pregnancy but visceral organ mass is not greatly changed by treatment.  相似文献   

9.
Two experiments evaluated prebreeding target BW or progestin exposure for heifers developed lighter than traditional recommendations. Experiment 1 evaluated the effects of the system on heifer performance through subsequent calving and rebreeding over 3 yr. Heifers (229 kg) were assigned randomly to be developed to 55% of mature BW (299 kg) before a 45-d breeding season (intensive, INT; n = 119) or 50% of mature BW (272 kg) before a 60-d breeding season (relaxed, RLX; n = 142). Prebreeding and pregnancy diagnosis BW were greater (P 0.15) between systems. Cost per pregnant 2-yr-old cow was less for the RLX than the INT heifer development system. Of heifers that failed to become pregnant, a greater proportion (P = 0.07) of heifers in the RLX than in the INT system were prepubertal when the breeding season began. Therefore, a second 2-yr experiment evaluated melengestrol acetate (MGA, 0.5 mg/d) as a means of hastening puberty in heifers developed to 50% of mature BW. Heifers were assigned randomly to the control (n = 103) or MGA (n = 81) treatment for 14 d and were placed with bulls 13 d later for 45 d. Prebreeding and pregnancy diagnosis BW were similar (280 and 380 kg, respectively; P > 0.10) for heifers in the control and MGA treatments. The proportion of heifers pubertal before breeding (74%), pregnancy rate (90%), calving date, calf weaning weight, and second breeding season pregnancy rate (92%) were similar (P > 0.10) between treatments. Developing heifers to 50 or 55% of mature BW resulted in similar overall pregnancy rates, and supplementing the diets of heifers developed to 50% of mature BW with MGA before breeding did not improve reproductive performance.  相似文献   

10.
Three experiments were conducted to evaluate plasma concentrations of glucose, insulin, IGF-I, and progesterone (P4) in pubertal beef heifers receiving exogenous glucose, insulin, or sometribove zinc. All heifers used had no luteal P4 synthesis but received a controlled internal drug-releasing device containing 1.38 g of P4 to estimate treatment effects on hepatic P4 degradation. In Exp. 1, 8 pubertal, nulliparous Angus × Hereford heifers (initial BW = 442 ± 14 kg; initial age = 656 ± 7 d) were randomly assigned to receive, in a crossover design containing 2 periods of 10 h, intravenous (i.v.) infusions (10 mL) of insulin (1 μg/kg of BW; INS) or saline (0.9%; SAL). Treatments were administered via jugular venipuncture in 7 applications (0.15 μg insulin/kg BW per application) 45 min apart (from 0 to 270 min). Blood samples were collected immediately before each infusion as well as at -120, -60, 330, 390, and 450 min relative to the first infusion. Heifers receiving INS had greater (P < 0.01) plasma insulin, reduced (P ≤ 0.04) plasma glucose and IGF-I, and similar (P = 0.62) plasma P4 concentrations compared with SAL heifers. In Exp. 2, the same heifers were assigned to receive, in a similar experimental design as Exp. 1, i.v. infusions (10 mL) of 1) insulin (1 μg/kg BW) and glucose (0.5 g/kg BW; INS+G) or 2) SAL. Heifers receiving INS+G had greater (P ≤ 0.02) plasma insulin, glucose, and P4 but reduced (P = 0.01) plasma IGF-I concentrations compared with SAL heifers. In Exp. 3, the same heifers were assigned to receive, in a crossover design containing 2 periods of 14 d, subcutaneous (s.c.) injections of 1) 250 mg of sometribove zinc (BST) or 2) SAL. Blood samples were collected 3 h apart (0900, 1200, 1500, and 1800 h) from heifers on d 6, 8, and 10 relative to treatment administration (d 1). Heifers receiving BST had greater (P < 0.01) plasma glucose and IGF-I and similar (P ≥ 0.67) plasma insulin and P4 concentrations compared with SAL heifers. Results from this series of experiments suggested that concurrent increases in glucose and insulin are required to reduce hepatic catabolism and increase plasma concentrations of P4 in bovine females.  相似文献   

