首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Germination conditions are determined by hydraulic, thermal and mechanical properties of the soils. In heterogeneous fields, the most favourable seeding depth varies spatially. To investigate the influence of seeding depth on emergence and grain yield of corn, corn was planted in depths of 40, 50, 60, 70, 80 and 90 mm in three experimental years (2006–2008). The apparent soil electrical conductivity was measured with an EM38. The apparent electrical conductivity was used as a proxy for soil texture, top-soil thickness, effective root zone thickness, soil water content and soil structure. The spatial dependencies among emergence, yield and apparent electrical conductivity were considered by including spatial models into the statistical analysis. The results showed significant correlations of the apparent soil electrical conductivity, of the experimental year, and of the seeding depth with the emergence of corn. Deeper planted corn (80 or 90 mm) resulted in more emergence than shallow planted corn (+4.4% in 2006, +1.2% in 2007 and +1.5% in 2008). The emergence decreased with increasing apparent soil electrical conductivity values. The corn grain yield was significantly affected by the soil electrical conductivity, by emergence and by the experimental year. Increasing apparent soil electrical conductivity values were correlated with decreasing yield (from 7.5 to 3.4 Mg ha−1 in 2006, from 10.8 to 5.3 Mg ha−1 in 2007 and from 8.4 to 2.9 Mg ha−1 in 2008). Increasing emergence resulted in increasing yield.  相似文献   

2.

Grassland silage management is generally semi-organised with no conscious attempt to re-use wheel ways as with arable fields. The total number of machine passes can be 15 or more with normal traffic (NT) systems resulting in potentially large areas of a field suffering from direct damage to the crop and soil. Literature suggests there can be grass dry matter yield reductions of 5 to 74% under NT through compaction and sward damage, with a mean of 13% in the UK. Commercially available grass forage equipment with widths of 3 to 12 m set up for controlled traffic farming (CTF) could reduce trafficked areas (which is typically 90% to 80% for NT) to 40% to 13% for CTF. This study compared grass dry matter yield between CTF and NT for a three-cut silage system based on a 9 m working width in a permanent silage field in the southwest of Scotland, UK in 2015. Results showed a 13.5% (0.80 t ha?1) increase in yield for CTF for the 2nd and 3rd cuts combined. The CTF trafficked area covered was 57% less than the NT system (30.4% compared to 87.4%) over the three silage cuts. An economic analysis based on a 13% increase in dry matter yield (for 2- and 3-cut systems) and a reduction in trafficked area from 80% (for NT) to between 45% and 15% (for CTF), increased the yield by between 0.53 t ha?1 and 1.36 t ha?1 for 2- and 3-cut systems, respectively with an equivalent grass value of between £38 ha?1 and £98 ha?1. Introducing CTF for a multi-cut grass silage system is cost-effective by increasing yields due to a reduction in compaction and sward damage.

  相似文献   

3.
Several methods are described that could be used by a farm manager to define the spatial and temporal stability within a field from a series of yield maps. A quantitative analysis of soil phosphate concentration and pasture dry matter yield data over 4 years (2004–2007) were investigated to identify the spatial and temporal stability in a 6 ha pasture field. The data were combined into two maps that characterize the spatial and temporal variation recorded over the 4 years. The two maps were then combined to create a single map with five management classes, each with different characteristics that can have an impact on the way the field is managed. These categories are: high yielding and stable, high yielding and moderately stable, low yielding and stable, low yielding and moderately stable and unstable. The unstable class represents 83 and 93% of the total area with regard to soil phosphate concentration and pasture dry matter yield, respectively. Results from this study show that the significant temporal stability found cancels out over time, leaving a relatively homogenous map of spatial variation. The implication of the findings is that each pasture field should be managed according to the current year’s conditions. These results also justify a further study that evaluates the soil phosphorous dynamics under Mediterranean conditions.  相似文献   

