首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
Soil organic carbon(SOC) and iron(Fe)-oxides are important contributors of aggregate stability in highly weathered soils, and they are influenced by groundwater management and straw application. A 30-year plot experiment with early rice(Oryza sativa L.)-late rice-winter fallow rotations was conducted using a upland clay soil in cement pools under shallow groundwater table at a depth of 20 cm(SGT) and deep groundwater table at a depth of 80 cm(DGT) to simulate the groundwater tables of two types of important paddy soils, gleyed paddy soils and hydromorphic paddy soils, respectively, in subtropical China. Soil redox potential(Eh) was measured in situ, and 0–20 cm soil samples were collected for the analyses of soil Fe-oxides, SOC, and aggregates under SGT or DGT with different straw application treatments, in order to evaluate the interaction of groundwater management and straw application on paddy soil aggregation and the relative importance of SOC or Fe-oxides on soil aggregation. The results showed that soil Eh was restricted by irrigation, and its variation was more significant under DGT than under SGT. The decreased soil Eh or reduced drying and wetting cycles under SGT resulted in more SOC accumulation with the straw application, had no effect on soil free Fe-oxides(Fed), significantly increased the amorphous Fe-oxide(Feo) and complex Fe-oxide contents, but decreased the crystalline Fe-oxide content(Fed–Feo). The soils under DGT had more macroaggregates than those under SGT, but the difference decreased with the straw application. It could be concluded that soil Fe-oxides were the principal contributing factor to the aggregation of paddy soils in subtropical China and SOC was also an important contributing factor.  相似文献   

2.
土地利用方式及土壤特性对土壤调节雨水效率的影响研究   总被引:3,自引:1,他引:2  
One of the most important functions of soils is to regulate rainwater and mitigate flooding and associated damages; this function can be estimated by the rainwater regulation ratio (η), i.e., percent of regulated rainwater. Fifteen experimental plots were set up on the hills in Yingtan of Jiangxi Province, southern China. These plots were under three land use patterns, cultivated cropland, noncultivated land, and orchard interplanted with cash crops. With aid of an artificial rainfall simulator and Guelph method, rainfall, runoff, soil infiltration, and so on were measured in situ. Results showed that the orchard interplanted with cash crops was more effective in regulating rainwater than the other two land use patterns. When the maximum infiltration intensity was three times higher than the observed mean,η was higher than 70% for all plots. 77 was related to land use, slope gradient, and soil properties such as soil infiltration, organic carbon, bulk density, and texture. There is still more room to improve capacity of rainwater drainage (underground percolation) than that of rainwater storage in soils. Therefore, enhancing soil permeability is vital to improve the rainwater regulation efficiency in soils.  相似文献   

3.
The agricultural soil carbon pool plays an important role in mitigating greenhouse gas emission ana unaerstanamg the son orgamc carbon-climate-soil texture relationship is of great significance for estimating cropland soil carbon pool responses to climate change. Using data from 900 soil profiles, obtained from the Second National Soil Survey of China, we investigated the soil organic carbon (SOC) depth distribution in relation to climate and soil texture under various climate regimes of the cold northeast region (NER) and the warmer Huang-Huai-Hai region (HHHR) of China. The results demonstrated that the SOC content was higher in NER than in HHHR. For both regions, the SOC content at all soil depths had significant negative relationships with mean annual temperature (MAT), but was related to mean annual precipitation (MAP) just at the surface 0-20 cm. The climate effect on SOC content was more pronounced in NER than in HHHR. Regional differences in the effect of soil texture on SOC content were not found. However, the dominant texture factors were different. The effect of sand content on SOC was more pronounced than that of clay content in NER. Conversely, the effect of clay on SOC was more pronounced than sand in HHHR. Climate and soil texture jointly explained the greatest SOC variability of 49.0% (0-20 cm) and 33.5% (20-30 cm) in NER and HHHR, respectively. Moreover, regional differences occurred in the importance of climate vs. soil texture in explaining SOC variability. In NER, the SOC content of the shallow layers (0-30 cm) was mainly determined by climate factor, specifically MAT, but the SOC content of the deeper soil layers (30-100 cm) was more affected by texture factor, specifically sand content. In HHHR, all the SOC variability in all soil layers was predominantly best explained by clay content. Therefore, when temperature was colder, the climate effect became stronger and this trend was restricted by soil depth. The regional differences and soil depth influence underscored the importance of explicitly considering them in modeling long-term soil responses to climate change and predicting potential soil carbon sequestration.  相似文献   

