首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Information on the annual variability in abundance and growth of juvenile groundfish can be useful for predicting fisheries stocks, but is often poorly known owing to difficulties in sampling fish in their first year of life. In the Western Gulf of Alaska (WGoA) and Eastern Bering Sea (EBS) ecosystems, three species of puffin (tufted and horned puffin, Fratercula cirrhata, Fratercula corniculata, and rhinoceros auklet, Cerorhinca monocerata, Alcidae), regularly prey upon (i.e., “sample”) age-0 groundfish, including walleye pollock (Gadus chalcogramma, Gadidae) and Pacific cod (Gadus microcephalus, Gadidae). Here, we test the hypothesis that integrating puffin dietary data with walleye pollock stock assessment data provides information useful for fisheries management, including indices of interannual variation in age-0 abundance and growth. To test this hypothesis, we conducted cross-correlation and regression analyses of puffin-based indices and spawning stock biomass (SSB) for the WGoA and EBS walleye pollock stocks. For the WGoA, SSB leads the abundance of age-0 fish in the puffin diet, indicating that puffins sample the downstream production of the WGoA spawning stock. By contrast, the abundance and growth of age-0 fish sampled by puffins lead SSB for the EBS stock by 1–3 years, indicating that the puffin diet proxies incoming year class strength for this stock. Our study indicates connectivity between the WGoA and EBS walleye pollock stocks. Integration of non-traditional data sources, such as seabird diet data, with stock assessment data appears useful to inform information gaps important for managing US fisheries in the North Pacific.  相似文献   

2.
Acoustic survey data were used to estimate the abundance and distribution of age-0 walleye pollock and zooplankton near the Pribilof Islands, Bering Sea, nursery area at two time periods in two consecutive years: the beginning of August, and mid-September, of 1996 and 1997. The 1996 pollock year class ultimately produced a large adult cohort in the eastern Bering Sea, while the 1997 year class produced a below-average adult cohort. Acoustic densities of age-0 pollock were significantly lower in August – and declined more strongly from August to September – in 1997 than in 1996, indicating that the trend to adult cohort strength was already set by August. Diet composition analyses revealed that age-0 pollock ate a much higher proportion of euphausiids in 1997 than in 1996, despite lower acoustic abundance of euphausiids in 1997. We infer that in 1996, age-0 pollock experienced greater feeding success by August, with high concentrations of copepods available for smaller fish to consume, and high concentrations of euphausiids available for larger individuals. In 1997, age-0 pollock had lower body condition in August and may have been limited by the availability of small (<2 mm) copepods. Bioenergetic modeling of prey consumption did not indicate a likelihood that age-0 pollock would begin to deplete euphausiids until late August in 1996, and not at all between August and mid-September in 1997.  相似文献   

3.
Walleye pollock Theragra chalcogramma (pollock hereafter) is a key ecological and economic species in the eastern Bering Sea, yet detailed synthesis of the spatial and temporal patterns of pollock ichthyoplankton in this important region is lacking. This knowledge gap is particularly severe considering that egg and larval distribution are essential to reconstructing spawning locations and early life stages drift pathways. We used 19 yr of ichthyoplankton collections to determine the spatial and temporal patterns of egg and larval distribution. Generalized additive models (GAMs) identified two primary temporal pulses of pollock eggs, the first occurring from 20 February to 31 March and the second from 20 April to 20 May; larvae showed similar, but slightly lagged, pulses. Based on generalized cross‐validation and information theory, a GAM model that allowed for different seasonal patterns in egg density within three unique areas outperformed a GAM that assumed a single fixed seasonal pattern across the entire eastern Bering Sea. This ‘area‐dependent’ GAM predicted the highest densities of eggs (i.e., potential spawning locations) in three major areas of the eastern Bering Sea: near Bogoslof Island (February–April), north of Unimak Island and the Alaska Peninsula (March–April), and around the Pribilof Islands (April–August). Unique temporal patterns of egg density were observed for each area, suggesting that pollock spawning may be more spatially and temporally complex than previously assumed. Moreover, this work provides a valuable baseline of pollock spawning to which future changes, such as those resulting from climate variability, may be compared.  相似文献   