4.
Farmers account for yield and soil variability to optimize their production under mainly economic considerations using the technology of precision farming. Therefore, understanding of the spatial variation of crop yield and crop yield development within arable fields is important for spatially variable management. Our aim was to classify landform units based on a digital elevation model, and to identify their impact on biomass development. Yield components were measured by harvesting spring barley (Hordeum vulgare, L.) in 1999, and winter rye (Secale cereale, L.) in 2000 and 2001, respectively, at 192 sampling points in a field in Saxony, Germany. The field was stratified into four landform units, i.e., shoulder, backslope, footslope and level. At each landform unit, a characteristic yield development could be observed. Spring barley grain yields were highest at the level positions with 6.7 t ha−1 and approximately 0.15 t ha−1 below that at shoulder and footslope positions in 1999. In 2000, winter rye harvest exhibited a reduction at backslope positions of around 0.2 t ha−1 as compared to the highest yield obtained again at level positions with 11.1 t ha−1. The distribution of winter rye grain yield across the different landforms was completely different in 2001 from that observed in 2000. Winter rye showed the highest yields at shoulder positions with 11.1 t ha−1, followed by the level position with 0.5 t ha−1 less grain yield. Different developments throughout the years were assumed to be due to soil water and meteorological conditions, as well as management history. Generally, crop yield differences of up to 0.7 t ha−1 were found between landform elements with appropriate consideration of the respective seasonal weather conditions. Landform analysis proved to be helpful in explaining variation in grain yield within the field between different years.  相似文献   

5.
Breure  T. S.  Haefele  S. M.  Hannam  J. A.  Corstanje  R.  Webster  R.  Moreno-Rojas  S.  Milne  A. E. 《Precision Agriculture》2022,23(4):1333-1353

Modern sensor technologies can provide detailed information about soil variation which allows for more precise application of fertiliser to minimise environmental harm imposed by agriculture. However, growers should lose neither income nor yield from associated uncertainties of predicted nutrient concentrations and thus one must acknowledge and account for uncertainties. A framework is presented that accounts for the uncertainty and determines the cost–benefit of data on available phosphorus (P) and potassium (K) in the soil determined from sensors. For four fields, the uncertainty associated with variation in soil P and K predicted from sensors was determined. Using published fertiliser dose–yield response curves for a horticultural crop the effect of estimation errors from sensor data on expected financial losses was quantified. The expected losses from optimal precise application were compared with the losses expected from uniform fertiliser application (equivalent to little or no knowledge on soil variation). The asymmetry of the loss function meant that underestimation of P and K generally led to greater losses than the losses from overestimation. This study shows that substantial financial gains can be obtained from sensor-based precise application of P and K fertiliser, with savings of up to £121 ha?1 for P and up to £81 ha?1 for K, with concurrent environmental benefits due to a reduction of 4–17 kg ha?1 applied P fertiliser when compared with uniform application.

  相似文献   

6.
The objectives of this study were to evaluate the performance of the cropping system model (CSM)-CERES-Rice to simulate growth and development of an aromatic rice variety under irrigated conditions in a semiarid environment of Pakistan and to determine the impact of various plant densities and nitrogen (N) application rates on grain yield and economic return. The crop simulation model was evaluated with experimental data collected in experiments that were conducted in 2000 and 2001 in Faisalabad, Punjab, Pakistan. The experimental design was a randomized complete block design with three replications and included three plant densities (one seedling hill−1, PD1; two seedlings hill−1, PD2; and three seedlings hill−1, PD3) and five N fertilizer regimes (control, N0; 50 kg ha−1, N50; 100 kg ha−1, N100; 150 kg ha−1, N150; and 200 kg ha−1, N200). To determine the most appropriate combination of plant density and N levels, four plant densities from one seedling hill−1 to four seedlings hill−1 and 13 N levels ranging from 0 to 300 kg N ha−1 (52 scenarios) were simulated for 35 years of historical daily weather data under irrigated conditions. The evaluation of CSM-CERES-Rice showed that the model was able to simulate growth and yield of irrigated rice in the semiarid conditions, with an average error of 11% between simulated and observed grain yield. The results of the stimulation analysis result showed that two seedlings hill−1 along with 200 kg N ha−1 (PD2N200) produced the highest yield as compared to all other scenarios. Furthermore, the economic analysis through the mean gini dominance also showed the dominance of this treatment (PD2N200) compared to the other treatment combinations. Thus, the management scenario that consisted of two seedlings hill−1 and 200 kg N ha−1 was the best for high yield and monitory return of irrigated rice in the semiarid environment. The mean monetary returns ranged from 291 US $ ha−1 to 1 460 US $ ha−1 to 1 460 US  ha−1 among the 52 production options that were simulated. This approaching was demonstrated as effective way to optimize the density and N management for high yield and monetary return. It will help the rice production.  相似文献   