11.
Although feed intake and efficiency differences in growing cattle of low and high residual feed intake (RFI) classification have been established, little is known about the difference in grazed forage intake between beef cows of known RFI classification. Two experiments were conducted using Hereford cows for which RFI had been determined as heifers using the GrowSafe 4000E feed intake system, after which heifers had been divided into thirds as low RFI, mid RFI, and high RFI. During Exp. 1, 2 replicates of low and high RFI cows (n = 7/replicate) in mid- to late-gestation were blocked to 1 of 4 non-endophyte-infected tall fescue paddocks (1.8 to 2.4 ha), which they grazed continuously for 84 d during summer. Using grazing exclosures, weekly rising plate meter readings, and forage harvests every 21 d, average forage DMI was calculated. Low and high RFI groups did not differ (P > 0.05) in BW change or BCS change over the trial (19.5 vs. 22.1 kg of BW gain and 0.11 vs. 0.10 BCS gain), but low RFI cows had a 21% numerically lower DMI than high RFI cows (12.4 vs. 15.6 kg/d; P = 0.23). The average area needed per paddock over the trial was similar for low and high RFI cows (1.71 vs. 1.82 ha; P = 0.35), and the average DM on offer over the trial was less for low RFI than for high RFI cows (4,215 vs. 4,376 kg; P = 0.06). During Exp. 2, 3 replicates of low and high RFI cows with their calves (n = 4 pair/replicate) strip-grazed stockpiled and early spring growth tall fescue paddocks (0.7 to 0.9 ha) for 60 d in late winter and early spring. Because of limiting forage availability and quality at trial initiation, cow-calf pairs were also fed 3.31 kg/pair of pelleted soyhulls daily. Pre- and post-grazed forage samples were harvested for 4 grazing periods, and forage growth was estimated using a growing degree days calculation and on-site weather station data. Performance did not differ (P > 0.05) between low and high RFI cows throughout the experiment (18.4 vs. 26.6 kg of BW gain and -0.04 vs. 0.15 BCS gain). Despite the utilization of forage offered being similar for low and high RFI cow-calf pairs (P > 0.05), low RFI cows and their calves had an 11% numerically lower DMI than high RFI pairs (12.5 vs. 14.1 kg/d; P = 0.12). We concluded that either no intake differences existed between low and high RFI cows or that current methodology and small animal numbers limited our ability to detect differences.  相似文献   

12.
Effects of finishing implants on heifer carcass characteristics and LM Warner-Bratzler shear force (WBSF) were investigated using commercially fed Continental x British heifers (n = 500). Heifers were blocked by initial BW (block 1, BW > or = 340 kg; block 2, BW < 340 kg) and assigned randomly to 12 treatments that utilized 0, 1, or 2 finishing implants to deliver cumulative dosages of trenbolone acetate (TBA) and estradiol 17-beta (E2) ranging from 0 to 400 mg of TBA and 0 to 40 mg of E2 during the finishing period. Heifers in blocks 1 and 2 were slaughtered after 135 and 149 d on feed, respectively. At these endpoints, the treatment groups did not differ (P > 0.05) in adjusted fat thickness or predicted percentage of empty body fat. Compared with a nonimplanted control, implanting heifers once during finishing increased (P = 0.025) HCW by an average of 7.9 kg without affecting the mean marbling score, the percentage of carcasses grading Choice and Prime, or LM WBSF values. Compared with the use of 1 implant, the use of 2 finishing implants resulted in an additional increase (P = 0.008) in HCW of 6.0 kg. Reimplanting also increased (P < 0.001) LM area, reduced (P = 0.024) the percentage of KPH, and improved (P = 0.004) mean yield grade. However, reimplanted heifers produced a lower (P = 0.044) percentage of carcasses grading Choice and Prime and LM steaks with greater (P < 0.05) WBSF values at all postmortem aging times compared with heifers that were implanted once. Among heifers receiving 2 implants, mean 14-d LM WBSF increased linearly (P < 0.05) as the cumulative, combined dosage of E2 plus TBA increased. Heifers implanted with a combination of E2 plus TBA had larger (P = 0.046) LM areas, lower (P = 0.004) mean marbling scores, and greater LM WBSF values after 3 d (P = 0.001), 7 d (P = 0.001), 14 d (P = 0.003), and 21 d (P = 0.045) of postmortem aging than did heifers implanted with TBA alone. Heifers that received combination implants containing both E2 and TBA also produced fewer (P = 0.005) carcasses with marbling scores of modest or greater compared with heifers that received single-ingredient implants containing TBA alone. Implant treatment effects on LM WBSF gradually diminished as the length of the postmortem aging period increased. Postmortem aging periods of 14 to 28 d were effective for mitigating the detrimental effects of mild or moderately aggressive heifer implant programs on the predicted consumer acceptability of LM steaks.  相似文献   

