首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Flunixin meglumine (FM, 1.1 mg/kg) and phenylbutazone (PBZ, 4.4 mg/kg) were administered intravenously (i.v.) as a single dose to eight sheep prepared with subcutaneous (s.c.) tissue-cages in which an acute inflammatory reaction was stimulated with carrageenan. Pharmacokinetics of FM, PBZ and its active metabolite oxyphenbutazone (OPBZ) in plasma, exudate and transudate were investigated. Plasma kinetics showed that FM had an elimination half-life (t½β) of 2.48 ± 0.12 h and an area under the concentration – time curve (AUC) of 30.61 ± 3.41 μg/mL.h. Elimination of PBZ from plasma was slow (t½β = 17.92 ± 1.74 h, AUC = 968.04 ± μg/mL.h.). Both FM and PBZ distributed well into exudate and transudate although penetration was slow, indicated by maximal drug concentration (Cmax) for FM of 1.82 ± 0.22 μg/mL at 5.50 ± 0.73 h (exudate) and 1.58 ± 0.30 μg/mL at 8.00 h (transudate), and Cmax for PBZ of 22.32 ± 1.29 μg/mL at 9.50 ± 0.73 h (exudate) and 22.07 ± 1.57 μg/mL at 11.50 ± 1.92 h (transudate), and a high mean tissue-cage fluids:plasma AUClast ratio obtained in the FM and PBZ groups (80–98%). These values are higher than previous reports in horses and calves using the same or higher dose rates. Elimination of FM and PBZ from exudate and transudate was slower than from plasma. Consequently the drug concentrations in plasma were initially higher and subsequently lower than in exudate and transudate.  相似文献   

2.
The non-steroidal anti-inflammatory drug (NSAID) carprofen (CPF) contains single chiral centre. It was administered orally to Beagle dogs as a racemate (rac-CPF) at a dose of 4 mg per kg body weight and as individual (-)(R) and (+)(S) enantiomers at 2 mg per kg body weight. Each of the enantiomers achieved similar plasma bioavailability following administration as the race-mate as they did following their separate administration. Only the administered enantiomers were detectable when the drug was given in the (-)(R) or (+) (S) form, indicating that chiral inversion did not occur in either direction. Higher plasma concentrations of the (-)(R) (Cmax 18 μg/ml, AUC0–24 118 μg h/ml) than the (+)(S) (Cmax 14 μg/ml, AUC0–24 67 μg h/ml) enantiomer were achieved following administration of the racemate. Both enantiomers distributed into peripheral subcutaneous tissue cage fluids, but Cmax and AUC values were lower for both transudate (non-stimulated tissue cage fluid) and exudate (induced by the intracaveal administration of the irritant carrageenan) than for plasma. Drug concentrations in transudate and exudate were similar, as indicated by Cmax and AUC values, although CPF penetrated more rapidly into exudate than into transudate. Neither rac-CPF nor either enantiomer inhibited thromboxane B2 (T × B2) generation by platelets in clotting blood (serum T × B2, or prostaglandin E2, (PGE,) and 12-hydroxyeicosatetraenoic acid (1 2-HETE) synthesis in inflammatory exudate. Since other studies have shown that rac-CPF at the 4 mg/kg dose rate possesses analgesic and anti-inflammatory effects in the dog, it is concluded that the principal mode of action of the drug must be by mechanisms other than cyclooxygenase or 12-lipoxygenase inhibition.  相似文献   