7.
Meeting the demand for more food in the next 20–30 years requires intensifying cereal cropping systems and increasing current yields to about 70–80% of the genetic yield potential. A dynamic and robust nutrient management approach such as site-specific nutrient management (SSNM) will be essential to increase yields and optimize profits while maintaining the productivity of these intensive cropping systems. SSNM has increased yield and profit in rice, maize, and wheat in major cropping systems in Asia; but, crop advisors have found it complex and difficult to implement in the field. Nutrient Expert (NE) was developed to provide crop advisors with a simpler and faster way to use SSNM. NE enables crop advisors to develop SSNM recommendations using existing site information. Nutrient Expert for Hybrid Maize (NEHM) increased yield and profit of farmers in Indonesia and the Philippines. In Indonesia, NEHM increased yield by 0.9 t ha−1, which increased profit by US$ 270 ha−1 over farmer’s fertilizer practice (FFP). Compared with FFP, NEHM recommendations reduced fertilizer P (−4 kg ha−1), increased fertilizer K (+11 kg ha−1), and did not significantly change fertilizer N. In the Philippines, NEHM increased yield by 1.6 t ha−1 and profit by US$ 379 ha−1 compared with FFP. Compared with FFP, NEHM gave higher rates of all three nutrients (+25 kg N ha−1, +4 kg P ha−1, and +11 kg K ha−1), which substantially increased fertilizer costs (US$ 64 ha−1) but still increased profit by about six times the additional investment in fertilizer. NE accounts for the important factors affecting site-specific recommendations, which makes it a suitable starting point for developing nutrient management tools to reach more users.  相似文献   

8.
Proximal sensing, or obtaining information from close range, is a potentially useful tool for measuring the crop nitrogen status in real-time The objective of this study was to use proximal sensing of crop canopy spectral reflectance to evaluate variable-rate application of nitrogen in terms of its effect on yield and grain quality of winter wheat (Triticum aestivum L.). The sensor used was the Hydro-Precise N-Sensor System. Yield and grain quality maps were used as a basis for full-scale field trials with winter wheat growing under four nitrogen application treatments: a large (274 kg ha?1), recommended (167 kg ha?1) and two sensor-assisted (167 kg ha?1) rates. The recommended rate of 167 kg N ha?1 was given in a three-split application that meets the present Danish regulations to reduce nitrogen leaching. These require arable farmers to decrease nitrogen fertilizer application to 90% of the economically optimal level. Each farm’s baseline is calculated to take into account land quality, land allocated to each crop, and crop rotation. In the two sensor-assisted applications the Hydro-Precise N-Sensor System directs the last two of the three-split N application. Grain samples were collected directly from the grain flow of a combine harvester and analysed for protein, water and starch content. Grain data were related to and compared with combine yield meter registrations. Within the field, the variances of protein yield (698–1208 kg ha?1) and grain protein (9.5–13.4%) were large. The nitrogen application treatments affected the average protein content (10.5–12.3%) and grain yield (9.87–10.42 t ha?1) strongly. The grain starch content was largest in the uniform and sensor applied systems and smallest in the high nitrogen application treatment. Applying nitrogen according to the Hydro-Precise N-Sensor System did not increase grain yield or the protein and starch contents. Minor differences only were observed in both protein content and yield between uniform-rate N application and sensor-based variable-rate N application.  相似文献   

9.
Spatial and temporal variability of soil nitrogen (N) supply together with temporal variability of plant N demand make conventional N management difficult. This study was conducted to determine the impact of residual soil nitrate-N (NO3-N) on ground-based remote sensing management of in-season N fertilizer applications for commercial center-pivot irrigated corn (Zea mays L.) in northeast Colorado. Wedge-shaped areas were established to facilitate fertigation with the center pivot in two areas of the field that had significantly different amounts of residual soil NO3-N in the soil profile. One in-season fertigation (48 kg N ha−1) was required in the Bijou loamy sand soil with high residual NO3-N versus three in-season fertigations totaling 102 kg N ha−1 in the Valentine fine sand soil with low residual NO3-N. The farmer applied five fertigations to the field between the wedges for a total in-season N application of 214 kg N ha−1. Nitrogen input was reduced by 78% and 52%, respectively, in these two areas compared to the farmer’s traditional practice without any reductions in corn yield. The ground-based remote sensing management of in-season applied N increased N use efficiency and significantly reduced residual soil NO3-N (0–1.5 m depth) in the loamy sand soil area. Applying fertilizer N as needed by the crop and where needed in a field may reduce N inputs compared to traditional farmer accepted practices and improve in-season N management.  相似文献   

