首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
We review the stock assessment strategies and management procedures for walleye pollock Theragra chalcogramma in Japan. In Japan, walleye pollock is classified into 4 stocks. Because biological data, fishing conditions, etc. are different for each stock, the stocks are assessed by different methods. Harvest strategies aiming at stock recovery are proposed for the Northern Japan Sea stock and the Nemuro Strait stock, which are currently in poor condition. For the Japanese Pacific stock and the Southern Okhotsk Sea stock, which are in good condition, harvest strategies for current fishery operations are proposed. In Japan, fisheries co-management has traditionally been carried out, and in recent years a total catch limitation system called the total allowable catch, a resource recovery plan, and a resource management plan have also been implemented. Although a plan is devised that accounts for the stock conditions of walleye pollock, it is also necessary to consider socioeconomic factors, ecosystem factors, and so on. However, we consider that the main focus of stock management for walleye pollock will still be maintaining fishing pressure at an appropriate level, which includes regulating fish size and price during the fishing season.  相似文献   

2.
Interannual variability in growth of walleye pollock, Theragra chalcogramma, was examined. Adult walleye pollock were collected from the central Bering Sea (Aleutian Basin) from 1978 to 1999. Average fork lengths were found to be approximately 47 cm during the 1970–80s, this increased to 56 cm in the late 1990s. Age was determined for 4805 individuals using the otolith break and burn method. Ages ranged from 5–23 years and the year classes of 1978 and 1989 were dominant in the 1980s and the 1990s, respectively. Fish had significantly larger length-at-age in the 1990s compared to the 1970–80s, and interannual variability in age–length relationship was clearly observed. Taking into consideration a recent decrease of the walleye pollock biomass in the central Bering Sea, density-dependent growth was supported as one possibility of the growth variability. At the same time, we could not rule out the possibility that oceanographic variability affected the growth of walleye pollock in the area.  相似文献   

3.
I examined the age, growth, maturity, mortality, and body condition of walleye pollock, Theragra chalcogramma, in the northeastern Japan Sea (northern Japan Sea population) and evaluated their resilience to exploitation. Walleye pollock were collected in pre-spawning (October 1991-1995) and post-spawning (April 1990-1996) seasons. Estimated ages ranged from 3 to 18 years for both sexes. A von Bertalanffy growth model showed that females had longer asymptotic fork length (460 mm) than males (425 mm). Fifty percent of females and males were mature at 348 mm (4.6 years) and 322 mm (3.9 years), respectively. The instantaneous natural mortality rate was estimated to be 0.22. These life-history traits in the northern Japan Sea population were compared to those in the Bering Sea, the Gulf of Alaska, and the Japan Pacific populations. As a result, female walleye pollock in this population matured at small body sizes, grew rapidly toward small maximum sizes, and had short reproductive lifespans with low size-specific fecundity and poor body condition. Low prey availability and habitat temperatures are considered as a possible mechanism for the small maximum sizes in this population. The potential rate of population increase of both the northern Japan Sea population and other pollock populations tended to be lower than other exploited populations of non-viviparous marine fishes, suggesting potentially lower resilience to exploitation in this population and walleye pollock populations in general.  相似文献   

4.
An important element in the U.S. management of fisheries in the North Pacific is the existence of Community Development Quotas (CDQs) which grant community corporations the right to fish in many fisheries off the coast of Alaska. The eastern Bering Sea pollock fishery is the largest of these fisheries, with 10 % of the quota allocated to CDQs. The CDQ program evolved from a partial catch share program that existed from 1992 to 1999 within a limited-entry fishery to a full catch share program with separate spatial rights. In this paper I examine the temporal and spatial uses of CDQ rights and how these uses have changed since the implementation of catch shares throughout the fishery. I also discuss the dispersion of CDQ royalties since the program’s inception and examine the prices of CDQ fishing rights from 1992 to 2005 when data on quota value were reported to the government. I compare quota prices to information about walleye pollock fishing and examine the evolving use of CDQ rights. The use of the CDQ right has changed from extending the season to enabling fishing in otherwise closed areas during the season. The number of vessels fishing with CDQ rights has declined substantially, with all pollock CDQ fishing now done by at-sea processors.  相似文献   

