首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of two intravenous doses of romifidine (80 and 120 microg/kg) and one dose of detomidine (20 microg/kg) were compared in a blinded study in 30 horses requiring to be sedated for routine dental treatment. Several physiological parameters were assessed before and for two hours after the administration of the drugs, and the horses' teeth were rasped 30 minutes after they were administered. Romifidine produced a dose-dependent effect on most parameters. Detomidine at 20 microg/kg was similar to romifidine at 120 microg/kg in the magnitude of its sedative effects, but was similar to romifidine at 80 pg/kg in its duration. There were no significant differences between the three treatments in terms of the clinical procedure score.  相似文献   

2.
The cardiopulmonary effects of romifidine at 80 microg/kg (R80) or 120 pg/kg (R120), and detomidine at 20 pg/kg (D20) when used as premedicants for ketamine/halothane anaesthesia were investigated in six ponies. Using a blinded crossover design, acepromazine (0-04 mg/kg) was administered followed by the alpha-2 agonist. Anaesthesia was induced with ketamine at 2.2 mg/kg and maintained with halothane (expired concentration 1.0 per cent) in oxygen for three hours. During anaesthesia, arterial blood pressure, cardiac index, PaO2 and PmvO2 decreased, and systemic vascular resistance and PaCO2 increased. The cardiac indices for R80, R120 and D20 were, respectively, 39, 39 and 32 ml/kg/minute at 30 minutes and 29, 29 and 26 ml/kg/minute at 180 minutes. The alpha-2 agonists had similar cardiovascular effects, but PaO2 was significantly lower with R120. The quality of anaesthesia was similar in all three groups.  相似文献   

3.
OBJECTIVE: To evaluate the sedative, analgesic, and cardiorespiratory effects of intramascular (IM) romifidine in cats. STUDY DESIGN: Prospective, randomized experimental trial. ANIMALS: Ten healthy adult cats. METHODS: Romifidine (100, 200, and 400 microg kg(-1)) or xylazine (1 mg kg(-1)) was given IM in a cross-over study design. Heart rate (HR), respiratory rate (RR), rectal temperature (RT), hemoglobin saturation, oscillometric arterial pressure, and scores for sedation, muscle relaxation, position, auditory response, and analgesia were determined before and after drug administration. Time to recumbency, duration of recumbency, and time to recover from sedation were determined. Subjective evaluation and cardiorespiratory variables were recorded before and at regular intervals for 60 minutes after drug administration. RESULTS: Bradycardia developed in all cats that were given romifidine or xylazine. No other significant differences in physiologic parameters were observed from baseline values or between treatments. Increasing the dose of romifidine did not result in increased sedation or muscle relaxation. Cats given xylazine showed higher sedation and muscle relaxation scores over time. Analgesia scores were significantly higher after administration of romifidine (400 microg kg(-1)) and xylazine (1 mg kg(-1)) than after romifidine at 100 or 200 microg kg(-1). Duration of lateral recumbency was not significantly different between treatments; however, cats took longer to recover after administration of 400 micro g kg(-1) romifidine. CONCLUSIONS AND CLINICAL RELEVANCE: Bradycardia is the most important adverse effect after IM administration of romifidine at doses ranging from 100 to 400 microg kg(-1) or 1 mg kg(-1) of xylazine in cats. The sedative effects of romifidine at 200 microg kg(-1) are comparable to those of 1 mg kg(-1) of xylazine, although muscle relaxation and analgesia were significantly less with romifidine than with xylazine.  相似文献   