10.
In 2010, Chinese maize yields increased from 961.5 kg ha?1 in 1949 to 5 453.8 kg ha?1. This increase is the result of genetic improvements, an increase in nitrogen application, and refinement of planting densities. The objective of this study was to provide a theoretical basis for maize production research by analyzing the maize yield gain characteristics. Six varieties of maize were selected for the study; each selection is representative of a typical or commonly used maize variety from a specific decade, beginning from the 1950s and continuing through each decade into the 2000s. The selections and their corresponding decade were as follows: Baihe, 1950s; Jidan 101, 1960s; Zhongdan 2, 1970s; Yedan 13, 1980s; Zhengdan 958, 1990s; and Xianyu 335, 2000s. Each variety was planted under four different densities (37 500, 52 500, 67 500, and 82 500 plants ha?1) and four different nitrogen applications (0, 150, 225, and 300 kg ha?1) to study the effects on yield gain characteristics. The obtained results demonstrated that there was a maize yield increase of 123.19% between the 1950s variety and the 2000s variety. Modern Chinese maize varieties had a higher yield advantage. They also displayed the additional potential to acquire higher yield under increased planting densities and nitrogen applications. At the present cultivation levels (planting at 67 500 plants ha?1 with 225 kg ha?1 nitrogen application), the contribution types and corresponding yield increase percentages were as follows: genetic improvement, 45.37%; agronomic-management improvement, 30.94%; and genotype× agronomic-management interaction, 23.69%. At high-yielding cultivation levels (planting at 82 500 plants ha?1 with 300 kg ha?1 nitrogen application), the contribution types and corresponding yield increase percentages were as follows: genetic improvement, 31.30%; agronomic-management improvement, 36.23%; and genotype × agronomic-management interaction, 32.47%. The contribution of agronomic-management and genotype × agronomic-management interaction to yield increase would be larger with the corresponding management improvement. To further increase maize grain yield in China, researchers should further examine the effects of agronomic-management on maize yield and the adaptation of variety to agronomic-management.  相似文献   

11.
Improving radiation use efficiency(RUE) of the canopy is necessary to increase wheat(Triticum aestivum) production. Tridimensional uniform sowing(U) technology has previously been used to construct a uniformly distributed population structure that increases RUE. In this study, we used tridimensional uniform sowing to create a wheat canopy within which light was spread evenly to increase RUE. This study was done during 2014–2016 in the Shunyi District, Beijing, China. The soil type was sandy loam. Wheat was grown in two sowing patterns:(1) tridimensional uniform sowing(U);(2) conventional drilling(D). Four planting densities were used: 1.8, 2.7, 3.6, and 4.5 million plants ha–1. Several indices were measured to compare the wheat canopies: photosynthetic active radiation intercepted by the canopy(IPAR), leaf area index(LAI), leaf mass per unit area(LMA), canopy extinction coefficient(K), and RUE. In two sowing patterns, the K values decreased with increasing planting density, but the K values of U were lower than that of D. LMA and IPAR were higher for U than for D, whereas LAI was nearly the same for both sowing patterns. IPAR and LAI increased with increasing density under the same sowing pattern. However, the difference in IPAR and LAI between the 3.6 and 4.5 million plants ha–1 treatments was not significant for both sowing patterns. Therefore, LAI within the same planting density was not affected by sowing pattern. RUE was the largest for the U mode with a planting density of 3.6 million plants ha–1 treatment. For the D sowing pattern, the lowest planting density(1.8 million plants ha–1) resulted in the highest yield. Light radiation interception was minimal for the D mode with a planting density of 1.8 million plants ha–1 treatment, but the highest RUE and highest yield were observed under this condition. For the U sowing pattern, IPAR increased with increasing planting density, but yield and RUE were the highest with a planting density of 3.6 million plants ha–1. These results indicated that the optimal planting density for improving the canopy light environment differed between the sowing patterns. The effect of sowing pattern×planting density interaction on grain yield, yield components, RUE, IPAR, and LMA was significant(P0.05). Correlation analysis indicated that there is a positive significant correlation between grain yield and RUE(r=0.880, P0.01), LMA(r=0.613, P0.05), and spike number(r=0.624, P0.05). These results demonstrated that the tridimensional uniform sowing technique, particularly at a planting density of 3.6 million plants ha–1, can effectively increase light interception and utilization and unit leaf area. This leads to the production of more photosynthetic products that in turn lead to significantly increased spike number(P0.05), kernel number, grain weight, and an overall increase in yield.  相似文献   

