首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field experiments were conducted on a river deposit during 1983–1984 and 1984–1985 in order to study the effect of different soil management practices, such as zero tillage with surface-applied crop residue mulch at a rate of 10 t ha−1 (ZT+M), conventional tillage (CT), CT+ surface-applied crop residue mulch at a rate of 10 t ha−1 (CT + M), CT+crop residue incorporation at a rate of 10 t ha−1 (CT + SI), CT + farmyard manure incorporation at a rate of 10 t ha−1 (CT + FYM), on soil hydro-thermal regime root growth, nutrient uptake and dry matter yield of winter wheat (Triticum aestivum L.). The soils of the site are classified as Entisol, Typic Psammaquent with pH 6.0, cation exchange capacity 10 c mol (p+) per kg in the surface (0–0.3 m) depth. In the CT + M and CT + FYM treatments, higher water retention was observed compared to CI. The minimum soil temperature was also raised by 3°C under CT + M to CT at 0.1-m depth. CT + M and CT + FYM had significantly higher root mass density compared with other treatments at all stages of crop growth. The nitrogen (N) uptake under these two treatments was also significantly higher compared to CT. Under CT+M, plants did not suffer from N stress compared to other treatments. Phosphorus (P) uptake (except at tillering) and potassium (K) uptake under CT+M and CT + FYM were significantly higher than for all the other treatments. Treatments ZT+M and CT+SI behave simply to CT in terms of hydro-thermal regime, root growth, nutrient uptake and dry matter yield. The grain yield under CT+M and CT+FYM during 1983–1984 and 1984–1985 was significantly higher than that under all the other treatments.  相似文献   

2.
Research information on the effect of tillage systems on cocoyam (Xanthosoma sagittifolium (L.) Schott) growth, nutrient status and yield is lacking in Africa. The effects of zero tillage with mulch, zero tillage without mulch, manual mounding, manual ridging and conventional tillage on cocoyam yield, growth and nutrient availability were compared during 2 years on an Alfisol (Oxic Tropuldaf) at Owo in the rainforest zone of Nigeria. The surface soil (0–20 cm) was chemically analyzed before and after crop harvest and selected soil physical properties were determined. Concentration of soil organic C, N, P, K and Mg and the leaf N, P and K were significantly influenced (p = 0.05) by tillage, with zero tillage with mulch being the most effective treatment in conserving the fertility of the surface soil (0–20 cm). Soil fertility, as indicated by organic C, N, P, K, Ca and Mg, declined significantly (p = 0.05) over time in all tillage systems, but this decline was more pronounced in the conventional tillage. Zero tillage with mulch, zero tillage without mulch, manual mounding, manual ridging and conventional tillage reduced the soil organic C concentration by 20, 23, 23, 24 and 33%, respectively over the 2-year period. The decreases in soil N concentration were 25, 31, 31, 38 and 56%, soil P concentration were 13, 15, 17, 16 and 26%, and soil K concentration were 16, 26, 31, 37 and 53%, respectively. Tillage did not affect corm and cormel yields in the first year. In the second year, due to the elimination of ploughing, significant differences were obtained in the cormel yield but not of corm yield. In 2005, zero tillage with mulch produced the highest cormel yield (13.5 mg ha−1) of cocoyam followed by zero tillage without mulch (13.2 mg ha−1), manual mounding (12.7 mg ha−1) and manual ridging (12.5 mg ha−1). The lowest cormel yield (9.5 mg ha−1) of cocoyam was produced by conventional tillage. Soil water contents in zero tillage with mulch and zero tillage without mulch were significantly higher (p = 0.05) than in the other tillage systems. Soil bulk density ranging from 1.21 to 1.40 mg m−3 correlated positively with leaf nutrient concentration and yield. Cocoyam can be grown successfully on zero tillage, with mulch and without mulch or minimum tillage systems on an Alfisol of the humid tropics.  相似文献   

3.
The effects of deep tillage, straw mulching, and irrigation on corn (Zea mays L.) yield on a loamy sand (mixed, hyperthermic, Typic Ustipsamment) were studied for early (high evaporativity) and normally sown (relatively low evaporativity) crop for 3 years in a semi-arid sub-tropical monsoon region at Punjab Agricultural University, Ludhiana, India. Treatments included all combinations of two tillage systems (conventional tillage — harrowing the soil to a 10-cm depth; deep tillage — chiselling 40 cm deep, 35–40 cm apart), two irrigation regimes (75 mm irrigation when net open pan evaporation accumulated to 75 mm or 50 mm), and two straw mulch rates (0 and 6 Mg ha−1).