4.
OBJECTIVE: To evaluate the effect of intratesticular administration of lidocaine on cardiovascular responses and cremaster muscle tension during castration of isoflurane-anesthetized stallions. ANIMALS: 28 healthy stallions (mean +/- SD age, 4.2 +/- 2.8 years) with no testicular abnormalities that were scheduled for castration. PROCEDURE: Each horse was given acepromazine (20 microg/kg, IM), romifidine (50 microg/kg, IV), and butorphanol (20 microg/kg, IV). Anesthesia was induced with ketamine (2.5 mg/kg, IV) and midazolam (50 microg/kg, IV) and maintained with isoflurane (1.7% end-tidal concentration). After 10 minutes at a stable anesthetic plane, a needle was placed in each testicle and either no fluid or 15 mL of 2% lidocaine was injected; 10 minutes after needle placement, surgery was commenced. Pulse rate and arterial blood pressures were measured invasively at intervals from 5 minutes prior to castration (baseline) until 5 minutes after the left spermatic cord was clamped. The surgeon subjectively scored the degree of cremaster muscle tension. In 2 horses, lidocaine labeled with radioactive carbon (C(14)) was used and testicular autoradiograms were obtained. RESULTS: Compared with baseline values, castration significantly increased blood pressure measurements; intratesticular injection of lidocaine decreased this blood pressure response and cremaster muscle tension. In 2 horses, autoradiography revealed diffuse distribution of lidocaine into the spermatic cord but poor distribution into the cremaster muscle. CONCLUSIONS AND CLINICAL RELEVANCE: In isoflurane-anesthetized stallions, intratesticular injection of lidocaine prior to castration appeared to decrease intraoperative blood pressure responses and cremaster muscle tension and may be a beneficial supplement to isoflurane anesthesia.  相似文献   

5.
OBJECTIVE: To study pulmonary gas exchange and cardiovascular responses to sedation achieved with romifidine and butorphanol (RB) alone, or combined with acepromazine, and during subsequent tiletamine-zolazepam anaesthesia in horses. ANIMALS: Six (four males and two females) healthy Standardbred trotters aged 3-12 years; mass 423-520 kg. STUDY DESIGN: Randomized, cross-over, experimental study. MATERIALS AND METHODS: Horses were anaesthetized on two occasions (with a minimum interval of 1 week) with intravenous (IV) tiletamine-zolazepam (Z; 1.4 mg kg(-1)) after pre-anaesthetic medication with IV romifidine (R; 0.1 mg kg(-1)) and butorphanol (B; 25 microg kg(-1) IV). At the first trial, horses were randomly allocated to receive (protocol ARBZ) or not to receive (protocol RBZ) acepromazine (A; 35 microg kg(-1)) intramuscularly (IM) 35 minutes before induction of anaesthesia. Each horse was placed in left lateral recumbency and, after tracheal intubation, allowed to breathe room air spontaneously. Respiratory and haemodynamic variables and ventilation-perfusion (; multiple inert gas elimination technique) ratios were determined in the conscious horse, after sedation and during anaesthesia. One- and two-way repeated-measures anova were used to identify within- and between-technique differences, respectively. RESULTS: During sedation with RB, arterial oxygen tension (PaO(2)) decreased compared to baseline and increased mismatch was evident; there was no O(2) diffusion limitation or increase in intrapulmonary shunt fraction identified. With ARB, PaO(2) and remained unaffected. During anaesthesia, intrapulmonary shunt occurred to the same extent in both protocols, and mismatching increased. This was less in the ARBZ group. Arterial O(2) tension decreased in both protocols, but was lower at 25 and 35 minutes of anaesthesia in RBZ than in ARBZ. During sedation, heart rate (HR) and cardiac output (Qt) were lower while arterial-mixed venous oxygen content differences and haemoglobin concentrations were higher in RBZ compared with ARBZ. Total systemic vascular resistance, mean systemic, and mean pulmonary arterial pressures were higher during anaesthesia with RBZ compared to ARBZ. CONCLUSIONS AND CLINICAL RELEVANCE: Acepromazine added to RB generally improved haemodynamic variables and arterial oxygenation during sedation and anaesthesia. Arterial oxygenation was impaired as a result of increased shunt and mismatch during anaesthesia, although acepromazine treatment reduced disturbances and falls in PaO(2) to some extent. Haemodynamic variables were closer to baseline during sedation and anaesthesia when horses received acepromazine. Acepromazine may confer advantages in healthy normovolaemic horses.  相似文献   