12.
Precise management of nitrogen (N) using canopy color in aerial imagery of corn (Zea mays L.) has been proposed as a strategy on which to base the rate of N fertilizer. The objective of this study was to evaluate the relationship between canopy color and yield response to N at the field scale. Six N response trials were conducted in 2000 and 2001 in fields with alluvial, claypan and deep loess soil types. Aerial images were taken with a 35-mm slide film from ≥1100 m at the mid- and late-vegetative corn growth stages and processed to extract green and red digital values. Color values of the control N (0 kg N ha−1) and sufficient N (280 kg N ha−1 applied at planting) treatments were used to calculate the relative ratio of unfertilized to fertilized and relative difference color values. Other N fertilizer treatments included side-dressed applications in increments of 56 kg N ha−1. The economic optimal N rate was weakly related (R 2 ≤ 0.34) or not related to the color indices at both growth stages. For many sites, delta yield (the increase in yield between control N and sufficient N treatments) was related to the color indices (R 2 ≤ 0.67) at the late vegetative growth stage; the best relationship was with green relative difference. The results indicate the potential for color indices from aerial photographs to be used for predicting delta yield from which a site-specific N rate could be determined.  相似文献   

13.
基础地力对黄壤区粮油高产、稳产和可持续生产的影响   总被引:11,自引:2,他引:9  
【目的】黄壤是中国重要的地带性土壤,黄壤区粮油作物的高产、稳产和可持续生产对于地区粮食安全和经济民生至关重要。研究黄壤区主要粮油作物基础地力特征,评价地力对粮油作物高产、稳产和可持续生产的影响,为黄壤耕地地力保育和区域作物绿色生产提供依据。【方法】依托于2006—2013年测土配方施肥项目在黄壤区开展的3 515个田间试验(马铃薯434个、油菜525个、玉米1 318个、水稻1 238个),调查每个试验点无肥对照(CK)和氮磷钾肥(N2P2K2)处理作物产量;基于作物估计方法,分析了粮油基础地力产量和地力贡献率特征;采用直线拟合和边界线分析评价了基础地力对作物施肥产量及产量差的影响;采用稳定性指数和可持续性指数评估了基础地力对产量稳定性和可持续性的影响。【结果】黄壤区马铃薯、油菜、玉米和水稻平均基础地力产量分别为10.8、1.13、4.57和5.73 Mg·hm~(-2),平均地力贡献率分别为50.8%、49.0%、59.0%和70.8%;基础地力产量越高,地力对作物施肥产量的贡献率越大。作物施肥产量与基础地力产量显著正相关,马铃薯、油菜、玉米和水稻施肥产量与基础地力产量的直线拟合方程决定系数分别为0.476、0.284、0.382和0.366(P0.001)。边界线分析结果表明,马铃薯、油菜、玉米和水稻4种作物的施肥产量潜力分别为42.8、4.07、11.8和12.4 Mg·hm~(-2);随着基础地力的提升,作物施肥产量差降低,产量的稳定性和可持续性增加。【结论】提升基础地力能够提升作物施肥产量,降低产量差,有利于黄壤区粮油作物的高产、稳产和可持续生产。  相似文献   

14.
Spring barley was grown for 4 years (2001–2004) in field trials at two sites on morainic soil in central SE Norway, with five N level treatments: 0, 60, 90, 120 and 150 kg N ha-1. Regression analyses showed that a selection of soil properties could explain 95–98% of the spatial yield variation and 47–90% of the yield responses (averaged over years). A strategy with uniform fertilizer application of 120 kg N ha−1 (U N120) was compared with two variable-rate (VR) strategies, with a maximum N rate of either 150 kg N ha−1 (VRN150) or 180 kg N ha−1 (VRN180). These strategies were tested using either Norwegian prices (low price ratio of N fertilizer to yield value; PN/PY), or Swedish prices (high PN/PY). The VRN180 strategy had the highest potential yield and net revenue (yield value minus N cost) at both sites and under both price regimes. Using this strategy with Norwegian prices would increase the profit of barley cropping as long as at least 40 and 31% of the estimated potential increase in net revenue was realized, respectively. Using Swedish prices, uniform application appeared to be as good as or even better economically than the VR methods, when correcting for extra costs of VR application. The environmental effect of VR compared with uniform application, expressed as N not accounted for, showed contrasting effects when using Norwegian prices, but was clearly favourable using Swedish prices, with up to 20% reduction in the amount of N not accounted for.  相似文献   