13.
Angus bulls and heifers from lines divergently selected for serum IGF-I concentration were used to evaluate the effects of IGF-I selection line on growth performance and feed efficiency in 2 studies. In study 1, bulls (low line, n = 9; high line, n = 8; initial BW = 367.1 +/- 22.9 kg) and heifers (low line, n = 9; high line, n = 13; initial BW = 286.4 +/- 28.6 kg) were adapted to a roughage-based diet (ME = 1.95 Mcal/kg of DM) for 24 d and fed individually for 77 d by using Calan gate feeders. In study 2, bulls (low line, n = 15; high line, n = 12; initial BW = 297.5 +/- 34.4 kg) and heifers (low line, n = 9; high line, n = 20; initial BW = 256.0 +/- 25.1 kg) were adapted to a grain-based diet (ME = 2.85 Mcal/kg of DM) for 32 d and fed individually for 70 d by using Calan gate feeders. Blood samples were collected at weaning and at the start and end of each study, and serum IGF-I concentration was determined. Residual feed intake (RFI) was calculated, within study, as the residual from the linear regression of DMI on midtest BW(0.75), ADG, sex, sex by midtest BW(0.75) and sex by ADG. In study 1, calves from the low IGF-I selection line had similar initial and final BW and ADG, compared with calves from the high IGF-I selection line. In addition, DMI and feed conversion ratio were similar between IGF-I selection lines; however, calves from the low IGF-I selection line tended (P < 0.10) to have lesser RFI than calves from the high IGF-I selection line (-0.26 vs. 0.24 +/- 0.31 kg/d). In study 2, IGF-I selection line had no influence on performance or feed efficiency traits. However, there was a tendency (P = 0.15) for an IGF-I selection line x sex interaction for RFI. Bulls from the low IGF-I selection line had numerically lesser RFI than those from the high IGF-I selection line, whereas in heifers, the IGF-I selection line had no effect on RFI. In studies 1 and 2, weaning and initial IGF-I concentrations were not correlated with either feed conversion ratio or RFI. However, regression analysis revealed a sex x IGF-I concentration interaction for initial IGF-I concentration in study 1 and weaning IGF-I concentration in study 2 such that the regression coefficient was positive for bulls and negative for heifers. These data suggest that genetic selection for postweaning serum IGF-I concentration had a minimal effect on RFI in beef cattle.  相似文献   

14.
Weaned replacement heifers were implanted with zeranol at 8 and 11 mo of age in two trials to evaluate growth and reproductive traits. Approximately 100 beef heifers were used in each trial, and the heifers were divided into categories of heavier than average (H) and lighter than average (L) weaning weight. Weight categories were further divided into control (HC and LC) and zeranol-implanted (HI and LI) groups. Heifers were kept in drylot from weaning to just before the start of the breeding season and were fed to reach a predetermined body weight by the start of the breeding season and were fed to reach a predetermined body weight by the start of the breeding season. Rates of gain in the drylot were greater in implanted than in control heifers in both trial 1 (.53 vs .48 kg/d; P less than .09) and trial 2 (.70 vs .63 kg/d; P less than .01). Pelvic areas were greater (P less than .01) in implanted than in control heifers of both trial 1 (175 vs 159 cm2) and trial 2 (175 vs 164 cm2). This increase in pelvic size was still present at the end of the summer pasture period, which followed the drylot period. Zeranol had no major effect (P greater than .10) on age of weight at puberty. Fall pregnancy rate was 16% lower in implanted heifers than in control heifers in trial 1 (62 vs 78%, P = .08) but did not differ in trial 2 (88 vs 87%, I and C, respectively).  相似文献   