4.
中国滇池流域土地利用方式对土壤侵蚀和养分状况的影响   总被引:2,自引:0,他引:2  
Soil erosion and loss of soil nutrients have been a crucial environment threat in Southwest China. The land use and its impact on soil qualities continue to be highlighted. The present study was conducted to compare soil erosion under four land use types(i.e.,forestland, abandoned farmland, tillage, and grassland) and their effects on soil organic carbon(SOC), total nitrogen(TN) and total phosphorus(TP) in the Shuanglong catchment of the Dianchi Lake watershed, China. There were large variations in the erosion rate and the nutrient distributions across the four land use types. The erosion rates estimated by137 Cs averaged 2 133 t km-2year-1under tillage and abandoned farmland over the erosion rate of non-cultivated sites, and the grasslands showed a net deposition. For all sites, the nutrient contents basically decreased with the soil depth. Compared with tillage and abandoned farmland, grassland had the highest SOC and TN contents within 0–40 cm soil layer, followed by forestland. The significant correlations between137 Cs, SOC and TN were observed. The nutrient loss caused by erosion in tillage was the highest. These results suggested that grassland and forestland would be beneficial for SOC and TN sequestration over a long-term period because of their ability to reduce the loss of nutrients by soil erosion. Our study demonstrated that reduction of nutrient loss in the red soil area could be made through well-managed vegetation restoration measures.  相似文献   

5.
Soil inorganic carbon (SIC) is an important reservoir of carbon (C) in arid, semi-arid, and semi-humid regions. However, knowledge is incomplete on the dynamics of SIC and its relationship with soil organic C (SOC) under different land use types in the semi-humid region, particularly in coastal zones impacted by soil salinization. We collected 170 soil samples from 34 profiles across various land use types (maize-wheat, cotton, paddy, and reed) in the middle-lower Yellow River Delta (YRD), China. We measured soil pH, electrical conductivity (EC), water-soluble salts, and SOC and SIC contents. Our results showed significant differences in both SOC and SIC among land use types. The dry cropland (maize-wheat and cotton) soils had significantly higher SOC and SIC densities (4.71 and 15.46 kg C m-2, respectively) than the paddy soils (3.28 and 14.09 kg C m-2, respectively) in the 0–100 cm layer. Compared with paddy soils, reed soils contained significantly higher SOC (4.68 kg C m-2) and similar SIC (15.02 kg C m-2) densities. There was a significant positive correlation between SOC and SIC densities over a 0–100 cm soil depth in dry cropland soils, but a negative relationship in the paddy soils. On average, SOC and SIC densities under maize-wheat cropping were 15% and 4% lower, respectively, in the salt-affected soils in the middle-lower YRD than the upper YRD. This study indicated that land use types had great influences on both SOC and SIC and their relationship, and salinization had adverse effect on soil C storage in the YRD.  相似文献   