Deep tillage significantly reduced soil strength (cone index) and caused deeper and denser rooting than conventional tillage, more so in the dry season and with the infrequent irrigation regime than in the wet season and frequent irrigation regime. Mulch also improved rooting by influencing the hydrothermal regime of the soil. Better rooting with deep tillage and/or mulch helped the crop to extract stored soil water more efficiently, which was reflected in a favourable plant water status (indicated by canopy temperature). Averaged across years, irrigation, and mulch, deep tillage increased grain yield by 1.6 Mg ha−1 for the early season and 0.5 Mg ha−1 for the normal season crop over the yield of 2.0 Mg ha−1 achieved with conventional tillage regardless of season. Yield increase with mulching was also greater for the early season crop. Crop response to deep tillage and mulching was generally linked to the interplay between water supply (rain + irrigation) and demand (seasonal evaporativity) during the growing season. Increasing irrigation frequency increased crop yield when evaporativity exceeded rainfall early in the growing season. The results show that higher corn yields on coarse-textured soils in these regions may be achieved by advancing the seeding time and by using a proper combination of deep tillage, mulch, and irrigation.  相似文献   


4.
Field experiments were conducted for 6 years on a silty clay loam to study the effect of soil management on soil physical properties, root growth, nutrient uptake and yield of rainfed maize (Zea mays L.) and wheat (Triticum aestivum L.) grown in a sequence. Treatments were: no-tillage (NT), NT+pine needle mulch at a rate of 10 t ha−1 (NT+M), conventional tillage (CT), CT+pine needle mulch at a rate of 10 t ha−1 (CT+M) and deep tillage (DT). The soil is classified as a Typic Hapludalf and has compact sub-surface layers. The NT treatment increased the bulk density of the surface layer but this problem was not observed in the no-tilled treatment having mulch at the surface (NT+M). The CT+M and NT+M treatments favourably moderated the hydro-theregime resulting in greater root growth, nutrient uptake and grain yields of maize and wheat. The DT treatment, imposed only once, at the beginning of the study, also enhanced root growth and grain yields. The yields were similar to the mulched treatments for maize and somewhat less than the mulched treatments for wheat. Mulched treatments generally showed significantly greater total uptake of N, P and K than corresponding unmulched ones. Since NT+M was comparable to CT for maize and superior for wheat, the latter is preferable since it does not require ellaborate tillage.  相似文献   

5.
Under semiarid Mediterranean climatic conditions, soils typically have low organic matter content and weak structure resulting in low infiltration rates. Aggregate stability is a quality indicator directly related to soil organic matter, which can be redistributed within soil by tillage. Long-term effects (1983–1996) of tillage systems on water stability of pre-wetted and air dried aggregates, soil organic carbon (SOC) stratification and crop production were studied in a Vertic Luvisol with a loam texture. Tillage treatments included conventional tillage (CT), minimum tillage (MT) and zero tillage (ZT) under winter wheat (Triticum aestivum L.) and vetch (Vicia sativa L.) rotation (W–V), and under continuous monoculture of winter wheat or winter barley (Hordeum vulgare L.) (CM). Aggregate stability of soil at a depth of 0–5 cm was much greater when 1–2 mm aggregates were vacuum wetted prior to sieving (83%) than when slaked (6%). However, slaking resulted in tillage effects that were consistent with changes in SOC. Aggregate stability of slaked aggregates was greater under ZT than under CT or MT in both crop rotations (i.e., 11% vs. 3%, respectively).

SOC under ZT tended to accumulate in the surface soil layer (0–5 and 5–10 cm) at the expense of deeper ones. At depths of 10–20 and 20–30 cm no differences in SOC were encountered among tillage systems, but CT exhibited the highest concentration at 30–40 cm depth. Nevertheless, when comparisons were made on mass basis (Mg ha−1), significant differences in stocked SOC were observed at depths of 0–10 and 0–20 cm, where ZT had the highest SOC content in both rotations. The stock of SOC to a depth of 40 cm, averaged across crop rotations, was greater under ZT (43 Mg ha−1) than under CT (41 Mg ha−1) and MT (40 Mg ha−1) although these figures were not significantly different. Likewise, no significant differences were encountered in the stock of SOC to a depth of 40 cm among crop rotations (i.e., 42 Mg ha−1 for W–V vs. 40 Mg ha−1 for CM).

Crop production with wheat–vetch and continuous cereal showed no differences among tillage systems. Yields were strongly limited by the environmental conditions, particularly the amount of rainfall received in the crop growth season and its distribution. Similar yield and improved soil properties under ZT suggests that it is a more sustainable system for the semiarid Mediterranean region of Spain.  相似文献   