4.
The inter-annual variability in year class strength (1976–2000) of North Sea herring (Clupea harengus) was investigated using Paulik diagrams based on survey data and Virtual Population Analysis. The herring life cycle was split into five stages: spawning stock biomass (SSB), egg production, larvae, fish with 0 winter rings on the otolith (0-wr), 1-wr and 2-wr. Surveys were used as indices and Paulik analysis revealed relationships between stages. In 80% of the years, year class strength reflected SSB. Poorer than expected year classes were determined during the larva to 0-wr phase, whilst stronger than expected year classes were apparently determined during the 0-wr to 1-wr stage. There was no clear relationship between survival of young stages of herring and the abundance of Calanus finmarchicus but the year class strength of 0-wr and 1-wr had a negative relationship to bottom water temperature. Lower sea water temperatures in the North Sea are associated with higher Calanus abundance. The analysis shows that the strength of aberrant year classes of North Sea herring is determined between the pelagic larval and the juvenile stages.  相似文献   

5.
Climate variability on decadal time scales is generally recognized to influence high‐latitude marine populations. Our recent work in studying air–sea interactions in the Bering Sea suggests that interannual to decadal climate variability is important through its modulation of the frequencies and magnitudes of weather events on intraseasonal time scales. We hypothesize that it is these weather events that directly impact the marine ecosystem of the Bering Sea shelf. The linkages between the event‐scale weather and the ecosystem are illustrated with three examples: walleye pollock (Theragra chalcogramma), Tanner crabs (Chionoecetes bairdi), and coccolithophorid phytoplankton (Emiliania huxleyi). We hypothesize that the strong recruitment of walleye pollock that occurred in 1978, 1982, and 1996 can be attributed in part due to the seasonably strong storms that occurred in the early summer of those years. These storms caused greater than normal mixing of nutrients into the euphotic zone which presumably led to sustained primary productivity after the spring bloom and, possibly, enhanced prey concentrations for pollock larvae and their competitors. Recruitment of Tanner crab was particularly strong for the 1981 and 1984 year‐classes. These years had periods of prominent east wind anomalies along the Alaska Peninsula during the previous winter. Such winds promote flow through Unimak Pass, and hence an enhanced flux of nutrient‐rich water onto the shelf. This mechanism may have ultimately resulted in favorable feeding conditions for Tanner crab larvae. Finally, an unprecedented coccolithophorid bloom occurred over the Bering Sea shelf in the summer of 1997. This summer featured lighter winds and greater insolation than usual after a spring that included a very strong May storm. This combination brought about a warm, nutrient‐poor upper mixed layer by mid‐summer. This provided a competitive advantage for coccolithophorid phytoplankton in 1997 and to a lesser extent in 1998. Unusually high concentrations of coccolithophores persisted for the following two years although physical environmental conditions did not remain favorable. While slow variations in the overall aspects of the physical environment may be important for setting the stage, we propose that the significant multi‐year adjustments in the marine ecosystem of the Bering Sea shelf are more directly caused by major air–sea interaction events on intraseasonal time scales.  相似文献   

6.
Larval and early juvenile fishes were sampled from the eastern Bering Sea (EBS) shelf from 2001 to 2005, and in 2007. Data from these collections were used to examine spatial and temporal patterns in species assemblage structure and abundance. The years 2001–2005 were unusual because the EBS water temperature was ‘warm’ compared with the long‐term mean temperature. In contrast, 2007 was a ‘cold’ year. The abundance of the five most numerous taxa at 12 stations common to all years sampled (1996–2005, 2007) were significantly different among years. Larval and early juvenile stage Theragra chalcogramma (walleye pollock), a commercially important gadid, were by far the most abundant fish in all years. Bottom depth alone best explained assemblage structure in most years, but in others, bottom depth and water column temperature combined and percent sea‐ice coverage were most important. Abundance of T. chalcogramma larvae increases with water column temperature until 5°C and then becomes level. Higher abundances of Gadus macrocephalus (Pacific cod) larvae occur in years with the greatest percent sea‐ice cover as indicated by GAM analysis. Larvae of Lepidopsetta polyxystra (northern rock sole) increase in abundance with increasing maximum wind speed, but decrease at a later date during the last winter storm. The data are consistent with the hypothesis that oceanographic conditions, specifically water temperature and sea‐ice coverage, affect the spatial and temporal pattern of larval abundances. In general, ichthyoplankton species assemblages can be important early indicators of environmental change in the Bering Sea and potentially other subarctic seas as well.  相似文献   