6.
Tillage practices can potentially afect soil organic carbon (SOC) accumulation in agricultural soils. A 4-year experiment was conducted to identify the influence of tillage practices on SOC sequestration in a double-cropped rice (Oryza sativa L.) field in Hunan Province of China. Three tillage treatments, no-till (NT), conventional plow tillage(PT), and rotary tillage(RT), were laid in a randomized complete block design. Concentrations of SOC and bulk density(BD) of the 0-80 cm soil layer were measured, and SOC stocks of the 0-20 and 0-80 cm soil layers were calculated on an equivalent soil mass(ESM) basis and fixed depth (FD) basis.Soil carbon budget(SCB) under diferent tillage systems were assessed on the basis of emissions of methane(CH4) and CO2 and the amount of carbon (C) removed by the rice harvest. After four years of experiment, the NT treatment sequestrated more SOC than the other treatments. The SOC stocks in the 0-80 cm layer under NT (on an ESM basis) was as high as 129.32 Mg C ha 1,significantly higher than those under PT and RT (P < 0.05). The order of SOC stocks in the 0-80 cm soil layer was NT > PT > RT,and the same order was observed for SCB; however, in the 0-20 cm soil layer, the RT treatment had a higher SOC stock than the PT treatment. Therefore, when comparing SOC stocks, only considering the top 20 cm of soil would lead to an incomplete evaluation for the tillage-induced efects on SOC stocks and SOC sequestrated in the subsoil layers should also be taken into consideration. The estimation of SOC stocks using the ESM instead of FD method would better reflect the actual changes in SOC stocks in the paddy filed, as the FD method amplified the tillage efects on SOC stocks. This study also indicated that NT plus straw retention on the soil surface was a viable option to increase SOC stocks in paddy soils.  相似文献   

7.
Soil wettability and water repellency, two important soil physical properties, play an important role in water retention and water conductivity in arid and semi-arid regions. To date, there is a lack of information on soil water repellency in calcareous soils of western lran. In this study, soil water repellency and its affecting factors were studied using 20 soil series collected from Hamadan Province~ western Iran. The effects of soil properties including organic carbon content (SOC), total nitrogen (TN), C:N ratio, texture, CaCO3 content, and both fungal and bacterial activities on water repellency were investigated using air-dried, oven-dried and heated soil samples. Water repellency index (WRI) was determined using the short-time sorptivity (water/ethanol) method. To distinguish the actual effects of SOC, a set of soil samples were heated at 300 ~C to remove SOC and then WRI was measured on the heated samples. Relative water repellency index (RWRI) was defined as the change of WRI due to heating relative to the oven-dry WRI value. Results of the WRI values showed that the soils were sub-critically water-repellent. Pasture soils had higher WRI values compared to tilled soils, resulting from high SOC and TN, and high activities of bacteria and fungi. It was observed that SOC, TN, fungal activity, and SOC:clay ratio had significant positive impacts on WRI. Strong positive correlations of RWRI with SOC, TN and fungal activity were also observed. Pedotransfer functions derived for predicting WRI showed that the WRI values had an increasing trend with the increases in fungal activity, salinity, alkalinity and fine clay content, but showed a decreasing trend with increasing bacterial activity.  相似文献   

8.
Land Use and Soil Organic Carbon in China’s Village Landscapes   总被引:2,自引:0,他引:2  
Village landscapes, which integrate small-scale agriculture with housing, forestry, and a host of other land use practices, cover more than 2 million square kilometers across China. Village lands tend to be managed at very fine spatial scales (≤ 30 m), with managers both adapting their practices to existing variation in soils and terrain (e.g., fertile plains vs. infertile slopes) and also altering soil fertility and even terrain by terracing, irrigation, fertilizing, and other land use practices. Relationships between fine-scale land management patterns and soil organic carbon (SOC) in the top 30 cm of village soils were studied by sampling soils within fine-scale landscape features using a regionally weighted landscape sampling design across five environmentally distinct sites in China. SOC stocks across China’s village regions (5 Pg C in the top 30 cm of 2 × 10 6 km 2 ) represent roughly 4% of the total SOC stocks in global croplands. Although macroclimate varied from temperate to tropical in this study, SOC density did not vary significantly with climate, though it was negatively correlated with regional mean elevation. The highest SOC densities within landscapes were found in agricultural lands, especially paddy, the lowest SOC densities were found in nonproductive lands, and forest lands tended toward moderate SOC densities. Due to the high SOC densities of agricultural lands and their predominance in village landscapes, most village SOC was found in agricultural land, except in the tropical hilly region, where forestry accounted for about 45% of the SOC stocks. A surprisingly large portion of village SOC was associated with built structures and with the disturbed lands surrounding these structures, ranging from 18% in the North China Plain to about 9% in the tropical hilly region. These results confirmed that local land use practices, combined with local and regional variation in terrain, were associated with most of the SOC variation within and across China’s village landscapes and may be an important cause of regional variation in SOC.  相似文献   