6.
A 3-year field study was conducted to evaluate the effect of three tillage practices (conventional, zero and reduced/strip) with two nitrogen levels (120 and 150 kg N ha−1) applied in primary strips and three crop residue management practices (removal, burning and incorporation) in secondary strips in wheat after rice. Reduced tillage resulted in significantly higher overall mean wheat yield (5.10 Mg ha−1) compared to conventional (4.60 Mg ha−1) and zero tillage (4.75 Mg ha−1). Residue incorporation resulted in highest mean yield (5.86 Mg ha−1) during third year. Maximum mean yield (6.1 Mg ha−1) was obtained in reduced tillage followed by conventional tillage (5.8 Mg ha−1) under residue incorporation in third year. The weed dry weight recorded at 30 days after sowing was highest (0.3 Mg ha−1) under zero tillage and lowest under conventional tillage (0.16 Mg ha−1). Among crop residue management practices, the highest dry weight of weeds (0.22 Mg ha−1) was recorded under residue incorporation. The highest infiltration rate (1.50 cm h−1) was recorded in residue incorporation followed by residue burning (1.44 cm h−1) whereas; the lowest (0.75 cm h−1) in zero tillage. Soil bulk density was the highest (1.69 Mg m−3) under zero tillage and the lowest in residue incorporation (1.59 Mg m−3). There were no changes in soil available P and K after each crop sequence in relation to tillage practices during first 2 years. Higher organic carbon (5.1–5.4 g kg−1) was measured under zero tillage compared to other treatments. Residue incorporation increased soil organic carbon and available P while higher available K was monitored in burning treatment during the third year. These results suggest that reduced tillage and in situ incorporation of crop residues at 5 Mg ha−1 along with 150 kg N ha−1 were optimum to achieve higher yield of wheat after rice in sandy loam soils of Indo-Gangetic plains of India.  相似文献   

7.
The potential benefits of conservation tillage practices depend mainly on the soil and climatic conditions of the site. A study was conducted to determine the effects of three tillage systems (conventional, CT; reduced, RT; zero, ZT) on spring wheat (Triticum aestivum L.) and weed growth on a clay soil in temperate continental climate, northern Alberta (55°43′N, 118°41′W), Canada. A medium duty cultivator with 25 cm sweeps spaced 22 cm apart and a working depth of 8–10 cm was used for tillage in the CT (once in fall and twice in spring) and RT (once in spring) plots. The ZT plots received a harrowing to spread straw and a preseeding application of Roundup (glyphosate) to control weeds. Experimental design was a randomized complete block with four replications and the tillage systems were fixed in space for the 1989, 1990 and 1991 seasons. The RT treatment resulted in higher yields than the CT or ZT treatments. However, the differences were not always significant. The ZT treatment produced higher yields than CT in 1989 and 1991, whereas its yields were lower than CT in 1990. The 3 year means of total dry matter (TDM) were 3899 kg ha−1, 3640 kg ha−1 and 3331 kg ha−1 for the RT, ZT and CT treatments, respectively. The corresponding grain yields were 1728 kg ha−1, 1573 kg ha−1 and 1530 kg ha−1. The concentration of total N in plants and grains of wheat, amounts of extractable NO3-N, NH4-N and P in soil and soil moisture and bulk density were not significantly affected by tillage. The mean weight diameter of aggregates in surface soil was significantly greater under ZT than under the other systems. Wild buckwheat (Polygonum convolvulus L.) was more abundant under CT, but common groundsel (Senecio vulgaris L.), dandelion (Taraxacum officinale Weber), hemp nettle (Galeopsis tetrahit L.), field horsetail (Equisetum arvense L.) and smartweed (Polygonum scabrum Moench) tended to have higher populations under the ZT system. The populations of foxtail barley (Hordeum jubatum L.) wild rose (Rosa sp.), stinkweed (Thlaspi arvense L.) and wild oats (Avena fatua L.) showed no consistent effect of tillage. Tillage or preseeding application of glyphosate did not provide an effective control of all weed species. The spring tillage of the RT system improved crop yields and weed control relative to ZT, whereas the fall tillage of the CT system (in addition to spring tillage) reduced crop yields and had no significant effect on weed population relative to RT. The overall results showed that tillage intensity could be reduced to the level of RT without any adverse influence on crop yields, soil properties or weed populations. The RT system is also economical and environmentally desirable owing to lower tillage and herbicide requirements.  相似文献   