6.
ObjectiveTo evaluate and compare the antinociceptive effects of the three alpha-2 agonists, detomidine, romifidine and xylazine at doses considered equipotent for sedation, using the nociceptive withdrawal reflex (NWR) and temporal summation model in standing horses.Study designProspective, blinded, randomized cross-over study.AnimalsTen healthy adult horses weighing 527–645 kg and aged 11–21 years old.MethodsElectrical stimulation was applied to the digital nerves to evoke NWR and temporal summation in the left thoracic limb and pelvic limb of each horse. Electromyographic reflex activity was recorded from the common digital extensor and the cranial tibial muscles. After baseline measurements a single bolus dose of detomidine, 0.02 mg kg?1, romifidine 0.08 mg kg?1, or xylazine, 1 mg kg?1, was administered intravenously (IV). Determinations of NWR and temporal summation thresholds were repeated at 10, 20, 30, 40, 60, 70, 90, 100, 120 and 130 minutes after test-drug administration alternating the thoracic limb and the pelvic limb. Depth of sedation was assessed before measurements at each time point. Behavioural reaction was observed and recorded following each stimulation.ResultsThe administration of detomidine, romifidine and xylazine significantly increased the current intensities necessary to evoke NWR and temporal summation in thoracic limbs and pelvic limbs of all horses compared with baseline. Xylazine increased NWR thresholds over baseline values for 60 minutes, while detomidine and romifidine increased NWR thresholds over baseline for 100 and 120 minutes, respectively. Temporal summation thresholds were significantly increased for 40, 70 and 130 minutes after xylazine, detomidine and romifidine, respectively.Conclusions and clinical relevanceDetomidine, romifidine and xylazine, administered IV at doses considered equipotent for sedation, significantly increased NWR and temporal summation thresholds, used as a measure of antinociceptive activity. The extent of maximal increase of NWR and temporal summation thresholds was comparable, while the duration of action was drug-specific.  相似文献   

7.
OBJECTIVE: To investigate the action of a single IV administration of romifidine on the thresholds of the nociceptive withdrawal reflex (NWR) and temporal summation in conscious horses. ANIMALS: 10 adult horses. PROCEDURE: Single electrical stimulations were applied on the digital nerves to evoke NWR from the left forelimb and hind limb. Repeated electrical stimulations (10 stimuli, 5 Hz) were given to obtain temporal summation. Surface electromyographic reflex activity was recorded from the common digital extensor and cranial tibial muscles. After baseline assessment of NWR and temporal summation thresholds, romifidine (80 microg x kg(-1), IV) was administered. Successive determinations of NWR and temporal summation thresholds were performed 5, 25, and 55 minutes after administration. RESULTS: Romifidine significantly increased the current intensities necessary to evoke NWR and temporal summation in forelimbs and hind limbs of horses. Values were significantly higher than baseline values 55 minutes after romifidine administration. After administration of romifidine, a facilitation of reflex components of tactile origin was observed when repeated stimulations were applied. CONCLUSIONS AND CLINICAL RELEVANCE: Results confirm antinociceptive activity of romifidine and may represent an objective demonstration of the well-known hypersensitivity to tactile stimuli observed in horses receiving alpha2-adrenoreceptor agonists in clinical practice. Romifidine can be included in analgesic and anesthetic protocols to provide additional analgesia in horses.  相似文献   

8.
The sedative effects of a new alpha 2-adrenoceptor agonist, romifidine, were compared with those of xylazine and detomidine. Five horses were treated with two doses of romifidine (40 micrograms/kg body weight and 80 micrograms/kg body weight), two doses of detomidine (10 micrograms/kg body weight and 20 micrograms/kg body weight) and one dose of xylazine (1 mg/kg body weight) given by intravenous injection using a Latin-square design. The dose of 80 micrograms/kg romifidine appeared equipotent to 1 mg/kg xylazine and 20 micrograms/kg detomidine, although at these doses both xylazine and detomidine had a shorter action. Detomidine 20 micrograms/kg and xylazine both produced greater lowering of the head and a greater degree of ataxia than romifidine at either dose. Romifidine produced sedation similar to that of the other drug regimes. The effect upon imposed stimuli was similar.  相似文献   

9.
A technique of transrectal ultrasonography was developed to investigate the effects of romifidine 80 and 120 microg/kg bwt on intestinal motility in the horse. Motility of the small intestine, caecum and left ventral colon were assessed following injection of romifidine and a saline control, using a blinded, cross-over study design in 6 horses. Measurements were taken at 15, 30, 60, 120, 180 and 240 min after drug administration. There was a slight nonsignificant decrease in motility in the control group over the 4 h study period. Both doses of romifidine produced a marked decrease in gastrointestinal motility and were associated with the presence of reduced (nonpropulsive) contractions. Transrectal ultrasonography proved suitable for monitoring changes in the type and frequency of intestinal motility in the horse.  相似文献   