9.
Understanding how spatial scale inffuences commonly-observed effiects of climate and soil texture on soil organic carbon (SOC) storage is important for accurately estimating the SOC pool at different scales. The relationships among climate factors, soil texture and SOC density at the regional, provincial, city, and county scales were evaluated at both the soil surface (0-20 cm) and throughout the soil profile (0-100 cm) in the Northeast China uplands. We examined 1022 profiles obtained from the Second National Soil Survey of China. The results indicated that the relationships between climate factors and SOC density generally weakened with decreasing spatial scale. The provincial scale was optimal to assess the relationship between climate factors and SOC density because regional differences among provinces were covered up at the regional scale. However, the relationship between soil texture and SOC density had no obvious trend with increasing scale and changed with temperature. There were great differences in the impacts of climate factors and soil texture on SOC density at different scales. Climate factors had a larger effect on SOC density than soil texture at the regional scale. Similar trends were seen in Heilongjiang and eastern Inner Mongolia at the provincial scale. But, soil texture had a greater effect on SOC density compared with climate factors in Jilin and Liaoning. At the city and county scales, the inffuence of soil texture on SOC density was more important than climate factors.  相似文献   

10.
WANG Jing-Hua 《土壤圈》1995,5(3):193-202
The sensitivity of a large number of variable charge soils to acid rain was evaluated through examining pH-H2SO4 input curves. Two derivative parameters, the consumption of hydrogen ions by the soil and the acidtolerant limit as defined as the quantity of sulfuric acid required to bring the soil to pH 3.5 in a 0.001mol L-1 Ca(NO3)2 solution, were used. The sensitivity of variable charge soils was higher than that of constant charge soils, due to the predominance of kaolinite in clay mineralogical composition. Among these soils the sensitivity was generally of the order lateritic red soil > red soil > latosol. For a given type of soil within the same region the sensitivity was affected by parent material, due to differences in clay minerals and texture. The sensitivity of surface soil may be lower or higher than that of subsoil, depending on whether organic matter or texture plays the dominant role in determining the buffering capacity. Paddy soils consumed more acid within lower range of acid input when compared with upland soils, due to the presence of more exchangeable bases, but consumed less acid within higher acid input range, caused by the decrease in clay content.  相似文献   

11.
南京典型利用方式土壤中球囊霉素含量及剖面分布特征   总被引:2,自引:0,他引:2  
阙弘  葛阳洋  康福星  凌婉婷 《土壤》2015,47(4):719-724
采用Brad-ford染色法研究了南京市5种典型利用方式土壤不同土层中(0~10、10~20、20~40 cm)球囊霉素的含量。结果表明:土壤中总球囊霉素含量为1.96~3.12 mg/g,占土壤有机碳的12.5%~29.0%,所占比例随土壤有机碳含量的增加而降低。林地和草地土壤中球囊霉素和有机碳的含量均高于3种耕作土壤(水稻田、茶园土和菜园土)。随着土层深度(0~40 cm)的增加,5种不同利用方式土壤中总球囊霉素和有机碳的含量均减小;与其他土层相比,0~10 cm土层总球囊霉素和有机碳含量均最大。耕作土壤中易提取球囊霉素更易于向总球囊霉素转化。发现5种土地利用方式下土壤中总球囊霉素含量与土壤有机碳含量极显著正相关,与土壤p H显著负相关;易提取球囊霉素与土壤有机碳含量极显著负相关。总球囊霉素和易提取球囊霉素可作为评价土壤丛枝菌根真菌活性和土壤质量的重要指标。  相似文献   