7.
Walleye pollock (Gadus chalcogrammus) supports one of the largest commercial fisheries in the world. Juvenile pollock are important forage fish in the eastern Bering Sea (EBS) ecosystem, often representing the largest fraction in the diets of major Bering Sea piscivores. Large variability in the EBS pollock stock biomass in recent years has been attributed primarily to fluctuations in recruitment. It has been hypothesized that predation rates on forage fishes increase when the cold pool (a body of cold water < 2°C) is extensive and covers much of the middle continental shelf, which tends to concentrate larger predatory fishes in the outer shelf and slope regions. In contrast, young pollock appear to tolerate colder temperatures than older fish and can stay in the cold pool, thereby reducing predation. We used a multispecies modeling approach to examine the effects of the cold pool size on predation of juvenile pollock. We found that predation on age‐1 pollock by age‐3+ pollock decreased, and predation on age‐1 and age‐2 pollock by arrowtooth flounder increased with increasing bottom temperature, which was used as a proxy for the cold pool size. These results suggest that the cold pool creates spatial separation between juvenile pollock and arrowtooth flounder, but not between adult and juvenile pollock. The model developed in this study could be used to examine the effects of other covariates on interspecific interactions, help explain observed changes in fish communities, and understand implications of climate change on ecosystems and their productivity.  相似文献   

8.
为了解当前东海生态系统中鱼卵、仔稚鱼种类组成和数量分布的现状及其变化与物理环境因素的关系,根据2006年11月—2008年6月5个航次的鱼卵、仔稚鱼和物理环境调查资料,对鱼卵、仔稚鱼种类组成、数量分布与产卵场物理环境进行分析,探讨不同季节、不同年份鱼卵、仔稚鱼种类组成和数量分布的变化及其与物理环境的关系。结果显示,5个航次采集到74 813粒鱼卵、16 826尾仔稚鱼,共有135个种类。其中,鉴定到种的有109种,隶属于15目67科99属,还有17个种类仅能鉴定到属、6个种类仅能鉴定到科和3个种类仅能鉴定到目。2006年—2007年秋季、冬季和春季鱼卵、仔稚鱼的种类和数量随着季节变化逐渐增多;2008年春季的种类和数量较2007年春季明显偏少;2008年初夏种类的数量与2008年春季基本相近,但鱼卵的数量明显增多,仔稚鱼的数量基本相近。42种优势种类、重要种类和主要种类构成当前东海生态系统中鱼卵、仔稚鱼种类组成的主要成分。东海表层水温和盐度分布有显著的季节变化。秋、冬季表层水温锋面强度最强,春季次之,初夏最弱;锋面的位置秋季离岸最近,冬季次之,春季和初夏离岸最远,冬季偏南,初夏季节北移。表层盐度锋面主要分布在近岸区域,与岸线大致平行,其强度冬季最强,春、秋季次之,初夏季节最弱。秋、冬季节陆架深水海域的水温较沿岸海域高,鱼类生殖群体在陆架深水高温区产卵;春季和初夏季节沿岸海域明显升温,鱼类生殖群体由深水区向近岸海域进行生殖洄游,产卵场分布由陆架中部向近岸海域扩展,并在近岸海域形成了中心产卵场。鱼卵和仔稚鱼的分布与温、盐锋面和种类的温、盐属性的关系密切,主要分布在温度锋面暖水一侧,并有各自最适宜的温度和盐度范围。水温、盐度与种类的繁殖生物学特性是导致鱼卵和仔稚鱼种类组成与数量发生变化的主要因素;适宜的温度和盐度范围、锋区的辐聚和卷夹作用以及种类的生物学属性是影响鱼卵和仔稚鱼数量分布以及密集分布区形成的主要因素。  相似文献   

9.
Climate has been linked to variation in marine fish abundance and distribution, but often the mechanistic processes are unknown. Atlantic croaker (Micropogonias undulatus) is a common species in estuarine and coastal areas of the mid‐Atlantic and southeast coasts of the U.S. Previous studies have identified a correlation between Atlantic croaker abundance and winter temperatures in Chesapeake Bay, and have determined thermal tolerances of juveniles. Here we re‐examine the hypothesis that winter temperature variability controls Atlantic croaker population dynamics. Abundance indices were analyzed at four life history stages from three regions along the east coast of the U.S. Correlations suggest that year‐class strength is decoupled from larval supply and is determined by temperature‐linked, overwinter survival of juveniles. Using a relation between air and water temperatures, estuarine water temperature was estimated from 1930 to 2002. Periods of high adult catch corresponded with warm winter water temperatures. Prior studies indicate that winter temperature along the east coast is related to the North Atlantic Oscillation (NAO); variability in catch is also correlated with the NAO, thereby demonstrating a link between Atlantic croaker dynamics, thermal limited overwinter survival, and the larger climate system of the North Atlantic. We hypothesize that the environment drives the large‐scale variability in Atlantic croaker abundance and distribution, but fishing and habitat loss decrease the resiliency of the population to periods of poor environmental conditions and subsequent weak year classes.  相似文献   