10.
OBJECTIVE: To compare sedative effects of romifidine following IV, IM, or sublingual (SL) administration in horses. ANIMALS: 30 horses that required sedation for routine tooth rasping. PROCEDURE: Horses (n = 10/group) were given romifidine (120 microg/kg) IV, IM, or SL. Heart rate, respiratory rate, head height, distance between the ear tips, thickness of the upper lip, response to auditory stimulation, response to tactile stimulation, and degree of ataxia were recorded every 15 minutes for 180 minutes. Tooth rasping was performed 60 minutes after administration of romifidine, and overall adequacy of sedation was assessed. RESULTS: IV and IM administration of romifidine induced significant sedation, but SL administration did not induce significant sedative effects. Scores for overall adequacy of sedation after IV and IM sedation were not significantly different from each other but were significantly different from scores for horses given romifidine SL. Sedative and other effects varied among groups during the first 60 minutes after drug administration; thereafter, effects of IV and IM administration were similar. CONCLUSIONS AND CLINICAL RELEVANCE: Onset of action was fastest and degree of sedation was greater after IV, compared with IM, administration of romifidine, but duration of action was longer after IM administration. Sublingual administration did not result in clinically important sedative effects.  相似文献   

11.
The cardiovascular effects of medetomidine, detomidine, and xylazine in horses were studied. Fifteen horses, whose right carotid arteries had previously been surgically raised to a subcutaneous position during general anesthesia were used. Five horses each were given the following 8 treatments: an intravenous injection of 4 doses of medetomidine (3, 5, 7.5, and 10 microg/kg), 3 doses of detomidine (10, 20, and 40 microg/kg), and one dose of xylazine (1 mg/kg). Heart rate decreased, but not statistically significant. Atrio-ventricular block was observed following all treatments and prolonged with detomidine. Cardiac index (CI) and stroke volume (SV) were decreased with all treatments. The CI decreased to about 50% of baseline values for 5 min after 7.5 and 10 microg/kg medetomidine and 1 mg/kg xylazine, for 20 min after 20 microg/kg detomidine, and for 50 min after 40 microg/kg detomidine. All treatments produced an initial hypertension within 2 min of drug administration followed by a significant decrease in arterial blood pressure (ABP) in horses administered 3 to 7.5 microg/kg medetomidine and 1 mg/kg xylazine. Hypertension was significantly prolonged in 20 and 40 microg/kg detomidine. The hypotensive phase was not observed in 10 microg/kg medetomidine or detomidine. The changes in ABP were associated with an increase in peripheral vascular resistance. Respiratory rate was decreased for 40 to 120 min in 5, 7.5, and 10 microg/kg medetomidine and detomidine. The partial pressure of arterial oxygen decreased significantly in 10 microg/kg medetomidine and detomidine, while the partial pressure of arterial carbon dioxide did not change significantly. Medetomidine induced dose-dependent cardiovascular depression similar to detomidine. The cardiovascular effects of medetomidine and xylazine were not as prolonged as that of detomidine. KEY WORDS: cardiovascular effect, detomidine, equine, medetomidine, xylazine.  相似文献   

12.
OBJECTIVE: To compare detomidine hydrochloride and romifidine as premedicants in horses undergoing elective surgery. ANIMALS: 100 client-owned horses. PROCEDURE: After administration of acepromazine (0.03 mg/kg, IV), 50 horses received detomidine hydrochloride (0.02 mg/kg of body weight, IV) and 50 received romifidine (0.1 mg/kg, IV) before induction and maintenance of anesthesia with ketamine hydrochloride (2 mg/kg) and halothane, respectively. Arterial blood pressure and blood gases, ECG, and heart and respiratory rates were recorded. Induction and recovery were timed and graded. RESULTS: Mean (+/- SD) duration of anesthesia for all horses was 104 +/- 28 minutes. Significant differences in induction and recovery times or grades were not detected between groups. Mean arterial blood pressure (MABP) decreased in both groups 30 minutes after induction, compared with values at 10 minutes. From 40 to 70 minutes after induction, MABP was significantly higher in detomidine-treated horses, compared with romifidine-treated horses, although more romifidine-treated horses received dobutamine infusions. In all horses, mean respiratory rate ranged from 9 to 11 breaths/min, PaO2 from 200 to 300 mm Hg, PaCO2 from 59 to 67 mm Hg, arterial pH from 7.33 to 7.29, and heart rate from 30 to 33 beats/min, with no significant differences between groups. CONCLUSIONS AND CLINICAL RELEVANCE: Detomidine and romifidine were both satisfactory premedicants. Romifidine led to more severe hypotension than detomidine, despite administration of dobutamine to more romifidine-treated horses. Both detomidine and romifidine are acceptable alpha2-adrenoceptor agonists for use as premedicants before general anesthesia in horses; however, detomidine may be preferable when maintenance of blood pressure is particularly important.  相似文献   