12.
Low soil organic carbon (SOC) levels in dry areas can affect soil functions and may thus indicate soil degradation. This study assesses the significance of SOC content in Mediterranean arable soils based on the analysis of a broad data set of 2613 soils sampled from Mediterranean grasslands and agricultural land. The distribution in values of SOC, pH, clay and carbonates was analysed according to different climatic areas (semi‐arid, Mediterranean temperate, Mediterranean continental and Atlantic) and with respect to six different land uses (grassland, cereal crops, olives and nuts, vineyards, fruit trees and vegetable gardens). The general trend was for low SOC in arable land and decreased with aridity. In wet areas (Atlantic and Mediterranean continental), acidic soils had a higher SOC content than did calcareous soils, whereas in the Mediterranean temperate area SOC had little relationship to soil pH. In low SOC arable soils, the SOC content was related to clay content. In calcareous arable soils of the Mediterranean temperate zone, SOC content was more closely related to carbonates than to clay. In contrast to the Atlantic area, Mediterranean grassland soils had much lower amounts of SOC than forest soils. Mediterranean calcareous and temperate acidic soils under grassland had SOC‐to‐clay ratios similar to or only slightly greater than that under a crop regime. In contrast, Mediterranean continental acidic soils under grassland had a much higher SOC‐to‐clay ratio than arable soils. This suggests a low resilience of the Mediterranean temperate and calcareous arable soils in terms of SOC recovery after the secession of ploughing, which may be a result of intensive use of these soils over many centuries. Consequently, we hypothesize that the Mediterranean calcareous soils have undergone significant changes that are not readily reversed after ploughing ceases. Such changes may be related to alterations in soil aggregation and porosity which, in turn, are associated with soil carbonate dynamics. Decarbonation processes (the depletion of active carbonates) may therefore be relevant to the reclamation of highly calcareous arable soils through fostering soil re‐aggregation. The article concludes by discussing the suitability of zero tillage, manuring or the introduction of woody species to increase SOC in calcareous arable soils that are highly depleted of organic matter.  相似文献   

13.
施用石灰改良酸性土壤是常用的农艺措施之一。施用石灰影响土壤理化性质,进而影响土壤有机碳(Soil Organic Carbon,SOC)矿化。而SOC矿化与土壤肥力保持和有机碳库的大小存在紧密联系。因此,明晰施用石灰对酸性土壤有机碳矿化的影响具有重要的理论和现实意义。该研究以2种母质的酸性水稻土为对象,在50%、90%和130%土壤最大田间持水量(Water Holding Capacity,WHC)条件下添加和不添加白云石,再进行为期45 d的室内培养试验,探讨白云石和水分对SOC矿化的影响。研究结果表明,添加白云石显著影响2种土壤有机碳矿化速率,但白云石添加和水分的交互作用不显著。土壤含水量较低时(50%WHC),2种土壤有机碳矿化均受到抑制。在较高土壤含水量情况下(90%~130%WHC),白云石添加和水分的共同作用对SOC矿化的影响因土壤质地不同而异,淹水条件下(130%WHC)棕红壤有机碳矿化量高于湿润条件(90%WHC),而红壤中的情况正好相反。白云石添加和水分均显著影响SOC累计矿化量,但二者交互作用仅在棕红壤中显著。添加白云石后,2种土壤pH值随着水分含量的增加而提高;土壤含水量较低时(50%WHC),土壤pH值即可达到或接近目标值(pH值6.5)。这些结果表明,在评估施用白云石对SOC矿化的影响时,需要考虑土壤含水量和土壤本身的性质,以便为农业生产实践中合理施用白云石提供指导和建议。  相似文献   