10.
11.
We describe the spatial distribution and dispersal pathways of Greenland halibut (Reinhardtius hippoglossoides) early life stages based on historical field data from the eastern Bering Sea and adjacent water along the eastern Aleutian Islands. Our results indicate that Greenland halibut from preflexion larvae to newly settled juveniles have a long pelagic duration and are subject to extended drift pathways. Hatching may occur in deep water, below 530 m, and larvae rise in the water column as they grow. Flexion/postflexion larvae are mostly found around the Pribilof Islands over the middle shelf (50–100‐m isobaths) in July, and settling occurs during late summer on the middle shelf near St. Matthew Island. However, given that age‐1 individuals were primarily found on the outer shelf, it appears that Greenland halibut actively move to deeper water with age (or size). The mechanisms of slope–shelf connectivity in preflexion larvae may be related to the Bering Slope Current in the vicinity of both Bering and Pribilof Canyons. This study shows that Greenland halibut early life stages have extensive horizontal ontogenetic migrations in the Bering Sea, and utilize a range of geographic areas over the basin and slope along the Aleutian Islands and in the eastern Bering Sea. Based on these results, it is hypothesized that settlement success and recruitment of Greenland halibut may be influenced by variability in currents and flows of the Bering Sea slope and shelf during their transport.  相似文献   

12.
We investigated the hypothesis that synchronous recruitment is due to a shared susceptibility to environmental processes using stock–recruitment residuals for 52 marine fish stocks within three Northeast Pacific large marine ecosystems: the Eastern Bering Sea and Aleutian Islands, Gulf of Alaska, and California Current. There was moderate coherence in exceptionally strong and weak year‐classes and correlations across stocks. Based on evidence of synchrony from these analyses, we used Bayesian hierarchical models to relate recruitment to environmental covariates for groups of stocks that may be similarly influenced by environmental processes based on their life histories. There were consistent relationships among stocks to the covariates, especially within the Gulf of Alaska and California Current. The best Gulf of Alaska model included Northeast Pacific sea surface height as a predictor of recruitment, and was particularly strong for stocks dependent on cross‐shelf transport during the larval phase for recruitment. In the California Current the best‐fit model included San Francisco coastal sea level height as a predictor, with higher recruitment for many stocks corresponding to anomalously high sea level the year before spawning and low sea level the year of spawning. The best Eastern Bering Sea and Aleutian Islands model included several environmental variables as covariates and there was some consistent response across stocks to these variables. Future research may be able to utilize these across‐stock environmental influences, in conjunction with an understanding of ecological processes important across early life history stages, to improve identification of environmental drivers of recruitment.  相似文献   

13.
Interannual variability in growth of walleye pollock, Theragra chalcogramma, was examined. Adult walleye pollock were collected from the central Bering Sea (Aleutian Basin) from 1978 to 1999. Average fork lengths were found to be approximately 47 cm during the 1970–80s, this increased to 56 cm in the late 1990s. Age was determined for 4805 individuals using the otolith break and burn method. Ages ranged from 5–23 years and the year classes of 1978 and 1989 were dominant in the 1980s and the 1990s, respectively. Fish had significantly larger length-at-age in the 1990s compared to the 1970–80s, and interannual variability in age–length relationship was clearly observed. Taking into consideration a recent decrease of the walleye pollock biomass in the central Bering Sea, density-dependent growth was supported as one possibility of the growth variability. At the same time, we could not rule out the possibility that oceanographic variability affected the growth of walleye pollock in the area.  相似文献   