8.
Manure is a source of plant nutrients and can make a valuable contribution to soil organic matter (SOM). Two experimental sites were studied on a Halpic Phaeozem soil near Bad Lauchstadt in Germany. The first experiment, called the static experiment, commenced in 1902. The impact of fresh farmyard manure (FYM) (0, 20 and 30 t ha−1 2 year−1) combined with P, K and N fertiliser application on total organic C (CT), labile C (CL), non-labile C (CNL), total N (NT), mean weight diameter (MWD) and unsaturated hydraulic conductivity (Kunsat) was investigated. The second experiment commenced in 1984 and investigated the effect of extreme rates of fresh FYM applications (0, 50, 100 and 200 t ha−1 year−1) and cropping, or a continuous tilled fallow on the same soil properties. At both sites a nearby grassland site served as a reference. On the static experiment, FYM application increased all C fractions, particularly CL, where application of 30 t ha−1 2 year−1 increased CL by 70% compared with no FYM application. Fertiliser additions to the static experiment had a positive influence on C fractions while NT increased from both FYM and fertiliser application. MWD increased as a result of FYM application, but did not reach that of the grassland site. Both fertiliser and FYM application increased Kunsat (10 mm tension) on the static experiment. In the second experiment application of 200 t ha−1 year−1 of FYM increased concentrations of CL by 173% and of CNL by 80%, compared with no FYM application to make them equivalent to, or greater than the grassland site. A continuously tilled fallow resulted in significant decreases in all C fractions, NT and MWD compared with the cropped site, while Kunsat (10 mm tension) was increased on the 0 and 50 t ha−1 year−1 treatments as a result of a recent tillage. There was no difference in Kunsat between the cropped and the continuous tilled fallow at FYM applications of 100 and 200 t ha−1 year−1. There were similar significant positive correlations of all C fractions and NT with MWD on both experimental sites but the relationships were much stronger on the extreme FYM experiment. Weaker relationships of C fractions and NT with Kunsat (10 mm tension) occurred for the static experimental site but these were not significant for the extreme FYM experimental site. The strongest relationship between C fractions and Kunsat was with CL. This research has shown that applications of FYM can increase SOM and improve soil physical fertility. However, the potential risk of very high rates of FYM on the environment need to be taken into consideration, especially since the application of organic materials to soils is likely to increase in the future.  相似文献   

9.
The effect of soil incorporations of lantana (Lantana spp.) biomass, an obnoxious weed, on physical environment of a silty clay loam soil (Typic Hapludalf) under rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping was studied in a long-term field experiment conducted in a wet temperate region of north India. Fresh lantana biomass was incorporated into the plough layer at 10, 20 and 30 Mg ha−1 annually, 7–10 days before puddling. Plant-available water capacity (PAWC), non-limiting water range (NLWR) and NLWR:PAWC ratio were determined to characterize soil physical environment during wheat crop in the tenth cropping cycle.

Ten annual applications of lantana at 10, 20 and 30 Mg ha−1, increased organic carbon (OC) content over control by 12.6, 17.6 and 27.9% in 0–15 cm soil layer, and 17.1, 26.3 and 39.5% in 15–30 cm soil layer, respectively. The OC content in 0–15 and 15–30 cm soil layer of control plots was 11.1 and 7.6 g kg−1 soil. Bulk density decreased by 3–14% in 7.5–10.5 cm layer and 1–6% in 15–18 cm layer. Volumetric moisture contents at 10% air-filled porosity were 38.4, 40.0, 54.5 and 55.7% at 7.5–10.5 cm depth, and 31.4, 32.2, 33.9 and 34.6% at 15–18 cm depth corresponding to 0, 10, 20 and 30 Mg ha−1 lantana treatment, respectively. At 15–18 cm soil depth, volumetric moisture contents at 2 MPa soil penetration resistance were 26.9, 24.8, 23.0 and 19.6% in zero, 10, 20 and 30 Mg ha−1 lantana-treated plots, respectively. Lower soil water contents associated with 10% air-filled porosity and greater soil water contents associated with a limiting penetration resistance of 2 MPa resulted in a lower NLWR (4.3%) for control as compared to lantana-treated soil (7.4–15.1%). The PAWC showed slight increase from 12.9 to 13.4–14.9% due to lantana additions. The NLWR:PAWC ratio was also lower in control (0.33) as compared to lantana-treated soil (0.55–1.01). The NLWR was significantly and positively correlated with wheat grain yield (r=0.858**).  相似文献   


10.
There has been a trend toward increased cropping intensity and decreased tillage intensity in the semiarid region of the Canadian prairies. The impact of these changes on sequestration of atmospheric CO2 in soil organic carbon (C) is uncertain. Our objective was to quantify the changes in total, mineralizable and light fraction organic C and nitrogen (N) due to the adoption of continuous cropping and conservation tillage practices. We sampled three individual long-term experiments at Lethbridge, Alberta, in September 1992: a spring wheat (Triticum aestivum L.)-fallow tillage study, a continuous spring wheat tillage study and a winter wheat rotation-tillage study. Treatments had been in place for 3–16 years. In the spring wheat-fallow study, different intensities (one-way disc > heavy-duty cultivator > blade cultivator) of conventional tillage (CT) were compared with minimum tillage (MT) and zero tillage (ZT). After 16 years, total organic C was 2.2 Mg ha−1 lower in more intensively worked CT treatments (one-way disc, heavy-duty cultivator) than in the least-intensive CT treatment (blade cultivator). The CT with the blade cultivator and ZT treatments had similar levels of organic C. The CT treatments with the one-way disc and heavy-duty cultivator had light fraction C and N and mineralizable N amounts that were about 13–18% lower than the CT with the blade cultivator, MT or ZT treatments. In the continuous spring wheat study, 8 years of ZT increased total organic C by 2 Mg ha−1, and increased mineralizable and light fraction C and N by 15–27%, compared with CT with a heavy-duty cultivator prior to planting. In the winter wheat rotation-tillage study, total organic C was 2 Mg ha−1 higher in a continuous winter wheat (WW) rotation compared with that in a winter wheat-fallow rotation. The lack of an organic C response to ZT on the WW rotation may have been due to moldboard plowing of the ZT treatment in 1989 (6 years after establishment and 3 years before soil sampling), in an effort to control a severe infestation of downy brome (Bromus tectorum L.). Our results suggest that although relative increases in soil organic matter were small, increases due to adoption of ZT were greater and occurred much faster in continuously cropped than in fallow-based rotations. Hence intensification of cropping practices, by elimination of fallow and moving toward continuous cropping, is the first step toward increased C sequestration. Reducing tillage intensity, by the adoption of ZT, enhances the cropping intensity effect.  相似文献   