5.
Populations of several species of marine birds and mammals in the Bering Sea and Gulf of Alaska have been declining since the mid-1970s, with numbers of one, the Steller sea lion (Eumetopias jubatus) , so depressed it was listed as threatened under the Endangered Species Act in spring 1990. All of the declining populations depend to an important extent on walleye pollock (Theragra chakogramma) for food, although they eat numerous other species as well. In contrast, certain animals that compete with pollock for common prey have been increasing in abundance. All of these changes could be related through food web connections mediated by pollock. Pollock is also important to people–it presently supports the largest single-species commercial fishery in the world, in large part because of its great biomass, which has averaged about 15 × 106t in the Bering Sea over the past 15 years. Pollock consume an inordinate proportion of the pelagic production in the Bering Sea, which further supports the conclusion that it is a key species in the ecosystem. However, there are conflicting hypotheses about the importance of the roles played by pollock as predator and prey, and about the effect that changes in pollock abundance might have on biomass yield at higher trophic levels.  相似文献   

6.
Ecosystem‐based fisheries management requires the development of physical and biological time series that index ocean productivity for stock assessment and recruitment forecasts for commercially important species. As recruitment in marine fish is related to ocean condition, we developed proxies for ocean conditions based on sea surface temperature (SST) and biometric measurements of chum salmon (Oncorhynchus keta) captured in the walleye pollock (Gadus chalcogrammus) fishery in the eastern Bering Sea in three periods (July 16–30, September 1–15 and September 16–30). The main purpose of this paper was to evaluate Pacific salmon (Oncorhynchus spp.) growth as a possible indicator of ocean conditions that, in turn, may affect age‐1 walleye pollock recruitment. Marine growth rates of Pacific salmon are the result of a complex interplay of physical, biological and population‐based factors that fish experience as they range through oceanic habitats. These growth rates can, therefore, be viewed as indicators of recent ocean productivity. Thus, our hypothesis was that estimated intra‐annual growth in body weight of immature and maturing age‐4 male and female chum salmon may be used as a biological indicator of variations in rearing conditions also experienced by age‐0 walleye pollock; consequently, they may be used to predict the recruitment to age‐1 in walleye pollock. Summer SSTs and chum salmon growth at the end of July and September explained the largest amount of variability in walleye pollock recruitment indicating that physical and biological indices of ocean productivity can index fish recruitment.  相似文献   

7.
Information on the annual variability in abundance and growth of juvenile groundfish can be useful for predicting fisheries stocks, but is often poorly known owing to difficulties in sampling fish in their first year of life. In the Western Gulf of Alaska (WGoA) and Eastern Bering Sea (EBS) ecosystems, three species of puffin (tufted and horned puffin, Fratercula cirrhata, Fratercula corniculata, and rhinoceros auklet, Cerorhinca monocerata, Alcidae), regularly prey upon (i.e., “sample”) age-0 groundfish, including walleye pollock (Gadus chalcogramma, Gadidae) and Pacific cod (Gadus microcephalus, Gadidae). Here, we test the hypothesis that integrating puffin dietary data with walleye pollock stock assessment data provides information useful for fisheries management, including indices of interannual variation in age-0 abundance and growth. To test this hypothesis, we conducted cross-correlation and regression analyses of puffin-based indices and spawning stock biomass (SSB) for the WGoA and EBS walleye pollock stocks. For the WGoA, SSB leads the abundance of age-0 fish in the puffin diet, indicating that puffins sample the downstream production of the WGoA spawning stock. By contrast, the abundance and growth of age-0 fish sampled by puffins lead SSB for the EBS stock by 1–3 years, indicating that the puffin diet proxies incoming year class strength for this stock. Our study indicates connectivity between the WGoA and EBS walleye pollock stocks. Integration of non-traditional data sources, such as seabird diet data, with stock assessment data appears useful to inform information gaps important for managing US fisheries in the North Pacific.  相似文献   