14.
土壤有机碳及其组分是土壤质量的重要指标,在土壤许多物理、化学和生物特性中发挥着重要作用。通过对我国内陆荒漠自然生态系统中新疆艾比湖地区不同土地利用类型土壤进行采样和分析,系统地研究和比较了不同土地利用类型土壤养分及有机碳组分。结果表明:新疆艾比湖不同土地利用类型土壤总孔隙度与土壤容重变化趋势相反。不同土地利用类型对土壤养分具有较大影响,土壤有机碳、全氮、全磷和全钾均呈现出一致性规律,大致表现为林地草地耕地未利用地,而不同土地利用类型土壤全磷差异并不显著(p0.05)。不同土地利用类型土壤易氧化有机碳(EOC)、颗粒有机碳(POC)、轻组有机碳(LFOC)、水溶性有机碳(WSOC)、土壤微生物量碳(MBC)和微生物量氮(MBN)均呈现出一致性规律,大致表现为林地耕地草地未利用地。林地和草地EOC/SOC比例显著低于耕地和未利用地,说明林地和草地转变成耕地降低了土壤有机碳的稳定性;微生物商(MBC/SOC)基本表现为耕地林地草地未利用地,其中耕地和林地土壤MBC/SOC比例差异不显著(p0.05)。相关性分析表明,土壤活性有机碳各组分与SOC,TN,TK均具有极显著相关性关系,并且不同土地利用类型土壤EOC,POC,LFOC,WSOC和MBC含量之间均具有极显著相关性(p0.05),说明土壤活性有机碳很大程度上依赖于有机碳含量,活性有机碳各组分之间相互影响和密切联系,其中SOC,TN和TK是不同土地利用类型土壤活性有机碳变化的重要影响因子。  相似文献   

15.
Water repellency can be a significant factor in soil physical behaviour, but little is known about the depth dependence of the contact angle of field soils. We investigated contact angles and wetting properties as a function of depth for a wide range of agricultural and forest soils in Germany. The agricultural soils ranged from silty to sandy texture (six profiles), and the forest soils ranged from sandy to loamy texture (eight profiles). Contact angles (CA) were measured with the Wilhelmy plate method (WPM). In most of the soils, advancing WPM contact angles were considerably greater than 0° and they varied irregularly with depth. In general, sandy soils had larger WPM contact angles than silty soils. From the relation of the contact angle with texture and pH the quality of soil organic matter (SOM) was considered as more important for the wetting properties than the total amount of soil organic carbon (SOC). Finally, it was found that for soils with intermediate sand contents either under agricultural or forest use, the kind of land use seemed not to influence CA. Coarse‐textured sandy soils that were used only as forest sites were more hydrophobic than silty soils which were exclusively used as agricultural soils. We conclude that a coarse texture favours, in combination with other factors (mainly pH), hydrophobic SOM.  相似文献   

16.
The different management regimes on grassland soils were examined to determine the possibilities for improved and/or changed land management of grasslands in Flanders (Belgium), with respect to article 3.4 of the Kyoto Protocol. Grassland soils were sampled for soil organic carbon (SOC) and for bulk density. For all grasslands under agricultural use, grazing and mowing + grazing led to higher SOC stocks compared with mowing, and grazing had higher SOC stocks compared with mowing + grazing. Overall, 15.1 ± 4.9 kg OC m–2 for the clayey texture, 9.8 ± 3.0 kg OC m–2 for the silty texture, and 11.8 ± 3.8 kg OC m–2 for the sandy texture were found for grassland under agricultural use to a depth of 60 cm. For seminatural grasslands, different results were found. For both the clayey and silty texture, mowing and mowing + grazing led to higher SOC stocks compared with grazing. The clayey texture had a mean stock of 15.1 ± 6.6, the silty texture of 10.9 ± 3.0, and the sandy texture of 12.1 ± 3.9 kg OC m–2 (0–60 cm). Lower bulk densities were found under grazed agricultural grassland compared with mown grassland but for seminatural grassland, no clear trends for the bulk density were found. The best management option for maintaining or enhancing SOC stocks in agricultural grassland soils may be permanent grazed grassland. For seminatural grassland, no clear conclusions could be made. The water status of the sampled mown fields was influencing the results for the clayey texture. Overall, the mean SOC stock was decreasing in the order clay > sand > silt. The higher mean SOC concentrations found for the sandy texture, compared to the finer silty texture, may be explained by the historical land use of these soils.  相似文献   