11.
Soil fertility, one of the important determinants of agricultural productivity, is generally thought to be supplemented through the application of nutrients mainly through inorganic fertilizers. The physical fertility of the soil, which creates suitable environment for the availability and uptake of these nutrients, is generally ignored. The present study aims to characterize the soil physical environment in relation to the long term application of farm yard manure (FYM) and inorganic fertilizers in rice–wheat. The treatments during both rice and wheat crops were (i) farm yard manure @ 20 t ha−1 (FYM); (ii) nitrogen @ 120 kg ha−1 (N120); (iii) nitrogen and phosphorus @ 120 and 30 kg ha−1 (N120P30) and (iv) nitrogen, phosphorus and potassium @ 120, 30 and 30 kg ha−1 (N120P30K30) in addition to (iv) control treatment, i.e. without any fertilizer and/or FYM addition. The treatments were replicated four times in randomized block design in a sandy loam (typic Ustipsament, non-saline, slightly alkaline). Bulk density, structural stability of soil aggregates and water holding capacity of 0–60 cm soil layer were measured.

The average mean weight diameter (MWD) was highest in FYM-plots both in rice (0.237 mm) and wheat (0.249 mm) closely followed by that in N120P30K30 plots. The effect of FYM in increasing the MWD decreased with soil depth. The addition of both FYM and N120P30K30 increased the organic carbon by 44 and 37%, respectively in rice. The total porosity of soil increased with the application of both FYM and N120P30K30 from that in control plots. In 0–15 cm soil layer, the total porosity increased by 25% with FYM from that in control plots. This difference decreased to 13% in 15–30 cm soil layer. The average water holding capacity (WHC) was 16 and 11% higher with FYM and N120P30K30 application from that in control plots. The MWD, total porosity and WHC improved with the application of balanced application of fertilizers. The grain yield and uptake of N, P and K by both rice and wheat were higher with the application of FYM and inorganic fertilizers than in control plots. The carbon sequestration rate after 32 years was maximum (0.31 t ha−1 year−1) in FYM-plots, followed by 0.26 t ha−1 year−1 in N120P30K30-plots, 0.19 t ha−1 year−1 in N120P30 and minimum (0.13 t ha−1 year−1) in N120-plots.  相似文献   


12.
Long-term influence of N fertilizer, tillage and straw on crop production and soil properties are not well known in central Alberta. Field experiments were established in autumn 1979, on a Black Chernozemic soil and on a Gray Luvisolic soil in north-central Alberta to determine the long-term effect of tillage, straw and N fertilizer on yield and N uptake of barley (Hordeum vulgare L.). Fertilizer N was applied annually at 56 kg ha−1. The 11 year averages of barley yields and N uptake under zero tillage were lower than under conventional tillage. Retention rather than removal of straw tended to reduce barley yield for the initial 6 years and 2 year at Site 1 and Site 2, respectively. A simple mathematical model of average annual plant N uptake and grain yield could account for most of the variation in the data observed at both sites (R2 = 0.907; P < 0.01). Final values of soil N, calculated using a mass balance approach, agree closely with values measured at the end of the eleventh year. Conventional tillage and zero tillage, with addition of fertilizer N and retention of straw, were the only treatments with apparent but small net addition of N to soil at Site 1 (40 kg ha−1 and 117 kg ha−1, respectively). At Site 2, only the zero tillage treatment with addition of fertilizer and retention of straw gained soil N (29 kg ha−1). In conclusion, soil ecosystems functioning in subhumid environments with slight to moderate heat limitations such as those in central Alberta can adapt, within a few years, to zero tillage practices with full retention of straw.  相似文献   