8.
In 2003, the Alaska walleye pollock industry reported product quality issues attributed to an unspecified parasite in fish muscle. Using molecular and histological methods, we identified the parasite in Bering Sea pollock as Ichthyophonus. Infected pollock were identified throughout the study area, and prevalence was greater in adults than in juveniles. This study not only provides the first documented report of Ichthyophonus in any fish species captured in the Bering Sea, but also reveals that the parasite has been present in this region for nearly 20 years and is not a recent introduction. Sequence analysis of 18S rDNA from Ichthyophonus in pollock revealed that consensus sequences were identical to published parasite sequences from Pacific herring and Yukon River Chinook salmon. Results from this study suggest potential for Ichthyophonus exposures from infected pollock via two trophic pathways; feeding on whole fish as prey and scavenging on industry‐discharged offal. Considering the notable Ichthyophonus levels in pollock, the low host specificity of the parasite and the role of this host as a central prey item in the Bering Sea, pollock likely serve as a key Ichthyophonus reservoir for other susceptible hosts in the North Pacific.  相似文献   

9.
Eastern Bering Sea pollock have two distinctly different stable spawning grounds—along the shelf and in the eastern and central Aleutian Islands between 400 and 500 m water columns. Pollock spawning behavior supports the hypothesis that the shelf and deepwater “basin” spawning pollock are completely independent reproductive stocks. Deepwater pollock inhabit the shelf and, once mature at age 5–6 years, migrate from the shelf onto the continental slope into the Zhemchug, Pribilof, and Bering canyons by the end of winter. Bering Sea pollock recruitment and year class abundance have high annual variability, but there are no clear relationships between pollock year class strength and water temperature, ice distribution or survival on early ontogenesis stages (eggs and larvae). Young-of-the-year fish survival varies dramatically during winter supporting the hypothesis that the Bering Sea pollock recruitment and strength of year class have high annual variability depending on young-of-the-year fish survival during winter. The annual change of physical oceanography condition, productivity and species composition of zooplankton community are associated with great differences in pollock seasonal migrations and distribution, reproduction, survival of recruits at early stages of development and finally with abundance of year classes and total biomass. Implementation of ecosystem-based fishery management most important for application of pollock research both of Russian national program and on base of International Agreements.  相似文献   

10.
The Japanese Pacific stock (JPS) and the northern Japan Sea stock (JSS) of walleye pollock Theragra chalcogramma are mainly distributed in the Pacific Ocean and the Sea of Japan off northern Japan, respectively. This paper summarizes and compares the factors affecting the recruitment variability of these two stocks. Spawning season is from December to March for both stocks. JPS recruitment has a positive relationship with the water temperature in January and February, whereas that of JSS has a negative relationship with the water temperature in January, February, and April. One possible reason for this is that pollock larvae have an optimum growth temperature of approximately 5 °C in the field. Drift of early life stages also appears to be an important influence on the recruitment of both stocks. Because the current generated by the northwest wind carries eggs of JPS into the main larval nursery ground, JPS recruitment is enhanced in years when the northwest wind is predominant in February. On the other hand, early life stages of JSS are transported into the nursery ground by the Tsushima Warm Current. However, this current also carries early life stages into the Sea of Okhotsk and offshore, resulting in poor JSS recruitment in years when this current is strong in March. In contrast to JPS, the recruitment of which is significantly impacted by cannibalism, young pollock have not been found in the stomachs of adult JSS. Warm temperatures in the Sea of Japan seem to induce the separation of young and adult pollock, and the shape of the stock–recruitment relationship also suggests that cannibalism is not important for JSS. Based on this knowledge, and on the hatch date distributions of larvae and juveniles, we propose mechanisms that can explain the recruitment fluctuations for JPS and JSS pollock.  相似文献   