14.
Demography can have a significant effect on reproductive timing and the magnitude of such an effect can be comparable to environmentally induced variability. This effect arises because the individuals of many fish species spawn progressively earlier within a season and may produce more egg batches over a longer period as they get older, thus extending their lifetime spawning duration. Inter‐annual variation in spawning time is a critical factor in reproductive success because it affects the early environmental conditions experienced by progeny and the period they have to complete phases of development. By reducing the average lifetime spawning duration within a fish stock, fishing pressure could be increasing the variability in reproductive success and reducing long‐term stock reproductive potential. Empirical estimates of selection on birth date, from experiments and using otolith microstructure, demonstrate that there is considerable variation in selection on birth date both within a spawning season and between years. The few multi‐year studies that have linked egg production with the survival of progeny to the juvenile stage further highlight the uncertainty that adults face in timing their spawning to optimize offspring survival. The production of many small batches of eggs over a long period of time within a season and over a lifetime is therefore likely to decrease variance and increase mean progeny survival. Quantifying this effect of demography on variability in survival requires a focus on lifetime reproductive success rather than year specific relationships between recruitment and stock reproductive potential. Modelling approaches are suggested that can better quantify the likely impact of changing spawning times on year‐class strength and lifetime reproductive potential. The evidence presented strengthens the need to avoid fishing severely age truncated fish stocks.  相似文献   

15.
基于30余年渤海鱼卵、仔稚鱼历史调查资料的整理分析并结合产卵场补充调查,以1982~1983年周年逐月调查资料为本底,采用多元统计学方法分析30余年渤海鱼类种群早期补充群体群聚特性(物种多样性和关键种群)的季节变化和年代际变化,并掌握结构更替过程中优势种和重要种协同消长规律。分析结果显示,渤海各调查季节(冬季除外)鱼卵、仔稚鱼种类数以及资源丰度指数呈先降后升变动趋势。当前鱼卵种类数仅为20世纪80年代1/2左右,资源丰度不足20世纪80年代的1/10;仔稚鱼种类数和资源丰度仅为20世纪80年代的3/4左右,但冬季仔稚鱼种类数和资源丰度指数呈现上升趋势。各调查时期相同季节鱼卵优势种变化不明显,但仔稚鱼优势种变化幅度超过鱼卵,底层重要经济种类早期补充群体优势度急剧下降;鱼卵和仔稚鱼物种多样性水平在升温季节较高而在降温季节较低,调查期内各季主要呈现先降后升变动趋势。鱼类早期补充群体种类更替现象明显,近年来种类更替率呈现明显加快趋势。各调查时期相同季节各适温类型产卵亲体种数均呈现先降后升变动趋势,但各适温类型种数所占比例和全年综合各适温类型种数所占比例基本稳定。各调查时期相同季节各主要栖所类型产卵亲体种类数也均呈现先降后升变动趋势,全年综合陆架浅水中上层鱼类种数所占比例升高,中底层和底层鱼类所占比例有所下降。近30年在多重外来干扰作用下,渤海鱼类早期补充过程各个关键环节已随其栖息地(产卵场)生境要素发生不可逆变化或变迁。渤海鱼类种群早期补充群体群聚特性和结构更替是环境-捕捞胁迫下鱼类群落内多重生态位的交替失调和渔业资源结构性衰退的具体表现。  相似文献   

16.
Juvenile marine growth (SW1) of salmon and a new temperature change (TC) index were evaluated as ecosystem indicators and predictors for the post age‐0 year class strength (YCS) of groundfish in the Gulf of Alaska (GOA) and eastern Bering Sea (EBS). Our hypothesis was that SW1, as measured on the scales of adult Pacific salmon (Oncorhynchus spp.), is a proxy for ocean productivity on the continental shelf, a rearing area for young salmon and groundfish. Less negative TC index values are the result of a cool late summer followed by a warm spring, conditions favorable for groundfish YCS. In the GOA, SW1 was a positive predictor of age‐1 pollock (Theragra chalcogramma), but not age‐2 sablefish (Anoplopoma fimbria) YCS, indicating that the growth of the Karluk River sockeye salmon that enter Shelikof Strait is a proxy for ocean conditions experienced by age‐0 pollock. Contrary to our hypotheses, the TC index was a negative predictor of GOA pollock YCS; and the SW1 a negative predictor of EBS pollock and cod YCS since the 1980s. Recent fisheries oceanography survey results provide insight into possible mechanisms to support the inverse SW1 and YCS relationship. For the EBS, the TC index was a significant positive predictor for pollock and cod YCS, supporting the hypothesis that a cool late summer followed by a warm spring maximizes the over‐wintering survival of pollock and cod (Gadus macrocephalus), especially since the 1980s. The TC and SW1 index showed value for the assessment of pollock and cod, but not sablefish.  相似文献   