3.
Phenylbutazone (PBZ) was administered to six calves intravenously (i.v.) and orally at a dose rate of 4.4 mg/kg in a three-period cross-over study incorporating a placebo treatment to establish its pharmacokinetic and pharmacodynamic properties. Extravascular distribution was determined by measuring penetration into tissue chamber fluid in the absence of stimulation (transudate) and after stimulation of chamber tissue with the mild irritant carrageenan (exudate). PBZ pharmacokinetics after i.v. dosage was characterized by slow clearance (1.29 mL/kg/h), long-terminal half-life (53.4 h), low distribution volume (0.09 L/kg) and low concentrations in plasma of the metabolite oxyphenbutazone (OPBZ), confirming previously published data for adult cattle. After oral dosage bioavailability (F) was 66%. Passage into exudate was slow and limited, and penetration into transudate was even slower and more limited; area under curve values for plasma, exudate and transudate after i.v. dosage were 3604, 1117 and 766 microg h/mL and corresponding values after oral dosage were 2435, 647 and 486 microg h/mL. These concentrations were approximately 15-20 (plasma) and nine (exudate) times greater than those previously reported in horses (receiving the same dose rate of PBZ). In the horse, the lower concentrations had produced marked inhibition of eicosanoid synthesis and suppressed the inflammatory response. The higher concentrations in calves were insufficient to inhibit significantly exudate prostaglandin E2 (PGE2), leukotriene B4 (LTB4) and beta-glucuronidase concentrations and exudate leucocyte numbers, serum thromboxane B2 (TxB2), and bradykinin-induced skin swelling. These differences from the horse might be the result of: (a) the presence in equine biological fluids of higher concentrations than in calves of the active PBZ metabolite, OPBZ; (b) a greater degree of binding of PBZ to plasma protein in calves; (c) species differences in the sensitivity to PBZ of the cyclo-oxygenase (COX) isoenzymes, COX-1 and COX-2 or; (d) a combination of these factors. To achieve clinical efficacy with single doses of PBZ in calves, higher dosages than 4.4 mg/kg will be probably required.  相似文献   

4.
Reasons for performing study: Tetracycline compounds have been used to slow the progression of osteoarthritis (OA) and rheumatoid arthritis but the concentration of doxycycline attained in synovial fluid following oral, low‐dose administration has yet to be determined. Objective: To determine the concentration of doxycycline in synovial fluid following oral, low‐dose administration. Methods: Six mature horses received doxycycline (5 mg/kg bwt q. 12 h for 5 doses). Venous blood and synovial fluid samples were collected at t = 0, 0.25, 0.5, 1, 12, 24, 48 and 72 h. Doxycycline concentrations were measured using reverse phase high pressure liquid chromatography with ultraviolet detection. Results: Doxycycline concentrations at all time points after t = 0 were above the lower limit of quantification for the assay. Plasma concentrations of doxycycline were above 0.21 µg/ml at t = 0.5 h. The mean ± s.d. peak concentration (Cmax) of doxycycline in plasma was 0.37 ± 0.22 µg/ml and time to peak concentration was 0.54 ± 0.19 h. Synovial fluid concentrations of doxycycline were above 0.12 µg/ml 1 h after drug administration. The mean Cmax of doxycycline in the synovial fluid was 0.27 ± 0.10 µg/ml. The penetration factor of doxycycline from plasma into synovial fluid, as determined by a ratio of the area‐under‐the‐curve for synovial fluid:plasma during the sampling period, was 4.6. Potential relevance: Orally administered doxycycline distributes easily into synovial fluid with a penetration factor of 4.6. Terminal half‐life of the drug in synovial fluid was longer than in the plasma, indicating possible accumulation in this compartment. Further in vivo studies are warranted to define a medication protocol prior to routine clinical use of doxycycline for the treatment of OA.  相似文献   