13.
Many farmers in southeast Asia are growing rice on unpuddled soil. This practice does not permit breaking of the deadlock of increase in productivity in spite of using high yielding varieties and practising all known scientific technologies. Furthermore, farmers do dry seeding which leads to heavy infestation of weeds and reduces response to other inputs. Similarly, in rice–wheat belt due to short turn around time farmers resort to broadcast sowing of wheat after rice and no data on benefits or otherwise of tillage are available. A field study was therefore conducted for 3 years (1993–1994 to 1995–1996) at the Indian Agricultural Research Institute, New Delhi to study the effect of tillage and seeding methods in rice–wheat cropping system. Treatments included four combinations of two puddling treatments (puddling and no puddling) and two methods of rice seeding (direct seeding and transplanting) in rice and two tillage treatments (zero and conventional tillage) in wheat. Results indicated that puddling increased grain yield of rice by 0.7–1 t ha−1 and of succeeding wheat by 0.2–0.4 t ha−1, straw yield of rice by 0.8–1.7 t ha−1 and of succeeding wheat by 0.1–1.0 t ha−1.

Puddling reduced water requirement of rice by 75 mm ha and increased net return of rice–wheat system by US $175 ha−1. Transplanted rice gave significantly higher grain and straw yields and net returns than direct seeded rice both on puddled and unpuddled seedbed. Conventional tillage in wheat also increased productivity of rice–wheat cropping system significantly over zero tillage after both puddled and non-puddled rice. Our results thus show that rice should be grown on puddled soil and wheat after rice should be sown after conventional tillage.  相似文献   


14.
Carbon sequestration in two Brazilian Cerrado soils under no-till   总被引:2,自引:0,他引:2  
A considerable proportion of the 200 million hectares of the Brazilian Cerrado is suitable for annual crops but little is known about the effects of tillage on the C dynamics of Cerrado soils. We evaluated the role of two representative Cerrado Oxisols (350 and 650 g clay kg−1) as sources or sinks of atmospheric C when managed under three tillage systems (conventional tillage (CT), reduced tillage (RT), and no-till (NT)) in 8- and 5-year long-term experiments. A literature review was also carried out and the mean C sequestration rates in no-till soils of tropical and subtropical regions of Brazil were calculated and compared with values for soils from temperate regions of the world. The original C stocks in 0–20 cm layer of soils under native Cerrado were higher in the clayey (54.0 Mg ha−1) than in the sandy clay loam soil (35.4 Mg ha−1), suggesting a higher physical stability of organic matter associated with variable clay minerals in the clayey Oxisol. The original C stocks of the native Cerrado soils appear not to have decreased after 23 years of conventional tillage in the sandy clay loam Oxisol, except when the soil had been subjected to erosion (15% loss of C), or after 25 years in the clayey Oxisol. Compared to conventionally tilled soil, the C stocks in no-till sandy clay loam Oxisol increased by 2.4 Mg ha−1 (C sequestration rate = 0.30 Mg ha−1 year−1) and in the clayey Oxisol by 3.0 Mg ha−1 (C sequestration rate = 0.60 Mg ha−1 year−1). The mean rate of C sequestration in the no-till Brazilian tropical soils was estimated to be 0.35 Mg ha−1 year−1, similar to the 0.34 Mg ha−1 year−1 reported for soils from temperate regions but lower than the 0.48 Mg ha−1 year−1 estimated for southern Brazilian subtropical soils. Considering the large area (about 70 million hectares) of the Cerrado which is currently used and potentially available for cropland, the adoption of no-till systems could turn the Cerrado soils into a significant sink for atmospheric C and contribute to the mitigation of global climate change.  相似文献   

15.
The economic performance of continuous wheat (Triticum aestivum L.) and fallow-wheat rotations grown under conventional, minimum- and zero-tillage management practices on silt loam, sandy loam and heavy clay in southwestern Saskatchewan was determined during the relatively dry period of 1982–1988. The costs and returns for each rotation-tillage system were evaluated annually based on 1989–1990 price and cost conditions, and for various other plausible scenarios. Gross returns on silt loam were higher for continuous wheat (average 228 $ ha−1) than for fallow-wheat systems (average 155 $ ha−1). On the sandy loam, gross returns were similar for all cropping systems (average 112 $ ha−1); on the heavy clay, they were higher for fallow-wheat than for continuous wheat (139 versus 119 $ ha−1). Conservation tillage management increased gross returns over that obtained with conventional tillage only in years when growing season temperatures were high and precipitation was poorly distributed, or when the 21-month summerfallow period was droughty. On silt loam, gross returns were significantly lower with conservation tillage in as many as 3 of 7 years. On silt loam, net returns were highest for conventionally tilled continuous wheat when wheat prices were> 175 $ t−1; at lower wheat prices, conventionally tilled fallow-wheat was the most profitable. On the other soils, minimum- and zero-tillage fallow-wheat provided the highest net returns at all wheat prices tested, with minimum tillage being slightly better at low wheat prices, but at these sites conventionally tilled fallow-wheat was not studied. The cost of production was highest for continuous wheat and for zero-tillage management. For fallow-wheat systems, conservation tillage required lower expenditures than conventional tillage for fuel, labor, machine repair and machine overheads; costs for minimum tillage averaged 9 $ ha−1 and for zero tillage 15 $ ha−1 lower on the silt loam. These savings were more than offset by increased herbicide costs which averaged 26 and 64 $ ha−1 higher for minimum-tillage and zero-tillage systems, respectively. We concluded that producers in southwestern Saskatchean who are motivated primarily by short-term profit will find little incentive to adopt conservation tillage systems for spring wheat production, unless they are situated on soils that have already incurred severe soil loss or the soils are highly prone to further erosion losses.  相似文献   