13.
OBJECTIVE: The aim of this study was to compare two different alpha2 agonist-opioid combinations in ponies undergoing field castration. STUDY DESIGN: Prospective double-blind randomized clinical trial. ANIMAL POPULATION: Fifty-four ponies undergoing field castration. MATERIALS AND METHODS: The ponies were randomly allocated to receive one of three different pre-anaesthetic medications [intravenous (IV) romifidine 100 microg kg(-1) and butorphanol 50 micro kg(-1); romifidine 100 microg kg(-1) and morphine 0.1 mg kg(-1) IV, or romifidine 100 microg kg(-1) and saline IV] before induction of anaesthesia with ketamine 2.2 mg kg(-1) IV. Further doses of romifidine (25 microg kg(-1)) and ketamine (0.5 mg kg(-1)) were given when required to maintain anaesthesia. Quality of sedation, induction of anaesthesia, maintenance of anaesthesia, recovery, and surgical condition were assessed using a visual analogue scale scoring system and compared. The effects of the different drug combinations on heart and respiratory rate were evaluated and the recovery time was recorded. RESULTS: Anaesthesia was considered adequate for surgery in all ponies. No anaesthetic complications were observed. Quality of sedation was significantly better in the butorphanol group compared with the control group (p = 0.0428). Overall quality of anaesthesia was better in the butorphanol group compared with morphine (p = 0.0157) and control (p < 0.05) groups. Quality of induction of anaesthesia and recovery were not significantly different between groups, nor were the surgical conditions, recovery time and the number of repeated anaesthetic doses required during the procedure. Muscle twitches were observed in both the control and morphine groups. Maintenance of anaesthesia was judged to be smoother in the butorphanol group compared with the morphine and control groups (p = 0.006). Heart rate decreased significantly (p < 0.01) in all groups after administration of sedatives but did not differ significantly between groups at any time point. CONCLUSION: The combination of butorphanol and romifidine was found to provide better sedation compared with the other drug combinations. CLINICAL RELEVANCE: The combination of butorphanol and romifidine provided better sedation, but morphine was found to be a suitable alternative to butorphanol. Use of morphine and butorphanol in combination with alpha2 agonists should be further investigated to assess their analgesic effects.  相似文献   

14.
This study was designed to compare the effects of three doses of romifidine (200, 400 and 600 microg/kg) with medetomidine (80 microg/kg) administered intramuscularly to five cats. The quality of sedation and the cardiovascular and respiratory effects of each treatment were evaluated, and the onset and duration of the sedation, and the cats' recovery times, were measured. Cardiorespiratory variables were also analysed. The dose of 200 microg/kg romifidine was clinically superior to the other doses of romifidine, providing moderate sedation, with minor cardiorespiratory and other adverse effects. However none of the doses of romifidine induced as deep and reliable sedation as the dose of medetomidine.  相似文献   

15.
The objective of this study was to determine the sedation, analgesia, and clinical reactions induced by an intravenous combination of romifidine and butorphanol in horses. The study was conducted on six saddle horses weighing 382 to 513 kg (mean ± SD; 449 ± 54 kg) and aged 6 to 14 years. The horses each underwent three treatments: intravenous romifidine 0.1 mg/kg body weight (RM; mean dose, 4.5 mL); intravenous butorphanol 0.05 mg/kg body weight (BT; mean dose, 2.4 mL); and intravenous romifidine 0.1 mg/kg body weight plus butorphanol 0.05 mg/kg body weight (RMBT; mean dose, 7.0 mL). The order of treatments was randomized. Heart rate, arterial pressure, respiratory rate, rectal temperature, sedation, and analgesia were measured at two times before treatments, 15 minutes apart (times –15 and 0) and at 5, 10, 15, 30, 45, 60, 75, 90, 120, 150, and 180 minutes after drug administration. The onset of sedation was approximately 5 minutes after intravenous injection of RM and RMBT, whereas BT did not present this effect. The duration of complete sedation was approximately 60 minutes for RMBT and approximately 35 minutes for RM. The RMBT treatment provided 30 minutes and the RM treatment 20 minutes of complete analgesia. Heart rate decreased significantly (P < .05) from basal values in the RM and RMBT treatments. Only RM caused significant decreases (P < .05) in the respiratory rate. Arterial pressure did not change significantly (P > .05) in any treatment. Intravenous administration of a romifidine−butorphanol combination to horses resulted in longer duration of sedation and analgesia than administration of romifidine or butorphanol alone. These effects probably resulted from a synergistic effect of the two drugs.  相似文献   