5.
A survey of plasma and urinary concentrations of phenylbutazone and its metabolites in thoroughbred horses racing in Kentucky was carried out. Post-race blood samples from more than 200 horses running at Latonia Racetrack and Keeneland in the Spring of 1983 were analysed. The modal plasma concentration of phenylbutazone was between 1 and 2 micrograms/ml, the mean concentration was 3.5 micrograms/ml and the range was up to 15 micrograms/ml. Oxyphenbutazone had a modal plasma concentration between 1 and 2 micrograms/ml, a mean concentration of 2.07 micrograms/ml and a range of up to 13 micrograms/ml. gamma OH-phenylbutazone had a modal plasma concentration of less than 1 microgram/ml, a mean level of 1.39 micrograms/ml and a range of up to 7.32 micrograms/ml. All plasma concentration frequency distributions were well fitted by log normal distributions. Urinary concentrations of phenylbutazone yielded modal concentrations of less than 1 microgram/ml, a mean urinary concentration of 2.9 micrograms/ml, with a range of up to 30.5 micrograms/ml. This population fitted a log-normal distribution. For oxyphenbutazone the modal concentration was less than 3 micrograms/ml, the mean concentration was 15.26 micrograms/ml, with a range to 81.5 micrograms/ml. The frequency distribution of these samples was apparently bimodal. For gamma OH-phenylbutazone, the modal concentration was less than 4 micrograms/ml, the mean concentration 21.23 micrograms/ml, with a range of up to 122 micrograms/ml. The population frequency distribution for gamma OH-phenylbutazone was indeterminate. Analysis of the pH of these post-race urine samples showed a bimodal frequency distribution. The pH values observed ranged from 4.9 to 8.7, with peaks at about pH 5.25 and 7.25. This bimodal pattern of urinary pH values is consistent with observations made in England and Japan. Urinary pH influenced the concentrations of phenylbutazone, oxyphenbutazone and gamma OH-phenylbutazone found in the urine samples. The concentration of these metabolites found in alkaline urines were from 32 to 225 times greater than those found in acidic urines. Plasma concentrations of phenylbutazone and its metabolites, however, were unaffected by urinary pH. In interlaboratory experiments, horses running at Hollywood Park were dosed with phenylbutazone at about 2 g/1000 lbs 24 and 48 h before racing, and a mean dose of 0.6 g/1000 lbs at 72 h prior to racing. Post-race plasma samples from these horses showed phenylbutazone concentrations ranging from 0.44 to 9.97 micrograms/ml, with a mean concentration of 4.09 micrograms/ml.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Suxibuzone (SBZ), a nonsteroidal anti-inflammatory drug, was administered to 6 horses at a dose rate of 7.5 mg/kg bwt by intravenous (i.v.) route. Plasma and synovial fluid concentrations of suxibuzone and its main active metabolites, phenylbutazone (PBZ) and oxyphenbutazone (OPBZ), were measured simultaneously by a sensitive and specific high-performance liquid chromatographic method. The pharmacokinetic parameters were determined by noncompartmental analysis. Plasma SBZ concentrations rapidly decreased and were not detectable beyond 20 min after treatment. The parent drug was not detected in any synovial fluid samples. Average maximum plasma concentrations of PBZ (16.43 microg/ml) and OPBZ (2.37 microg/ml) were attained at 0.76 and 7.17 h, respectively. The mean residence time (MRT) of PBZ was 6.96 h in plasma. Oxyphenbutazone plasma concentrations were below those reached by phenylbutazone during the first 12 h after suxibuzone administration, even though its values were detectable for at least 24 h (MRT = 10.65 h). Plasma concentrations of PBZ and OPBZ exceeding EC50 and IC50 of TXB2 and PGE2 were reached by at least 12 h. Synovial fluid concentrations of PBZ and OPBZ were 2.87+/-0.37 microg/ml and 0.97+/-0.08 microg/ml at 9 h after suxibuzone administration and exceeded IC50 of PGE2 for at least this time. In the present study, suxibuzone was well tolerated following i.v. injection.  相似文献   

7.
The direct effects of four non-steroidal anti-inflammatory drugs (NSAIDs) on equine polymorphonuclear (PMN) and mononuclear (MN) leucocyte movement were investigated using two in vitro assay systems. The Boyden chamber microfilter technique measures both chemokinetic and chemotactic locomotion, and the agarose microdroplet assay measures solely chemokinesis. Zymosan-activated plasma (ZAP) and the synthetic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) were used as standard chemoattractants for PMN and MN leucocytes, respectively. The actions of six concentrations of each NSAID, indomethacin (50 microM-10 mM), phenylbutazone (10 microM-1 mM), oxyphenbutazone (2.5 microM-500 microM) and flunixin (0.1 microM-50 microM), in suppressing cell movement induced by ZAP and FMLP were investigated. All four drugs exerted inhibitory effects on induced movement of both cell types in the Boyden chamber assay, usually in a concentration-dependent manner, although oxyphenbutazone action on PMN cells occurred only at the highest concentration tested. Significant inhibition of PMN and MN cell locomotion was produced by indomethacin, flunixin and oxyphenbutazone, and inhibition of PMN movement by phenylbutazone occurred in the agarose microdroplet assay. Flunixin was the most potent of the four drugs investigated in both assay systems. The findings may be of importance to the use of phenylbutazone and flunixin as NSAIDs in equine medicine, since the concentrations used were similar to concentrations of both drugs and the phenylbutazone metabolite oxyphenbutazone previously reported to occur in equine plasma and inflammatory exudate.  相似文献   