16.
Soil organic matter is strongly related to soil type, landscape morphology, and soil and crop management practices. Therefore, long-term (15–36-years) effects of six cropland management systems on soil organic carbon (SOC) pool in 0–30 cm depth were studied for the period of 1939–1999 at the North Appalachian Experimental Watersheds (<3 ha, Dystric Cambisol, Haplic Luvisol, and Haplic Alisol) near Coshocton, OH, USA. Six management treatments were: (1) no tillage continuous corn with NPK (NC); (2) no tillage continuous corn with NPK and manure (NTC-M); (3) no tillage corn–soybean rotation (NTR); (4) chisel tillage corn–soybean rotation (CTR); (5) moldboard tillage with corn–wheat–meadow–meadow rotation with improved practices (MTR-I); (6) moldboard tillage with corn–wheat–meadow–meadow rotation with prevalent practices (MTR-P). The SOC pool ranged from 24.5 Mg ha−1 in the 32-years moldboard tillage corn (Zea mays L.)–wheat (Triticum aestivum L.)–meadow–meadow rotation with straight row farming and annual application of fertilizer (N:P:K=5:9:17) of 56–112 kg ha−1 and cattle (Bos taurus) manure of 9 Mg ha−1 as the prevalent system (MTR-P) to 65.5 Mg ha−1 in the 36-years no tillage continuous corn with contour row farming and annual application of 170–225 kg N ha−1 and appropriate amounts of P and K, and 6–11 Mg ha−1 of cattle manure as the improved system (NTC-M). The difference in SOC pool among management systems ranged from 2.4 to 41 Mg ha−1 and was greater than 25 Mg ha−1 between NTC-M and the other five management systems. The difference in the SOC pool of NTC-M and that of no tillage continuous corn (NTC) were 16–21 Mg ha−1 higher at the lower slope position than at the middle and upper slope positions. The effect of slope positions on SOC pools of the other management systems was significantly less (<5 Mg ha−1). The effects of manure application, tillage, crop rotation, fertilizer rate, and soil and water conservation farming on SOC pool were accumulative. The NTC-M treatment with application of NPK fertilizer, lime, and cattle manure is an effective cropland management system for SOC sequestration.  相似文献   

17.
The yield of direct-seeded and transplanted upland rice was investigated for seven tillage methods for an ultisol in a high rainfall region of southeastern Nigeria. The tillage methods were: two compaction passes of a 6-t roller with and without residue mulch; six compaction passes with mulch; ploughing with and without mulch and no-till with and without mulch. Soil compaction decreased seedling emergence and shoot and root growth. Residue mulching decreased seedling emergence by 35.6% in direct-seeded rice. There were more leaves, productive tillers and dry matter in the ploughed plots. Root densities at 10–20- and 20–30-cm depths were higher by 157 and 47%, respectively, in ploughed treatments. The highest grain yields of 6.3 and 6.1 Mg ha−1 in ploughed plots for the first and second seasons, respectively, were associated with greater uptake of P, Na, Fe and Zn at flowering and of N, Mg, K, Mn and Cu at both maximum tillering and flowering growth stages. The grain yield in the first season was 2.1 and 2.5 Mg ha−1 for two- and six-compaction pass mulched plots, respectively. In the second season, the yields of no-till and compacted treatments were identical and ranged from 1.5 to 2.4 Mg ha−1. Mulching decreased grain yield by 43, 27 and 12% on compacted, no-till and ploughed plots, respectively, due to transient flooding and mechanical impedance to seedling emergence by the mulch cover. Within the unmulched treatments, ploughing increased rice yield by 71 and 35% over two compaction passes and the no-till treatments, respectively. The least bulk density and penetrometer resistance were also observed in ploughed plots.  相似文献   