15.
Traits used for identification of replacement beef heifers and feeding levels provided during postweaning development may have major financial implications due to effects on maintenance requirements and level of lifetime production. The current study evaluated the effects of 2 levels of feeding during the postweaning period on growth, G:F, and ultrasound carcass measurements of heifers, and the associations among these traits. Heifers (1/2 Red Angus, 1/4 Charolais, and 1/4 Tarentaise) born in 3 yr were randomly assigned to a control (fed to appetite; n = 205) or restricted (fed at 80% of that consumed by controls adjusted to a common BW basis; n = 192) feeding during a 140-d postweaning period. Heifers were individually fed a diet of 68% corn silage, 18% alfalfa, and protein-mineral supplement (DM basis) in pens equipped with Calan gates. Ultrasound measurements of LM area, intramuscular fat, and subcutaneous fat thickness over the LM were made on d 140 (382 +/- 0.8 d of age). Average daily DMI was 4.1 and 5.6 kg/d for restricted and control heifers, respectively (P < 0.001). Feed restriction decreased (P < 0.001) BW (292 vs. 314 kg), ADG (0.52 vs. 0.65 kg/d), LM area (55 vs. 59 cm2), intramuscular fat (3.2 vs. 3.5%), and subcutaneous fat thickness over the LM (3.2 vs. 3.9 mm), but increased G:F (0.12 vs. 0.11) when compared with control at the end of the 140-d study. The magnitude of the associations of DMI with ADG (r = 0.32 vs. 0.21), 140-d BW (r = 0.78 vs. 0.36), hip height (r = 0.57 vs. 0.17), LMA (r = 0.30 vs. 0.18), and BCS (r = 0.17 vs. 0.11) was greater in restricted- than control-fed heifers. Variance of residual feed intake, calculated within each treatment, was greater (P < 0.01) in control (0.088) than restricted (0.004) heifers, and magnitude of association between residual feed intake and average DMI was greater in control (r = 0.88) than restricted (r = 0.41) heifers. Pregnancy rate tended (P = 0.11) to be reduced in heifers that had been developed on restricted feeding (86.3 +/- 2.3 vs. 91.5 +/- 2.3%). However, ADG was greater (P < 0.001) in restricted than control heifers (0.51 vs. 0.46 kg/d) while grazing native range in the 7 mo after restriction. In summary, restricted heifers consumed 22% less feed on a per-pregnant-heifer basis during the development period and had a greater magnitude of association between DMI and several growth-related traits at the end of the 140-d postweaning feeding period, which is indicative of improved efficiency.  相似文献   

16.
Spring-born Hereford x Angus heifers (n = 206) were used to determine effects of energy supplementation programs and amount of starch in the diet on incidence of puberty. In Exp. 1, heifers (205 +/- 5 kg; n = 68) grazing dormant native pasture were fed 0.9 kg/d (as-fed basis) of a 42% CP supplement from November until February 14. Heifers were stratified by weaning weight and allotted randomly to treatment before breeding (May to July). Treatments were 1) 0.9 kg (as-fed basis) of a 42% CP supplement/d and pasture (control); 2) a high-starch (HS) diet (73% corn; 53% starch) fed in a drylot for 60 d (HS-60); 3) a HS diet fed in drylot for 30 d (HS-30); or 4) a low-starch (LS) diet (49% corn; 37% starch) self-fed on pasture for 30 d (LS-30). The HS-60 and HS-30 heifers were limited-fed to gain 0.9 kg/d, and the LS-30 heifers had ad libitum access to the diet. High-starch-60 and LS-30 heifers were heavier (P < 0.05) than control and HS-30 heifers at the beginning of the breeding season. Thirty-one, 25, and 26% more HS-60 heifers were pubertal (P < 0.05) on May 1 compared with LS-30, HS-30, and control heifers, respectively. At puberty, HS-60 heifers were 24 and 22 d younger (P < 0.05) than LS-30 and control heifers, and 31 kg lighter (P < 0.01) than LS-30 heifers. In Exp. 2, heifers grazed dormant pasture and were fed 0.9 kg (as-fed basis) of a 42% CP supplement/d from weaning in October to late February; then heifers were assigned randomly to treatments for 60 d before the breeding season. In two years, control heifers (n = 46) grazed pasture and received 0.9 kg of SBM supplement/d; LS (n = 46) heifers were self-fed a distiller's grain and soybean hull-based diet in drylot; and HS heifers (n = 46) were limited-fed a corn-based diet in drylot. During treatment, HS and LS heifers had greater weight gains than control heifers. Pubertal BW (313 +/- 6 kg) was not influenced by treatment, but HS and LS heifers were younger (P < 0.03) than control heifers at puberty. During a 60-d breeding period, the incidence of puberty was greater (P < 0.05) for HS and LS heifers than for control heifers and was greater (P < 0.05) in HS than in LS heifers in Year 1. Feeding a LS or a HS diet for 30 d before breeding may be inadequate to stimulate puberty in beef heifers, but feeding a diet with a greater amount of starch for 60 d before breeding may increase the incidence of puberty during breeding of heifers that have inadequate yearling weight.  相似文献   