11.
The southwestern Pacific coast of Hokkaido is the main spawning ground for the Japanese Pacific stock of walleye pollock Theragra chalcogramma. A commercial gillnet fishery targeting spawning adult pollock in this area mainly operates from October to January to coincide with the migration of adult pollock from the feeding ground. Given the results of acoustic surveys, and changes in the proportion of the monthly total catch that was monthly walleye pollock caught by the commercial gillnet fishery, it is thought that the timing of walleye pollock spawning migration to the Donan area varies among years and that the pollock catch of the gillnet fishery clearly reflects changes in pollock abundance in this area. A time series of interannual variability in catch data from 1980 to 2005 suggested that adult pollock migrated and concentrated on their spawning ground later in the 1980s and after 2000 than in the 1990s. Such decadal-scale shifts are presumably caused by climatic changes (e.g., in water temperature) in the Oyashio region. These shifts affect the gillnet fishery through differences in monthly unit prices of pollock and changes in the formation of fishing grounds. These scientific findings can aid the establishment of rules for more efficient walleye pollock resource management under the total allowable catch system.  相似文献   

12.
Abstract. In an effort further to define the current health status of demersal fish in the Bering Sea, 36 618 fish captured by otter trawl during 1976 were examined for pathological conditions. Of the 26 species examined, 22 were found to have no detectable abnormalities. The four species with abnormalities were Pacific cod Gadus macrocephalus Tilesius with pseudobranchial tumours and skin lesions, walleye pollock Theragra chalcogramma (Pallas) with pseudobranchial tumours, yellowfin sole Limanda aspera (Pallas) with lymphocystis, and rock sole Lepidopsetta bilineata (Ayres) with epidermal papillomas. The prevalence, geographical distribution and biological and pathological characteristics of affected individuals were determined.
Pseudobranchial tumours of both Pacific cod and walleye pollock were occasionally found to be invasive. Fish bearing these tumours were distributed throughout the sampling area. The epidermal papillomas on rock sole resembled similar tumours found on several flatfish species along the West Coast of North America. The distribution of this disease appeared to be depth related. The virus-caused lymphocystis growths were located on the 'blind' side of yellowfin sole. The highest frequencies of fish with lymphocystis were in the south-eastern Bering Sea. Two main types of skin lesions were seen on Pacific cod: ulcers and ring-shaped lesions. Isolates of bacteria ( Pseudomonas sp.) were routinely obtained from the cod ulcers and may be the cause of this disease. The ring-shaped skin lesions, when examined microscopically, contained unidentified epidermal basophilic bodies.  相似文献   

13.
Carbon and nitrogen stable isotope ratios in the muscle of Dall’s porpoises were measured. Samples were collected from the catches of the hand harpoon fishery, incidental catches of drift net, and scientific research on the use of drift nets. Samples were from the North Pacific, Sea of Japan, Sea of Okhotsk, and Bering Sea. Although no variation in δ15N was observed, δ13C was significantly different between population groups near Japan and the oceanic North Pacific and Bering Sea. The difference may be due not only to local variation in prey species, but also to an overall difference in carbon stable isotope ratios that originate from coastal benthic or oceanic pelagic‐based food webs. We differentiated Dall’s porpoise population groups from both areas using carbon stable isotope ratios with an error rate of <5%. Although further study is needed, our results suggest that carbon stable isotope ratios could possibly be an indicator of whether a Dall’s porpoise belongs to a coastal benthic or oceanic pelagic food web.  相似文献   