15.
In semi-arid regions, soil water and nitrogen (N) are generally limiting factors for corn (Zea mays L.) production; hence, implementation of appropriate N fertilization strategies is needed. The use of precision agriculture practices based on specific site and crop properties may contribute to a better allocation of fertilizer among management zones (MZ). The aim of this study was to develop a model for diagnosis of N availability and recommendation of N fertilizer rates adjusted to MZ for dryland corn crops growing in Haplustolls. The model considered variability between MZ by including site-specific variables [soil available water content at sowing (SAW) and Available Nitrogen (soil available N-NO3 at planting + applied N, Nd)] using spatial statistical analysis. The study was conducted in Córdoba, Argentina in Haplustolls and consisted in four field trials of N fertilizer (range 0–161 kg N ha−1) in each MZ. The MZ were selected based on elevation maps analysis. Grain yields varied between MZ and increased with larger SAW and Nd at sowing. Grain responses to Nd and SAW in any MZ were not different between sites, allowing to fit a regional model whose parameters (Nd, Nd2, SAW, SAW2) contributed significantly (p < 0.001) to yield prediction. Agronomical and economically optimum N rates varied among MZs. However, the spatial variability of optimum N rates among MZs within sites was not enough to recommend variable N fertilizer rates instead of a uniform rate. Variable N fertilizer rates should be recommended only if variability in SAW and soil N among MZ is greater than that found in this work.  相似文献   

16.
Nitrogen (N) fertilizer application can lead to increased crop yields but its use efficiency remains generally low which can cause environmental problems related to nitrate leaching as well as nitrous oxide emissions to the atmosphere. The objectives of this study were to: (i) to demonstrate that properly identified variable rates of N fertilizer lead to higher use efficiency and (ii) to evaluate the capability of high spectral resolution satellite to detect within-field crop N response using vegetation indices. This study evaluated three N fertilizer rates (30, 70, and 90 kg N ha?1) and their response on durum wheat yield across the field. Fertilizer rates were identified through the adoption of the SALUS crop model, in addition to a spatial and temporal analysis of observed wheat grain yield maps. Hand-held and high spectral resolution satellite remote sensing data were collected before and after a spring side dress fertilizer application with FieldSpec, HandHeld Pro® and RapidEye?, respectively. Twenty-four vegetation indices were compared to evaluate yield performance. Stable zones within the field were defined by analyzing the spatial stability of crop yield of the previous 5 years (Basso et al. in Eur J Agron 51: 5, 2013). The canopy chlorophyll content index (CCCI) discriminated crop N response with an overall accuracy of 71 %, which allowed assessment of the efficiency of the second N application in a spatial context across each management zone. The CCCI derived from remotely sensed images acquired before and after N fertilization proved useful in understanding the spatial response of crops to N fertilization. Spectral data collected with a handheld radiometer on 100 grid points were used to validate spectral data from remote sensing images in the same locations and to verify the efficacy of the correction algorithms of the raw data. This procedure was presented to demonstrate the accuracy of the satellite data when compared to the handheld data. Variable rate N increased nitrogen use efficiency with differences that can have significant implication to the N2O emissions, nitrate leaching, and farmer’s profit.  相似文献   