17.
The effect of a single implantation (on d 1) with one or two long-acting, biodegradable estradiol implants (1E or 2E) on plasma estradiol concentrations in beef heifers was determined. The growth rates of these (2E) heifers, and of heifers repeatedly implanted with trenbolone acetate (TBA) or zeranol (Z) on d 1, 84, 168, and 252 of the trial, were compared to growth rates of controls. Trenbolone acetate alone was compared to TBA + 2E, and 2E was compared to 1E. At a mean age of 84 d (d 1 of experiment), 81 Hereford x Friesian heifers were allocated at random to the following treatments: Control (n = 15); TBA (n = 15); 1E (n = 12); 2E (n = 15); Z (n = 13); or TBA + 2E (n = 11). Mean live weight (kg) prior to slaughter on d 368 and hot carcass weight (kg) for heifers assigned to treatment Groups 1 to 6, respectively, were 366 and 200, 391 and 212, 374 and 201, 386 and 207, 387 and 210, and 391 and 208 (residual SD = 30.3 and 20.2). Heifers assigned to both the 2E and Z treatments were heavier on d 368 (P less than .05) and had longer teats on d 279 (P less than .05), less pelvic fat (P less than .05), and heavier kidneys (P less than .005) than control heifers. Heifers assigned to the TBA treatment had shorter teats on d 279 (P less than .001) but greater final live weight (P less than .05) and carcass weight than control heifers. Heifers given TBA alone had more pelvic fat (P less than .05) and lighter kidneys (P less than .05) than those given TBA + 2E. Mean estradiol concentrations in both the ipsilateral and contralateral jugular veins of heifers assigned to the 2E and TBA + 2E treatments, and in the ipsilateral jugular veins of heifers given 1E, were greater (P less than .05) than those in control heifers; concentrations did not decline during the experiment.  相似文献   

18.
Serum concentrations of leptin increase linearly from approximately 16 wk before until the week of pubertal ovulation in beef heifers. To test the hypothesis that exogenous leptin can hasten the onset of puberty in heifers, we examined the effects of chronic administration of recombinant ovine leptin (oleptin) on timing of puberty, pulsatile and GnRH-mediated release of LH, and plasma concentrations of GH, IGF-I, and insulin. Fourteen fall-born, prepubertal heifers (Brahman x Hereford, 12 to 13 mo; 304.7+/-4.12 kg) were used. Heifers were stratified by age and BW and assigned randomly to one of two groups (seven animals per group): 1) Control; heifers received s.c. injections of saline twice daily (0700 and 1900) for 40 d; and 2) Leptin; heifers received s.c. injections of oleptin (19.2 microg/kg) twice daily at 0700 and 1900 for 40 d. Blood samples were collected at 10-min intervals for 5 h on. d 0, 5, 10, 20, 30, and 40, and twice daily, just before each treatment injection, throughout the study. On d 41, heifers received i.v. injections of GnRH at 0 (0.0011 microg/kg) and 90 min (0.22 microg/kg), with additional sampling for 5.5 h to examine releasable pools of LH. Diets promoted a gain of 0.32+/-0.09 kg/d, which did not differ between groups. Plasma concentrations of leptin increased markedly in leptin-treated heifers and were greater (P < 0.001) than controls throughout (27.8+/-0.8 vs. 4.9+/-0.12 ng/mL). None of the heifers reached puberty during the experiment, but did so within 45 d of its termination. Mean concentrations of plasma LH, GH, IGF-I, and insulin were not affected by treatment, nor was there an overall effect on the frequency of LH pulses. However, a treatment x day interaction (P = 0.02) revealed that the frequency of LH pulses (pulses/ 5 h) was greater (P = 0.03) in controls (3.6+/-0.36) than in leptin-treated heifers (1.7+/- 0.28) on d 10. Characteristics of GnRH-induced release of LH were not affected by treatment. In summary, chronically administered leptin failed to induce puberty or alter endocrine characteristics in beef heifers nearing the time of expected puberty.  相似文献   