8.
Interference or 'masking' in thin layer chromatography occurs when the presence of one drug on a thin layer plate physically obscures or interferes with the detection of another drug. We investigated the ability of phenylbutazone and oxyphenbutazone to mask or interfere with the detection by high performance thin layer chromatography (HPTLC) of basic drugs used illegally in horse racing. Of fifty-five basic drugs called 'positive' since 1981 by laboratories affiliated with the Association of Official Racing Chemists (AORC), forty did not comigrate with phenylbutazone or oxyphenbutazone and could not, therefore, be masked. When 75 micrograms/ml of oxyphenbutazone was spiked into urine samples, subjected to an extraction procedure for basic drugs, and then run in our routine HPTLC systems, no 'spots' due to oxyphenbutazone appeared. 'Masking' by oxyphenbutazone, therefore, did not and could not occur in our test systems. When phenylbutazone at a concentration of 30 micrograms/ml was spiked into urine samples and run in the routine HPTLC system, phenylbutazone spots were visible under ultraviolet light and after certain specific oversprays were used to visualize basic drugs. These spots, however, did not interfere with routine thin layer testing for basic drugs. It was concluded that phenylbutazone and oxyphenbutazone had no significant ability to interfere with detection of the parent forms of these basic drugs under the conditions described in these experiments.  相似文献   

9.
Phenylbutazone was administered to six Thoroughbred horses in a cross-over study in which the horses received cimetidine pretreatment or no cimetidine pretreatment. Blood samples were collected at various times for 48 h after phenylbutazone administration and the plasma was analysed for phenylbutazone. Cimetidine pretreatment elevated phenylbutazone plasma concentrations during the first 8 h after phenylbutazone administration. The absorption rate, maximum phenylbutazone plasma concentrations and AUC were significantly greater with cimetidine pretreatment. The half-life of phenylbutazone did not change with cimetidine pretreatment; however, lower plasma concentrations of the metabolite gamma-hydroxyphenylbutazone were observed with cimetidine pretreatments. Plasma concentrations of the metabolite oxyphenbutazone were unchanged with cimetidine pretreatment compared to control values. Twenty-four-hour plasma concentrations of phenylbutazone were not different from control values with cimetidine pretreatment. This study suggests that concurrent treatment with cimetidine and phenylbutazone 24 h before race time does not result in elevations of plasma phenylbutazone concentrations above control values.  相似文献   

10.
Pharmacokinetic and pharmacodynamic parameters were established for enantiomers of the non-steroidal anti-inflammatory drug (NSAID) ketoprofen (KTP), each administered separately at a dose level of 1.1 mg/kg to a group of six New Forest geldings, in a three-period cross-over study using a tissue cage model of inflammation. For both S(+)- and R(-)-KTP, penetration into tissue cage fluid (transudate) and inflamed tissue cage fluid (exudate) was rapid, and clearances from exudate and transudate were much slower than from plasma. AUC values were, therefore, higher for exudate and, to a lesser degree, transudate than for plasma. Unidirectional chiral inversion of R(-)- to S(+)-KTP was demonstrated. Administration of both enantiomers produced marked, time-dependent inhibition of synthesis of serum thromboxane B2 and exudate prostaglandin E2, indicating non-selective inhibition of cyclo-oxygenase (COX) isoenzymes COX-1 and COX-2 respectively. Administration of both enantiomers also produced partial inhibition of β-glucuronidase release into inflammatory exudate and of bradykinin-induced skin oedema. It is suggested that, although S(+)-KTP is generally regarded as the eutomer, R(-)-KTP was probably at least as active in inhibiting bradykinin swelling. Pharmacokinetic/pharmaco dynamic (PK/PD) modelling of the data could not be undertaken following R(-)-KTP administration because of chiral inversion to S(+)-KTP. but pharmacodynamic parameters, E max, EC50, N , k eo and t 1/2(keO), were determined for S(+)-KTP using the sigmoidal E max equation. PK/DP modelling provided a novel means of comparing and quantifying several biological effects of KTP and of investigating its mechanisms of action.  相似文献   