17.
Blasch  Gerald  Li  Zhenhai  Taylor  James A. 《Precision Agriculture》2020,21(6):1263-1290

Easy-to-use tools using modern data analysis techniques are needed to handle spatio-temporal agri-data. This research proposes a novel pattern recognition-based method, Multi-temporal Yield Pattern Analysis (MYPA), to reveal long-term (>?10 years) spatio-temporal variations in multi-temporal yield data. The specific objectives are: i) synthesis of information within multiple yield maps into a single understandable and interpretable layer that is indicative of the variability and stability in yield over a 10?+?years period, and ii) evaluation of the hypothesis that the MYPA enhances multi-temporal yield interpretation compared to commonly-used statistical approaches. The MYPA method automatically identifies potential erroneous yield maps; detects yield patterns using principal component analysis; evaluates temporal yield pattern stability using a per-pixel analysis; and generates productivity-stability units based on k-means clustering and zonal statistics. The MYPA method was applied to two commercial cereal fields in Australian dryland systems and two commercial fields in a UK cool-climate system. To evaluate the MYPA, its output was compared to results from a classic, statistical yield analysis on the same data sets. The MYPA explained more of the variance in the yield data and generated larger and more coherent yield zones that are more amenable to site-specific management. Detected yield patterns were associated with varying production conditions, such as soil properties, precipitation patterns and management decisions. The MYPA was demonstrated as a robust approach that can be encoded into an easy-to-use tool to produce information layers from a time-series of yield data to support management.

  相似文献   

18.
Using plant sensing to determine the amount of nitrogen (N) to apply has the potential to increase profits in wheat (Triticum aestivum) production by reducing N cost or by increasing grain yield. The objective of this paper was to determine if yields and profits from experimental trials that used a precision N applicator to apply N were significantly different from trials that applied pre-determined amounts of N. Across Oklahoma, USA, experiments were designed to test 10 N treatments that included two variable rate treatments (VRT), two uniform rate treatments (URT) where the level of N applied was based on optical reflectance measurements (ORM), and six conventional treatments (i.e., pre-determined uniform rates of N). Data included treatments during 2005–2009 from eight different locations. Results indicated no statistical difference in yields between the conventional treatments that apply 90 kg ha−1 of N and the VRT and URT treatments. On average, the conventional treatment that applied 90 kg ha−1 of top-dress N produced the largest yield, with a VRT treatment producing the third largest yield. Profits were calculated for each treatment using a partial budget. On average, the treatment that received 90 kg ha−1 of top-dress N was the most profitable even though the pre-plant N (anhydrous ammonia) had a cost advantage relative to top-dress N (urea and ammonium nitrate).  相似文献   

19.
The objective of this study was to assess soil tillage methods by years interaction for dry matter of plant yield of maize(Zea mays L.) grown in West Poland by the additive main effects and multiplicative interaction model. The study comprised four soil tillage methods, analysed in 12 years through field trials arranged in a randomized complete block design, with four replicates. Dry matter of plant yield of the tested soil tillage methods varied from 86.7 dt ha~(–1)(for no-plough tillage in 2005) to 246.4 dt ha~(–1)(for complete conventional tillage in 2012), with an average of 146.6 dt ha~(–1). In the variance analysis, 49.07% of the total dry matter of plant yield variation was explained by years, 12.69% by differences between soil tillage methods, and 10.53% by soil tillage methods by years interaction. Dry matter of plant yield is highly influenced by soil tillage methods by years factors.  相似文献   

20.
Apple occupies a dominant position in fruit production globally, and has become the main income source of local smallholder farmers in Luochuan County in the Loess Plateau area, one of the largest apple production areas in China. However, the annual productivity of apple orchards in this region remains low and has gradually declined over the years. The distinction and correlation of production constraints can contribute to the promotion of apple orchard productivity and the development of a sustainable orchard system. In the present study, survey data from 71 smallholder farmers were analyzed using a yield gap model to distinguish the production constraints and determine their correlation with the yield gap based on the structural equation model(SEM). The results indicated that the average apple yield in Luochuan County was 29.9 t ha~(–1) yr~(–1), while the attainable yield(Y_(att); the highest yield obtained from the on-farm surveys) was 58.1 t ha~(–1) yr~(–1). The average explained and unexplainable yield gaps were 26.3 and 1.87 t ha~(–1) yr~(–1). According to the boundary line analysis, crop load,number of sprayings and base fertilizer N were the top three constraints on apple production in 9.8, 7.8 and 7.8% of the plots, respectively. Among the production constraints, crop load and fruit weight affected apple yield through direct pathways,whereas other constraints influenced apple yield through an indirect pathway based on the SEM, explaining 51% of the yield variance by all the main production constraints. These results can improve the current understanding of production constraints and contribute to the development of management strategies and policies for improving apple yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号