19.
The objectives of this study were to evaluate the effects of pre- and postpartum undegraded intake protein (UIP) supplementation on body condition score (BCS), BW, calf weight, milk production, serum IGF-I concentrations, and postpartum interval in primiparous beef heifers (n = 44). Heifers were maintained on endophyte-free stockpiled tall fescue (11.7% CP, 38% ADF) and individually fed supplement daily beginning 60 d prepartum. Pre- and postpartum supplements provided 19.3% CP, 83.4% TDN (UIP); 14.1% CP, 84.1% TDN (Control); 21.5% CP, 81.5% TDN (UIP); and 14.6% CP, 81.4% TDN (Control); respectively. Blood meal (146 g/d) was the source of UIP. Six heifers were removed from the study due to calf loss unrelated to treatment; therefore, postpartum measurements are based on 19 animals per treatment. Statistical analyses using ANOVA and a split-plot design revealed no effects of treatment (P > 0.2) on BCS, BW, calf weight, milk production, or postpartum interval. There tended to be a treatment x time interaction on BCS (P < 0.09) with UIP heifers having higher BCS than Control at wk 5, 7, and 9 postpartum. There was a treatment x time interaction on serum IGF-I (P < 0.06) during the first 35 d postpartum. In UIP heifers, serum IGF-I was greater at calving compared with Control heifers (117.5 vs 92.4 ng/mL, respectively); however, these differences were not related to changes in BCS or BW. Although serum IGF-I concentrations were increased at calving in heifers receiving UIP, there were no treatment effects on postpartum interval (P > 0.7). During the first 30 d postpartum, IGF-I differed (P < 0.01) among heifers with postpartum intervals defined as short, < 50 d (128.9 ng/mL); medium, 51 to 65 d (115.2 ng/mL); and long, 66 to 130 d (52.9 ng/mL). When analyzed as a regression, a 1 ng/mL increase in IGF-I (UIP and Control heifers) at calving (P < 0.05) and throughout the postpartum period (P < 0.01) corresponded to a decrease in postpartum interval of 0.13 d. Based on the results of this study, the inclusion of UIP in diets for primiparous heifers and its effects on postpartum interval warrant further evaluation.  相似文献   

20.
A 2-yr study was conducted at 2 locations to determine if supplementing beef heifers with dried distillers grains (DDG) as an energy source affected growth or reproduction. Spring-born crossbred heifers (n = 316) were blocked by age or sire and age and assigned randomly to DDG or control (dried corn gluten feed, whole corn germ, urea) supplement. Heifers received prairie hay in amounts sufficient for ad libitum intake and 0.59% of BW DDG or 0.78% of BW control supplement (DM basis). Supplements were formulated to be isocaloric, but protein degradability differed. Supplemental undegradable intake protein intake from DDG averaged 267 g/animal daily and reached 318 g/animal daily; control supplemental undegradable intake protein intake averaged 90 g/animal daily and peaked at 107 g/animal daily. Initial pubertal status was determined by 2 blood samples collected 10 d apart, and monthly BW were collected from November through January; then biweekly BW and blood samples were collected from February until May yearly. Heifers were synchronized with 2 injections of PGF2alpha 14 d apart; estrus was detected and heifers were artificially inseminated for 5 d and placed with bulls 10 d later. Conception and pregnancy rates were determined via transrectal ultrasonography. Initial age, BW, and BCS did not differ (P > 0.92) for control and DDG heifers. Final BW, ADG, and final BCS also were not affected (P > 0.31) by supplementation. Estimated age and BW at puberty did not differ (P > 0.23) between treatments, and the proportions of pubertal heifers did not differ at the initiation of the experiment (P > 0.82), at the beginning of the 14-d sampling intervals, or before synchronization. Estrus synchronization rate (75.9%), time of estrus, and overall pregnancy rate (89.5%) were not affected (P > 0.14) by treatment. However, a greater proportion (P = 0.008) of DDG than control heifers conceived to AI (75.0 vs. 52.9%), resulting in greater (P = 0.07) AI pregnancy rates for DDG heifers (57.0 vs. 40.1%). Body weight or BCS at pregnancy diagnosis did not differ (P > 0.52) between DDG and control heifers. Supplementing beef heifers with DDG during development did not affect age at puberty but improved AI conception and pregnancy rates compared with an isocaloric control supplement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号