17.
Differences in zooplankton populations in relation to climate have been explored extensively on the southeastern Bering Sea shelf, specifically in relation to recruitment of the commercially important species walleye pollock (Gadus chalcogrammus). We addressed two research questions in this study: (i) Does the relative abundance of individual copepod species life history stages differ across warm and cold periods and (ii) Do estimated secondary production rates for copepods differ across warm and cold periods? For most copepod species, warmer conditions resulted in increased abundances in May, the opposite was observed in colder conditions. Abundances of smaller‐sized copepod species did not differ significantly between the warm and cold periods, whereas abundances of larger‐sized Calanus spp. increased during the cold period during July and September. Estimated secondary production rates in the warm period were highest in May for smaller‐sized copepods; production in the cold period was dominated by the larger‐sized Calanus spp. in July and September. We hypothesize that these observed patterns are a function of temperature‐driven changes in phenology combined with shifts in size‐based trophic relationships with primary producers. Based on this hypothesis, we present a conceptual model that builds upon the Oscillating Control Hypothesis to explain how variability in copepod production links to pollock variability. Specifically, fluctuations in spring sea‐ice drive regime‐dependent copepod production over the southeastern Bering Sea, but greatest impacts to upper trophic levels are driven by cascading July/September differences in copepod production.  相似文献   

18.
Biological and physical phenomena that affect conditions for larval survival and eventual recruitment differ in the oceanic and shelf regions. In the oceanic region, eddies are a common feature. While their genesis is not well known, eddies have unique biophysical characteristics and occur with such regularity that they likely affect larval survival. High concentrations of larval pollock often are associated with eddies. Some eddies are transported onto the shelf, thereby providing larvae to the Outer Shelf Domain. Advection, rather than local production, dominated the observed springtime increase in chlorophyll (often a correlate of larval food) in the oceanic region. Over two-thirds of the south-eastern shelf, eddies are absent and other phenomena are important. Sea ice is a feature of the shelf region: its interannual variability (time of arrival, persistence, and areal extent) affects developmental rate of larvae, timing of the phytoplankton bloom (and potentially the match/mismatch of larvae and prey), and abundance and distribution of juvenile pollock. In the oceanic region, interannual variation in food for first-feeding pollock larvae is determined by advection; in the shelf region, it is the coupled dynamics of the atmosphere–ice–ocean system.  相似文献   

19.
Analyses of climate effects often ignore differences in life history for individual species. We analyzed a 34‐year time series of eastern Bering Sea fish surveys to evaluate changes in distribution by length and between cold and warm shelf‐wide average water temperatures for 20 species over inhabited depth, temperature, and location. All species showed evidence of ontogenetic migration. Differences in distribution between years with warm and years with cold shelf‐wide water temperatures varied among species and within species at different lengths. For species where shelf‐wide temperature effects were detected, the mid‐sized fish were most active in changing spatial distribution. For aquatic organisms ontogenetic migration occurs because life history stages have different environmental requirements. This study illustrates the need to consider species responses to climate change over different life history stages, and that studies on ecosystem responses should take ontogenetic differences into consideration when assessing impacts.  相似文献   

20.
Populations of several species of marine birds and mammals in the Bering Sea and Gulf of Alaska have been declining since the mid-1970s, with numbers of one, the Steller sea lion (Eumetopias jubatus) , so depressed it was listed as threatened under the Endangered Species Act in spring 1990. All of the declining populations depend to an important extent on walleye pollock (Theragra chakogramma) for food, although they eat numerous other species as well. In contrast, certain animals that compete with pollock for common prey have been increasing in abundance. All of these changes could be related through food web connections mediated by pollock. Pollock is also important to people–it presently supports the largest single-species commercial fishery in the world, in large part because of its great biomass, which has averaged about 15 × 106t in the Bering Sea over the past 15 years. Pollock consume an inordinate proportion of the pelagic production in the Bering Sea, which further supports the conclusion that it is a key species in the ecosystem. However, there are conflicting hypotheses about the importance of the roles played by pollock as predator and prey, and about the effect that changes in pollock abundance might have on biomass yield at higher trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号