11.
Landuyt, J., Delbeke, F.T. & Debackere, M. The intramuscular bioavailability of a phenylbutazone preparation in the horse.J vet. Pharmacol. Therap. 16, 494– 500.
The plasma concentrations of phenylbutazone (PBZ) and its major metabolites, oxyphenbutazone (OPBZ) and γ-OH-phenylbutazone (OHPBZ) were determined for up to 72 h in six horses, following intravenous (i.v.) and intramuscular (i.m.) administration of 4 g phenylbutazone, 20 ml Phenylarthrite® Ventoquinol (Vetoquinol Specialites Pharmaceutiques Veterinaires, Magny-Vernois, 70200 Lure, France). After i.v. dosing the plasma disposition was best described by a two-compartment open model. The hydroxylated metabolites OPBZ and OHPBZ were present in detectable concentrations for 72 h and 48 h, respectively. After 36 h the OPBZ concentrations exceeded plasma PBZ concentrations. The plasma disposition following i.m. injection could be described by a one-compartment open model. The hydroxylated metabolites OPBZ and OHPBZ were present in detectable concentrations for 72 h and 36 h, respectively. Only after 72 h was the concentration of OPBZ in plasma higher than the concentration of PBZ. The mean i.m. bioavailability of phenylbutazone was calculated to be 91.7 ± 10.1%.  相似文献   

12.
Marbofloxacin is a fluoroquinolone antimicrobial drug used in cattle for the treatment of respiratory infections. In this investigation the pharmacokinetics (PK) of marbofloxacin were determined after intravenous and intramuscular dosing at a dosage of 2 mg/kg. In addition the ex vivo pharmacodynamics (PD) of the drug were determined in serum and three types of tissue cage fluid (transudate, inflammatory exudate generated by carrageenan and exudate generated by lipopolysaccharide). Marbofloxacin PK was characterized by a high volume of distribution after dosing by both routes (1.28 L/kg intravenous and 1.25 L/kg intramuscular). Corresponding area under the concentration-time curve (AUC) and elimination half-life (t(1/2)el) values were 9.99 and 10.11 microg h/mL and 4.23 and 4.33 h, respectively. Values of AUC for carrageenan-induced exudate, lipopolysaccharide-induced exudate and transudate were, respectively, 8.28, 7.83 and 7.75 microg h/mL after intravenous and 8.84, 8.53 and 8.52 microg h/mL after intramuscular dosing. Maximum concentration (Cmax) values were similar for the three tissue cage fluids after intravenous and intramuscular dosing. For in vivo PK data values of AUC: minimum inhibitory concentration (MIC) (AUIC) ratio for serum were 250 and 253, respectively, after intravenous and intramuscular dosing of marbofloxacin against a pathogenic strain of Mannheimia haemolytica (MIC=0.04 microg/mL). For all tissue cage fluids AUIC values were >194 and >213 after intravenous and intramuscular dosing, and Cmax/MIC ratios were 9 or greater, indicating a likely high level of effectiveness in clinical infections caused by M. haemolytica of MIC 0.04 microg/mL or less. This was confirmed by both in vitro (serum) and ex vivo (serum, exudate and transudate) measurements, which demonstrated a concentration-dependent killing profile for marbofloxacin against M. haemolytica. Ex vivo, after 24-h incubation, virtually all bacteria were killed (<10 cfu/mL) in all samples collected up to 9 h (serum), 24 h (carrageenan-induced exudate and transudate) and 36 h (lipopolysaccharide-induced exudate). Application of the sigmoid Emax equation to the ex vivo antibacterial data provided, for serum, AUIC24 h values of 37.1 for bacteriostasis, 46.3 for bactericidal activity and 119.6 for elimination of bacteria. These data may be used as a rational basis for setting dosing schedules which optimize clinical efficacy and minimize the opportunities for emergence of resistant organisms.  相似文献   