14.
Interannual, decadal and interdecadal variations in summer plankton biomass during 1954–1994 in the whole subarctic Pacific and Bering Sea were compared among regions as well as with climatic and oceanographic conditions. The zooplankton biomass and chlorophyll concentration during the mid 1960s to early 1970s in the central and western subarctic Pacific were a few times higher than those in the preceding and following decades. The values in the eastern Bering Sea and eastern subarctic Pacific also increased in the mid 1960s, but remained at an elevated level until the end of the 1980s. These decades of higher and mid plankton biomass levels during the mid 1960s to early 1970s and mid 1970s to late 1980s correspond to the period of positive and negative values of the Northern Hemisphere zonal index (NHZI), respectively. In the decadal scale, one can see a significant positive correlation between the summer plankton biomass and the wind speed during winters in the eastern Bering Sea. The effect of grazing by biennially fluctuating Asian pink salmon on zooplankton biomass and its effect on chlorophyll concentration in the central subarctic Pacific is also significant.  相似文献   

15.
Concern about impacts of climate change in the Bering Sea prompted several research programs to elucidate mechanistic links between climate and ecosystem responses. Following a detailed literature review, Hunt et al. (2011) (Deep‐Sea Res. II, 49, 2002, 5821) developed a conceptual framework, the Oscillating Control Hypothesis (OCH), linking climate‐related changes in physical oceanographic conditions to stock recruitment using walleye pollock (Theragra chalcogramma) as a model. The OCH conceptual model treats zooplankton as a single box, with reduced zooplankton production during cold conditions, producing bottom‐up control of apex predators and elevated zooplankton production during warm periods leading to top‐down control by apex predators. A recent warming trend followed by rapid cooling on the Bering Sea shelf permitted testing of the OCH. During warm years (2003–06), euphausiid and Calanus marshallae populations declined, post‐larval pollock diets shifted from a mixture of large zooplankton and small copepods to almost exclusively small copepods, and juvenile pollock dominated the diets of large predators. With cooling from 2006–09, populations of large zooplankton increased, post‐larval pollock consumed greater proportions of C. marshallae and other large zooplankton, and juvenile pollock virtually disappeared from the diets of large pollock and salmon. These shifts in energy flow were accompanied by large declines in pollock stocks attributed to poor recruitment between 2001 and 2005. Observations presented here indicate the need for revision of the OCH to account for shifts in energy flow through differing food‐web pathways due to warming and cooling on the southeastern Bering Sea shelf.  相似文献   

16.
Accounting for variation in prey mortality and predator metabolic potential arising from spatial variation in consumption is an important task in ecology and resource management. However, there is no statistical method for processing stomach content data that accounts for fine‐scale spatio‐temporal structure while expanding individual stomach samples to population‐level estimates of predation. Therefore, we developed an approach that fits a spatio‐temporal model to both prey‐biomass‐per‐predator‐biomass data (i.e. the ratio of prey biomass in stomachs to predator weight) and predator biomass survey data, to predict “predator‐expanded‐stomach‐contents” (PESCs). PESC estimates can be used to visualize either the annual landscape of PESCs (spatio‐temporal variation), or can be aggregated across space to calculate annual variation in diet proportions (variation among prey items and among years). We demonstrated our approach in two contrasting scenarios: a data‐rich situation involving eastern Bering Sea (EBS) large‐size walleye pollock (Gadus chalcogrammus, Gadidae) for 1992–2015; and a data‐limited situation involving West Florida Shelf red grouper (Epinephelus morio, Epinephelidae) for 2011–2015. Large walleye pollock PESC was predicted to be higher in very warm years on the Middle Shelf of the EBS, where food is abundant. Red grouper PESC was variable in north‐western Florida waters, presumably due to spatio‐temporal variation in harmful algal bloom severity. Our approach can be employed to parameterize or validate diverse ecosystem models, and can serve to address many fundamental ecological questions, such as providing an improved understanding of how climate‐driven changes in spatial overlap between predator and prey distributions might influence predation pressure.  相似文献   