16.
The cardiovascular changes associated with anesthesia induced and maintained with romifidine/ketamine versus xylazine/ ketamine were compared using 6 horses in a cross over design. Anesthesia was induced and maintained with romifidine (100 microg/kg, IV)/ketamine (2.0 mg/kg, IV) and ketamine (0.1 mg/kg/min, IV), respectively, in horses assigned to the romifidine/ ketamine group. Horses assigned to the xylazine/ketamine group had anesthesia induced and maintained with xylazine (1.0 mg/kg, IV)/ketamine (2.0 mg/kg, IV) and a combination of xylazine (0.05 mg/kg/min, IV) and ketamine (0.1 mg/kg/min, IV), respectively. Cardiopulmonary variables were measured at intervals up to 40 min after induction. All horses showed effective sedation following intravenous romifidine or xylazine and achieved recumbency after ketamine administration. There were no significant differences between groups in heart rate, arterial oxygen partial pressures, arterial carbon dioxide partial pressures, cardiac index, stroke index, oxygen delivery, oxygen utilization, systemic vascular resistance, left ventricular work, or any of the measured systemic arterial blood pressures. Cardiac index and left ventricular work fell significantly from baseline while systemic vascular resistance increased from baseline in both groups. The oxygen utilization ratio was higher in the xylazine group at 5 and 15 min after induction. In conclusion, the combination of romifidine/ketamine results in similar cardiopulmonary alterations as a xylazine/ketamine regime, and is a suitable alternative for clinical anesthesia of the horse from a cardiopulmonary viewpoint.  相似文献   

17.
ObjectiveTo compare xylazine and romifidine constant rate infusion (CRI) protocols regarding degree of sedation, and effects on postural instability (PI), ataxia during motion (A) and reaction to different stimuli.Study designBlinded randomized experimental cross-over study.AnimalsTen adult horses.MethodsDegree of sedation was assessed by head height above ground (HHAG). Effects on PI, A and reaction to visual, tactile and acoustic stimulation were assessed by numerical rating scale (NRS) and by visual analogue scale (VAS). After baseline measurements, horses were sedated by intravenous loading doses of xylazine (1 mg kg?1) or romifidine (80 μg kg?1) administered over 3 minutes, immediately followed by a CRI of xylazine (0.69 mg kg?1 hour?1) or romifidine (30 μg kg?1 hour?1) which was administered for 120 minutes. Degree of sedation, PI, A and reaction to the different stimuli were measured at different time points before, during and for one hour after discontinuing drug administration. Data were analysed using two-way repeated measures anova, a Generalized Linear Model and a Wilcoxon Signed Rank Test (p < 0.05).ResultsSignificant changes over time were seen for all variables. With xylazine HHAG was significantly lower 10 minutes after the loading dose, and higher at 150 and 180 minutes (i.e. after CRI cessation) compared to romifidine. Reaction to acoustic stimulation was significantly more pronounced with xylazine. Reaction to visual stimulation was greater with xylazine at 145 and 175 minutes. PI was consistently but not significantly greater with xylazine during the first 30 minutes. Reaction to touch and A did not differ between treatments. Compared to romifidine, horses were more responsive to metallic noise with xylazine.ConclusionsTime to maximal sedation and to recovery were longer with romifidine than with xylazine.Clinical relevanceWith romifidine sufficient time should be allowed for complete sedation before manipulation.  相似文献   