13.
Phenylbutazone in the horse: a review   总被引:3,自引:1,他引:2  
Phenylbutazone is an acidic, lipophilic, non-steroidal anti-inflammatory drug (NSAID). It is extensively metabolized in the horse. The metabolites so far identified, oxyphenbutazone, gamma-hydroxyoxyphenbutazone, account for some 25-30% of administered dose over 24 h. The plasma half-life of phenylbutazone and termination of its pharmacological action are determined primarily by its rate of hepatic metabolism. Phenylbutazone acts by inhibiting the cyclooxygenase enzyme system, which is responsible for synthesis of prostanoids such as PGE2. It appears to act on prostaglandin-H synthase and prostacyclin synthase, after conversion by prostaglandin-H synthase to reactive intermediates. It markedly reduces prostanoid-dependent swelling, edema, erythema, and hypersensitivity to pain in inflamed tissues. Its principal use in the horse is for treatment of soft tissue inflammation. Phenylbutazone is highly bound (greater than 98%) to plasma protein. After i.v. injection, blood levels decline with an elimination half-life of 3-10 h. The plasma kinetics of phenylbutazone may be dose dependent, with the plasma half-life increasing as the drug dosage level increases. Plasma residues of the drug at 24 h after a single i.v. dose of 2 g/450 kg average about 0.9 microgram/ml, but considerable variation occurs. If dosing is repeated, the plasma residue accumulates to give mean residual blood levels of approximately 4.5 microgram/ml on Day 5 after 4 days of dosing. Approximately similar blood levels are found after a combination of oral and i.v. dosing. Experiments on large numbers of horses in training have been undertaken to ascertain the population distributions of residual blood levels after such dosing schedules. Absorption of phenylbutazone from the gastrointestinal tract is influenced by the dose administered and the relationship of dosing to feeding. Access to hay can delay the time of peak plasma concentration to 18 h or longer. Under optimal conditions, the bioavailability of oral phenylbutazone is probably in the region of 70%. Paste preparations may be more slowly absorbed than other preparations and yield higher residual plasma levels at 24 h after dosing, but further controlled studies are required. Phenylbutazone is easily detected in the plasma and urine of horses but concentrations in saliva are low. It is quantitated for forensic purposes by HPLC. The variability of this method between laboratories is about +/- 25%. Increasing urinary pH increases the urinary concentration of phenylbutazone and its metabolites up to 200-fold.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
In a four-period, cross-over study, the fluoroquinolone antibacterial drug marbofloxacin (MB) was administered to calves, alone and in combination with the nonsteroidal anti-inflammatory drug tolfenamic acid (TA). Both drugs were administered intramuscularly (IM) at doses of 2 mg/kg. A tissue cage model of inflammation, based on the actions of the mild irritant carrageenan, was used to evaluate the pharmacokinetics (PK) of MB and MB in combination with TA. MB mean values of area under concentration-time curve (AUC) were 15.1 μg·h/mL for serum, 12.1 μg·h/mL for inflamed tissue cage fluid (exudate) and 9.6 μg·h/mL for noninflamed tissue cage fluid (transudate). Values of C(max) were 1.84, 0.35 and 0.31 μg/mL, respectively, for serum, exudate and transudate. Mean residence time (MRT) of 23.6 h (exudate) and 22.6 h (transudate) also differed significantly from serum MRT (8.6 h). Co-administration of TA did not affect the PK profile of MB. The pharmacodynamics of MB was investigated using a bovine strain of Mannheimia haemolytica. Time-kill curves were established ex vivo on serum, exudate and transudate samples. Modelling the ex vivo serum time-kill data to the sigmoid E(max) equation provided AUC(24 h) /MIC values required for bacteriostatic (18.3 h) and bactericidal actions (92 h) of MB and for virtual eradication of the organism was 139 h. Corresponding values for MB + TA were 20.1, 69 and 106 h. These data were used to predict once daily dosage schedules for a bactericidal action, assuming a MIC(90) value of 0.24 μg/mL, a dose of 2.6 mg/kg for MB and 2.19 mg/kg for MB + TA were determined, which are similar to the currently recommended dose of 2.0 mg/kg.  相似文献   

15.
The plasma and serum concentrations of phenylbutazone (PBZ) and oxyphenbutazone were measured in 158 Thoroughbred horses after various doses of PBZ wer given. All horses were competing or training at racetracks in various parts of the country. All horses used in the study had not been given PBZ 24 hours before they were placed on a specific dosage schedule. Samples were collected 24 hours after the last PBZ administration. Four grams of PBZ were given daily by stomach tube, paste, or tablet for 3 days. On day 4, 24 hours before sample collection, an IV dose of 2 g of PBZ was given, regardless of the dose and method of administration. The 24-hour PBZ plasma concentrations were 3.51, 6.13, and 6.40 micrograms/ml, respectively. After 2 g of PBZ was administered IV daily for 4 days, the plasma PBZ concentration was 4.16 g/ml; after a single 2-g IV administration, the serum concentration was 0.87 g/ml. Concentrations of oxyphenbutazone were 3.35 (stomach tube), 4.29 (paste), 3.60 (tablet), 3.65 (4-day IV), and 1.11 g/ml (single IV). A significant relationship was not found between the serum and the urinary concentrations at this 24-hour measurement. Split samples sent to various laboratories confirmed the stability of high-performance liquid chromatography as a method of analysis.  相似文献   