18.
Improved nitrogen use efficiency would be beneficial to agroecosystem sustainability in the northern Great Plains of the USA. The most common rotation in the northern Great Plains is fallow–spring wheat. Tillage during fallow periods controls weeds, which otherwise would use substantial amounts of water and available nitrogen, decreasing the efficiency of fallow. Chemical fallow and zero tillage systems improve soil water conservation, and may improve nitrogen availability to subsequent crops. We conducted a field trial from 1998 through 2003 comparing nitrogen uptake and nitrogen use efficiency of crops in nine rotations under two tillage systems, conventional and no-till. All rotations included spring wheat, two rotations included field pea, while lentil, chickpea, yellow mustard, sunflower, and safflower were present in single rotations with wheat. Growing season precipitation was below average in 3 of 4 years, resulting in substantial drought stress to crops not following fallow. In general, rotation had a greater influence on spring wheat nitrogen accumulation and use efficiency than did tillage system. Spring wheat following fallow had substantially higher N accumulation in seed and biomass, N harvest index, and superior nitrogen use efficiency than wheat following pea, lentil, chickpea, yellow mustard, or wheat. Preplant nitrate-N varied widely among years and rotations, but overall, conventional tillage resulted in 9 kg ha−1 more nitrate-N (0–60 cm) for spring wheat than did zero tillage. However, zero tillage spring wheat averaged 11 kg ha−1 more N in biomass than wheat in conventional tillage. Nitrogen accumulation in pea seed, 45 kg ha−1, was superior to that of all alternate crops and spring wheat, 17 and 23 kg ha−1, respectively. Chickpea, lentil, yellow mustard, safflower, and sunflower did not perform well and were not adapted to this region during periods of below average precipitation. During periods of drought, field pea and wheat following fallow had greater nitrogen use efficiency than recropped wheat or other pulse and oilseed crops.  相似文献   

19.
In the hills of north–west India, maize (Zea mays L.)-wheat (Triticum aestivum L.) is the dominant cropping system. However, rainfed wheat suffers from lack of optimum moisture at sowing. Field experiments were conducted for 3 years on a silty clay loam (Typic Hapludalf) to evaluate the effectiveness of mulches and conservation tillage for rainfed wheat in mitigating this problem. The treatments were ten factorial combinations of five mulch-tillage practices and two nitrogen levels (N60 and N120 kg ha−1). Mulch treatments consisted of application of 10 Mg ha−1 (dry weight basis), to previous standing maize, of either wild sage (Lantana camara L.) or eupatorium (Eupatorium adenophorum Sprengel) in combination with either conventional or conservation (minium) tillage prior to wheat sowing. These alternative practices were compared to the conventional farmer practice of soil tillage after harvest of maize with no mulch. The application of these weed mulches to standing maize maintained friable soil structure owing to a five fold higher mean population of earthworms underneath mulch. Mulches resulted in 0.06–0.10 m3 m−3 higher moisture in the seed-zone when wheat was sown compared with the conventional farmer practice of soil tillage after maize harvest. Mulch-conservation tillage treatments favourably moderated the hydro-thermal regime for growing a wheat crop. The mean root mass density under these treatments at wheat flowering was higher by 1.27–1.40 times over the conventional farmer practice during the 3 year study. Conservation tillage holds promise because it does not require elaborate tillage and may ultimately reduce animal draught in the hilly regions. Recycling available organic materials having no fodder value coupled with conservation tillage may help enrich the soil environment in the long-term. The practice also offers gainful use of these obnoxious weeds that cause great menace in grass and forest lands in the region.  相似文献   

20.
Improved-fallow agroforestry systems are increasingly being adopted in the humid tropics for soil fertility management. However, there is little information on trace gas emissions after residue application in these systems, or on the effect of tillage practice on emissions from tropical agricultural systems. Here, we report a short-term experiment in which the effects of tillage practice (no-tillage versus tillage to 15 cm depth) and residue quality on emissions of N2O, CO2 and CH4 were determined in an improved-fallow agroforestry system in western Kenya. Emissions were increased following tillage of Tephrosia candida (2.1 g N2O-N ha−1 kg N applied−1; 759 kg CO2-C ha−1 t C applied−1; 30 g CH4-C ha−1 t C applied−1) and Crotalaria paulina residues (2.8 g N2O-N ha−1 kg N applied−1; 967 kg CO2-C ha−1 t C applied−1; 146 g CH4-C ha−1 t C applied−1) and were higher than from tillage of natural-fallow residues (1.0 g N2O-N ha−1 kg N applied−1; 432 kg CO2-C ha−1 t C applied−1; 14.7 g CH4-C ha−1 t C applied−1) or from continuous maize cropping systems. Emissions from these fallow treatments were positively correlated with residue N content (r = 0.62–0.97; P < 0.05) and negatively correlated with residue lignin content (r = −0.56, N2O; r = −0.92, CH4; P < 0.05). No-tillage of surface applied Tephrosia residues lowered the total N2O and CO2 emitted over 99 days by 0.33 g N2O-N ha−1 kg N applied−1 and 124 kg CO2-C ha−1 t C applied−1, respectively; estimated to provide a reduction in global warming potential of 41 g CO2 equivalents. However, emissions were increased from this treatment over the first 2 weeks. The responses to tillage practice and residue quality reported here need to be verified in longer term experiments before they can be used to suggest mitigation strategies appropriate for all three greenhouse gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号