18.
OBJECTIVE: To characterize the cardiovascular effects of romifidine at doses ranging from 5 to 100 microg/kg of body weight, IV. ANIMALS: 25 clinically normal male Beagles. PROCEDURE: Romifidine was administered IV at a dose of 5, 10, 25, 50, or 100 microg/kg (n = 5/group). Heart rate, arterial pressure, central venous pressure, mean pulmonary arterial pressure, pulmonary capillary wedge pressure, body temperature, cardiac output, and PCV were measured immediately prior to and at selected times after romifidine administration. Cardiac index, stroke index, rate-pressure product, systemic and pulmonary vascular resistance indices, and left and right ventricular stroke work indices were calculated. Degree of sedation was assessed by an observer who was blinded to the dose administered. RESULTS: Romifidine induced a decrease in heart rate, pulmonary arterial pressure, rate-pressure product, cardiac index, and right ventricular stroke work index and an increase in central venous pressure, pulmonary capillary wedge pressure, and systemic vascular resistance index. In dogs given romifidine at a dose of 25, 50, or 100 microg/kg, an initial increase followed by a prolonged decrease in arterial pressure was observed. Arterial pressure immediately decreased in dogs given romifidine at a dose of 5 or 10 microg/kg. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that IV administration of romifidine induces dose-dependent cardiovascular changes in dogs. However, the 2 lowest doses (5 and 10 microg/kg) induced less cardiovascular depression, and doses > or = 25 microg/kg induced similar cardiovascular changes, suggesting that there may be a ceiling on the cardiovascular effects of romifidine.  相似文献   

19.
The behavioural and sedative effects of intravenous (iv) romifidine (40 and 80 μg/kg bodyweight [bwt]) alone or in combination with iv butorphanol (50 μg/kg bwt) were investigated in four ponies and one Thoroughbred horse. Apparent sedation, as judged by the lowering of the head, and by the response to imposed touch, visual and sound stimuli was assessed. The combination with butorphanol reduced the animals' response to imposed stimuli when compared with the effect of the same dose of romifidine alone. Following the administration of romifidine/butorphanol combinations muzzle tremor was noted and some animals attempted to walk forward. In a separate series, the cardiopulmonary effects of iv romifidine (80 μg/kg bwt) alone, or in combination with butorphanol (50 μg/kg bwt) were investigated. Romifidine and the romifidine/butorphanol combination caused similar cardiovascular changes, these being bradycardia with heart block, and hypertension followed by hypotension. Romifidine caused a transient decrease in arterial oxygen tensions and arterial carbon dioxide tensions had increased significantly by the end of the 90 min recording period. Romifidine/butorphanol combinations produced significantly higher arterial carbon dioxide tensions during the first 15 mins after drug administration than did romifidine alone. Butorphanol at 50 μg/kg bwt iv reduced the response to imposed stimuli in horses sedated with romifidine. The combination produced no cardiovascular changes beyond those induced by romifidine alone, but did increase the degree of respiratory depression.  相似文献   

20.
The effects of prolonging romifidine/ketamine anaesthesia in horses with a second injection of ketamine alone or both romifidine/ketamine compared with only induction injection of romifidine and tiletamine/zolazepam were studied in 6 horses anaesthetised in lateral recumbency on 3 random occasions. All horses were sedated with romifidine 0.1 mg/kg bwt iv and, on 2 occasions, anaesthesia was induced by iv injection of ketamine 2.2 mg/kg bwt. To prolong the ketamine-induced anaesthesia, either ketamine (I.1 mg/kg bwt iv) or ketamine and romifidine (I.1 mg/kg bwt and 0.04 mg/kg bwt iv, respectively) were given 18–20 min after the start of the ketamine injection for induction. On the third occasion, anaesthesia was induced by iv injection of 1.4 mg/kg bwt Zoletil (0.7 mg/kg bwt tiletamhe + 0.7 mg/kg bwt zolazepam). No statistically significant differences in the measured cardiorespiratory function were found between the 3 groups. Heart rate was decreased significantly after sedation but increased during anaesthesia. Arterial blood pressure increased after sedation and remained high during anaesthesia. A significant decrease in arterial oxygen tension was observed in all groups during anaesthesia. The muscle relaxation induced by romifidine was, in most cases, not sufficient to abolish the catalepsy following a repeated injection of ketamine alone. Zoletil or a repeated injection of ketaminehornifidine resulted in smoother anaesthesia. When additional time is required to complete surgery during field anaesthesia, it is advisable to prolong romifidine/ketamine anaesthesia with an injection of both romifidine and ketamine in healthy horses. When a longer procedure is anticipated from the start Zoletil is an alternative for induction of anaesthesia. The mean time to response to noxious stimuli and mean time spent in lateral recumbency was 28 and 38 min for the anaesthesia prolonged with ketamine, 3.5 and 43 rnin for the anaesthesia prolonged with ketaminehornifidine and 33 and 45 min for the anaesthesia with Zoletil. All horses reached a standing position at the first attempt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号