16.
Topically applied copper phenylbutazone, phenylbutazone, copper salicylate, salicylate and dimethylsulfoxide glycerol (80:20) were investigated as anti-inflammatory agents in rats and horses. Dimethylsulfoxide and glycerol (80:20) or dimethylsulfoxide, ethanol and glycerol (60:20:20) were used as the drug solvents. Subcutaneously administered carrageenin was used to induce inflammatory oedema, either in the paws of rats or the alar fold of the horse. The severity of the oedema and the anti-inflammatory effect of the drugs were assessed by measuring changes in the paw or alar-fold diameters. Copper salicylate and copper phenylbutazone were effective inhibitors of the inflammatory oedema in both species, but dimethylsulfoxide:glycerol (80:20) was not. In the rat, copper salicylate and copper phenylbutazone were superior anti-inflammatory agents compared to either salicylate or phenylbutazone, respectively. Following the topical application of four times the recommended daily dose of copper phenylbutazone to the horse for 5 days, minor skin irritation occurred and trace concentrations of phenylbutazone (maximum 0.6 microgram/ml) and negligible concentrations of oxyphenbutazone and gamma-hydroxyphenylbutazone were detected in the plasma.  相似文献   

17.
PK-PD integration and modeling of marbofloxacin in sheep   总被引:1,自引:0,他引:1  
The fluoroquinolone antimicrobial drug, marbofloxacin, was administered intravenously (IV) and intramuscularly (IM) to sheep at a dose rate of 2 mg kg−1 in a 2-period cross-over study. Using a tissue cage model of inflammation, the pharmacokinetic properties of marbofloxacin were established for serum, inflamed tissue cage fluid (exudate) and non-inflamed tissue cage fluid (transudate). For serum, after IV dosing, mean values for pharmacokinetic parameters were: clearance 0.48 L kg−1 h−1; elimination half-life 3.96 h and volumes of distribution 2.77 and 1.96 L kg−1, respectively, for Vdarea and Vss. After IM dosing mean values for pharmacokinetic variables were: absorption half-time 0.112 h, time of maximum concentration 0.57 h, terminal half-life (T½el) 3.65 h and bioavailability 106%. For exudate, mean T½el values were 12.38 and 13.25 h, respectively, after IV and IM dosing and for transudate means were 13.39 h (IV) and 12.55 h (IM).The in vitro minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) and ex vivo time-kill curves for marbofloxacin in serum, exudate and transudate were established against a pathogenic strain of Mannheimia haemolytica. Integration of in vivo pharmacokinetic data with MIC determined in vitro provided mean values of area under curve (AUC)/MIC ratio for serum, exudate and transudate of 120.2, 156.0 and 156.6 h after IV dosing and 135.5, 165.3 and 146.2 h after IM dosing, respectively. After IM administration maximum concentration (Cmax)/MIC ratios were 21.1, 6.76 and 5.91, respectively, for serum, exudate and transudate. The ex vivo growth inhibition data after IM administration were fitted to the sigmoid Emax (Hill) equation to provide values for serum of AUC24 h/MIC producing, bactericidal activity (22.51 h) and virtual eradication of bacteria (35.31 h). It is proposed that these findings might be used with MIC50 or MIC90 data to provide a rational approach to the design of dosage schedules which optimise efficacy in respect of bacteriological as well as clinical cures.  相似文献   