17.
ABSTRACT: Stocks of walleye pollock Theragra chalcogramma collected from: (i) the Sea of Japan (off Rebun Island and Kumaishi); (ii) the Pacific coast (off Shikabe and eastern Hokkaido); and (iii) Nemuro Strait off Hokkaido, northern Japan, were examined for anisakid nematodes during December 1999 to February 2000, and the prevalence and abundance of Anisakis simplex and Contracaecum osculatum larvae were compared among the various sampling sites for fish of the same size and age. Anisakis simplex was generally more abundant than C. osculatum . Infection by A. simplex varied between the aforementioned stocks of walleye pollock as well as within stocks, whereby fish from off Rebun Island and Nemuro Strait were infected the most, followed by those from off the Pacific coast and Kumaishi. Infection by C. osculatum differed between the host stocks, and C. osculatum was the most abundant among the fish from Nemuro Strait. The infection variations seemed to be due to differences in host growth rate, host feeding habit, and the distribution of marine mammal final hosts. The results indicate that these two larval nematodes are useful biological indicators for the population study of walleye pollock in Japanese waters.  相似文献   

18.
Walleye pollock Theragra chalcogramma is the most popular fish in Korea, often being used in a variety of food delicacies. However, since 2000, production of walleye pollock from distant-water fishing has been rapidly decreasing, and its domestic production is slowly dying out. Therefore, supply of walleye pollock to the Korean market has become heavily dependent on imports. Based on the supply–demand situation of walleye pollock in the Korean market and analyses of its production and markets, it can be undoubtedly predicted that there is a large potential for consumption of walleye pollock. From past records of walleye pollock consumption, Korea’s potential walleye pollock consumption can be estimated to be around 500,000 tons. However, it seems that the prospect of supplying such a high demand is not very bright.  相似文献   

19.
We examined quantitative catches of large medusae from summer bottom trawl surveys that sampled virtually the same grid station on the eastern Bering Sea shelf using the same methodology every year from 1979 to 1997. This series shows a gradual increase in biomass of medusae from 1979 to 1989, followed by a dramatic increase in the 1990s. The median biomass increased tenfold between the 1982–1989 and 1990–1997 periods. Most of this biomass was found within the Middle Shelf Domain (50 <  z  < 100 m). The greatest rate of increase occurred in the north-west portion of this domain. Whether this dramatic increase in biomass of gelatinous zooplankton has resulted from some anthropogenic perturbation of the Bering Sea environment or is a manifestation of natural ecosystem variability is unclear. However, several large-scale winter/spring atmospheric and oceanographic variables in the Bering Sea exhibited concomitant changes beginning around 1990, indicating that a possible regime change occurred at this time.  相似文献   

20.
In the central and western subarctic Pacific, zooplankton biomass and chlorophyll concentrations during the mid 1960s to mid 1970s were a few times higher than in the preceding and following decades, corresponding to higher values of the atmospheric Northern Hemisphere Zonal Index (NHZI). In the Alaskan Gyre, however, it was reported that biomass of zooplankton and nekton doubled after the atmospheric regime shift in the mid 1970s. In the subtropical North Pacific, chlorophyll a concentration decreased drastically after 1980, although a decrease of zooplankton biomass was clearly seen only in the northern part of the subtropical gyre. Chlorophyll concentration in the central subarctic Pacific and zooplankton biomass in the Oyashio have been decreasing since the early 1980s. Additionally, chlorophyll concentration in the western subarctic Pacific and eastern Bering Sea, and zooplankton biomass in the central subarctic Pacific and eastern Bering Sea have also been decreasing since the late 1980s. In these regime-shift situations, there is a general tendency for intensification of wind speed or de-stratification to cause plankton biomass to decrease in regions where the upper mixed layer is deep, such as the western subarctic and north-western subtropical water, whereas in relatively stratified areas, such as in the eastern subarctic and south-western subtropical water, the effect is an increase of plankton biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号