17.
The proportional differences in soil organic carbon (SOC) and its fractions under different land uses are of significance for understanding the process of aggregation and soil carbon sequestration mechanisms. A study was conducted in a mixed vegetation cover watershed with forest, grass, cultivated and eroded lands in the degraded Shiwaliks of the lower Himalayas to assess land‐use effects on profile SOC distribution and storage and to quantify the SOC fractions in water‐stable aggregates (WSA) and bulk soils. The soil samples were collected from eroded, cultivated, forest and grassland soils for the analysis of SOC fractions and aggregate stability. The SOC in eroded surface soils was lower than in less disturbed grassland, cultivated and forest soils. The surface and subsurface soils of grassland and forest lands differentially contributed to the total profile carbon stock. The SOC stock in the 1.05‐m soil profile was highest (83.5 Mg ha−1) under forest and lowest (55.6 Mg ha−1) in eroded lands. The SOC stock in the surface (0–15 cm) soil constituted 6.95, 27.6, 27 and 42.4 per cent of the total stock in the 1.05‐m profile of eroded, cultivated, forest and grassland soils, respectively. The forest soils were found to sequester 22.4 Mg ha−1 more SOC than the cultivated soils as measured in the 1.05‐m soil profiles. The differences in aggregate SOC content among the land uses were more conspicuous in bigger water‐stable macro‐aggregates (WSA > 2 mm) than in water‐stable micro‐aggregates (WSA < 0.25 mm). The SOC in micro‐aggregates (WSA < 0.25 mm) was found to be less vulnerable to changes in land use. The hot water soluble and labile carbon fractions were higher in the bulk soils of grasslands than in the individual aggregates, whereas particulate organic carbon was higher in the aggregates than in bulk soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Substantial losses of soil organic carbon (SOC) from the plough layer of intensively managed arable soils in western Europe have recently been reported, but these estimates are associated with very large uncertainties. Following soil surveys in 1952 and 1990 of arable soils in West Flanders (Belgium), we resampled 116 sites in 2003 and thus obtained three paired measurements of the OC stocks in these soils. Ten soils were selected for detailed physical fractionation to obtain possible further explanations for changes in SOC stocks. Between 1990 and 2003, the SOC stocks decreased at an average rate of ?0.19 t OC ha?1 year?1. This loss is significant but is still less than half the rate of SOC decrease that was estimated previously for the whole region of Flanders, which includes the study area. Variation in SOC stocks or in the magnitude of SOC stock losses could not be related to soil texture, to changes in ploughing depth, or to recent land‐use changes. A good relationship, however, was found between the SOC losses and organic matter (OM) inputs. The results of the physical fractionation also suggested management to be the predominant factor determining variation in SOC stocks because no correlation was found between soil texture and the absolute amounts of OC present in the largest OM fractions, that is, the OC in free particulate organic matter (POM), and OC associated with the silt + clay size fraction. The proportion of OC in free POM was up to 40% of the total OC, which indicates the important impact of management on SOC and also indicates that a substantial part of the SOC still present, may in the future be lost at a time scale of years to decades assuming that the intensive management continues.  相似文献   

19.
Soil organic carbon (SOC) fashions soil structure, which is a key factor of soil fertility. Existing SOC content recommendations are based on SOC:clay ratio thresholds of >1:10. However, the corresponding SOC content might be considered hard to reach in clayey soils, whose structure degradation risk is assumed to be high. Here, we analysed the SOC content and soil structure quality of soils under similar cropping practices with clay contents ranging from 16% to 52%. Five undisturbed soil cores (5–10 cm layer) were collected from 96 fields at 58 farms in the Swiss Jura region. We assessed the soil structure quality visually using the CoreVESS method. Gravimetric air content and water content, and bulk density at −100 hPa were also measured, and the soil structure degradation index was calculated. We found that the relationship between SOC and clay content held over the clay content range, suggesting that reaching an acceptable SOC:clay ratio is not limited by large clay contents. This suggests that the 1:10 SOC:clay ratio may remain useful for clayey soils. In contrast to what was expected, it is not more challenging to reach this ratio in clayey soils even if it implies reaching very large SOC contents. SOC content explained the considered physical properties better than clay content. From a soil management point of view, these findings suggest that the soil texture determines a potential SOC content, while the SOC:clay ratio is determined by farming practices regardless of the clay content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号