18.
Disodium-fosfomycin pharmacokinetics has been studied in different species after oral, intravenous, intramuscular and subcutaneous administration. At present there are neither documented clinical experiences of the use of fosfomycin in pigs nor any published studies in weaning piglets, although it is a period of high incidence of infectious diseases. The pharmacokinetics and the bioavailability of sodium fosfomycin were studied in post weaning piglets after intravenous and intramuscular administration of 15 mg/kg of body weight. Plasma concentrations were measured by a high-performance liquid ms/ms. After IV administration the area under the fosfomycin concentration:time curve in plasma was AUC(0–12) of 120.00 ± 23.12 μg h/ml and the volume of distribution (Vd) of 273.00 ± 40.70 ml/kg. The elimination was rapid with a plasma clearance of 131.50 ± 30.07 ml/kg/h and a T1/2 of 1.54 ± 0.40 h. Peak serum concentration (Cmax), Tmax, AUC(0–12) and bioavailability for the IM administration were 43.00 ± 4.10 μg/ml, 0.75 ± 0.00 h, 99.00 ± 0.70 μg h/ml and 85.5 ± 9.90% respectively. Different authors have determined a minimum inhibitory concentration (MIC90) ranging from 0.25 μg/ml for Streptococcus sp. and 0.5 μg/ml for Escherichia coli. Considering the above, and according to the values of plasma concentration vs time profiles observed in this study, effective plasma concentrations of fosfomycin for sensitive bacteria can be obtained following IV and IM administration of 15 mg/kg in piglets.  相似文献   

19.
The penetration of oxytetracycline (OTC) into the oral fluid and plasma of pigs and correlation between oral fluid and plasma were evaluated after a single intramuscular (i.m.) dose of 20 mg/kg body weight of long‐acting formulation. The OTC was detectable both in oral fluid and plasma from 1 hr up to 21 day after drug administration. The maximum concentrations (Cmax) of drug with values of 4021 ± 836 ng/ml in oral fluid and 4447 ± 735 ng/ml in plasma were reached (Tmax) at 2 and 1 hr after drug administration respectively. The area under concentration–time curve (AUC), mean residence time (MRT) and the elimination half‐life (t1/2β) were, respectively, 75613 ng × hr/ml, 62.8 hr and 117 hr in oral fluid and 115314 ng × hr/ml, 31.4 hr and 59.2 hr in plasma. The OTC concentrations were remained higher in plasma for 48 hr. After this time, OTC reached greater level in oral fluid. The strong correlation (= .92) between oral fluid and plasma OTC concentrations was observed. Concentrations of OTC were within the therapeutic levels for most sensitive micro‐organism in pigs (above MIC values) for 48 hr after drug administration, both in the plasma and in oral fluid.  相似文献   

20.
Reasons for performing study: No studies have determined the pharmacokinetics of low‐dose amikacin in the mature horse. Objectives: To determine if a single i.v. dose of amikacin (10 mg/kg bwt) will reach therapeutic concentrations in plasma, synovial, peritoneal and interstitial fluid of mature horses (n = 6). Methods: Drug concentrations of amikacin were measured across time in mature horses (n = 6); plasma, synovial, peritoneal and interstitial fluid were collected after a single i.v. dose of amikacin (10 mg/kg bwt). Results: The mean ± s.d. of selected parameters were: extrapolated plasma concentration of amikacin at time zero 144 ± 21.8 µg/ml; extrapolated plasma concentration for the elimination phase 67.8 ± 7.44 µg/ml, area under the curve 139 ± 34.0 µg*h/ml, elimination half‐life 1.34 ± 0.408 h, total body clearance 1.25 ± 0.281 ml/min/kg bwt; and mean residence time (MRT) 1.81 ± 0.561 h. At 24 h, the plasma concentration of amikacin for all horses was below the minimum detectable concentration for the assay. Selected parameters in synovial and peritoneal fluid were maximum concentration (Cmax) 19.7 ± 7.14 µg/ml and 21.4 ± 4.39 µg/ml and time to maximum concentration 65 ± 12.2 min and 115 ± 12.2 min, respectively. Amikacin in the interstitial fluid reached a mean peak concentration of 12.7 ± 5.34 µg/ml and after 24 h the mean concentration was 3.31 ± 1.69 µg/ml. Based on a minimal inhibitory concentration (MIC) of 4 µg/ml, the mean Cmax : MIC ratio was 16.9 ± 1.80 in plasma, 4.95 ± 1.78 in synovial fluid, 5.36 ± 1.10 in peritoneal fluid and 3.18 ± 1.33 in interstitial fluid. Conclusions: Amikacin dosed at 10 mg/kg bwt i.v. once a day in mature horses is anticipated to be effective for treatment of infection caused by most Gram‐negative bacteria. Potential relevance: Low dose amikacin (10 mg/kg bwt) administered once a day in mature horses may be efficacious against susceptible microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号