首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freundlich isotherms were obtained for the adsorption equilibrium of the herbicides metamitron and chloridazon with the components of a representative soil in a pesticide concentration range of 10-1000 γg ml?1 for metamitron and 10-500 μg ml?1 for chloridazon. The mobility of these herbicides through soil columns was also studied using the displacement technique described by Davidson (Soil Sci. Soc. Amer. Proc., 32 (1968) 629). The experiment was carried out simultaneously in three columns, two of which were fed with solutions of the herbicides while the third was used as a control. The herbicide solutions flowed down by gravity and were collected at the outlet at different times. The herbicide content of these outlet solutions was determined by Differential Pulse Polarography.  相似文献   

2.
Rates of carbon dioxide evolution and degradation rates of metamitron, metazachlor and metribuzin were measured in two soils in the presence of three microbial inhibitors. The nonselective microbial inhibitor sodium azide reduced both carbon dioxide evolution and the rate of loss of all three herbicides in both soils, although the reduction in degradation rate of metamitron was small. The antibacterial antibiotic novobiocin enhanced carbon dioxide evolution from both soils but had variable effects on the rates of herbicide degradation. It inhibited degradation of metazachlor and metribuzin, and in one of the soils its effects on metazachlor degradation were similar to those of sodium azide. Novobiocin inhibited degradation of metamitron to a small extent in one soil only. The antifungal antibiotic cycloheximide also enhanced carbon dioxide evolution from both soils. In general, its effects on herbicide degradation were similar to those of novobiocin, although the extent of inhibition was usually less pronounced. The results are discussed in terms of the relative involvement of microorganisms in degradation of the three herbicides.  相似文献   

3.
The retention and degradation of metribuzin herbicide were studied under two environmental conditions. Field studies were carried out on two soils, a sandy loam soil (soil A) and a clay soil (soil B). Metribuzin was applied with a jet sprayer at 1060 g a.i. ha?1 and 1960 g a.i. ha?1 on soils A and B respectively. Reconstituted soil columns were used to study the herbicide movement and metabolism in the two soils. Analyses of metribuzin and its metabolites were carried out using standardized methods. The results indicated a very weak capacity of adsorption of metribuzin in the two soils, and the weak adsorbed fraction is easily desorbed. Degradation and mobility of metribuzin in the field and laboratory soil columns were very intense and rapid. Soil A favoured reductive deamination whereas soil B favoured oxidative desulphuration and the respective metabolites deaminometribuzin and diketometribuzin yield the same product deaminodiketometribuzin. Both leaching by rainfall and degradation were important in the disappearance of metribuzin from the soils.  相似文献   

4.
The persistence and movement of residues of alachlor, alrazine and metribuzin were measured in a mini-lysimeter system in the field. This comprised a number of soil columns (11 cm diametert; 30 cm long), and permitted the vertical distribution of residues to be determined at. intervals alter application and the collection and analysis of leaehale water. Laboratory experiments were also performed to determine the degradation rates of the three herbicides and their strengths of adsorption by the test soil. The results showed an order of degradation rate of metribuzin> alachlor>atrazine and an order of adsorption of alacblor>atrazine>melribuzin. Movement of residues in the soil columns and concentrations in the leachate were inversely related to the strength of adsorption. Parameters derived from the laboratory data were used in conjunction with weather data for the period of the field experiment in three mathematical models of pesticide leaching: VARLEACH, LEACHP and PRZM2. In most instances, the models gave acceptable predictions of the distribution of residues in soil. This was particularly so for the less mobile compound alachlor. With the most mobile compound, metribuzin, residues were not well predicted at the later sampling dates. All three models gave accurate predictions of the volumes of drainage water, but none of them predicted the concentrations of herbicide in the leachate, presumably because they do not take account of preferential flow pathways of water and solute in the soil.  相似文献   

5.
The introduction of crops resistant to the broad spectrum herbicide glyphosate, N-(phosphonomethyl)glycine, may constitute an answer to increased contamination of the environment by herbicides, since it should reduce the total amount of herbicide needed and the number of active ingredients. However, there are few published data comparing the fate of glyphosate in the environment, particularly in soil, with that of substitute herbicides. The objective of this study is to compare the fate of glyphosate in three soils with that of four herbicides frequently used on crops that might be glyphosate resistant: trifluralin, alpha,alpha,alpha-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine, and metazachlor, 2-chloro-N-(pyrazol-1-ylmethyl)acet-2',6'-xylidide for oilseed rape, metamitron, 4-amino-4,5-dihydro-3-methyl-6-phenyl-1,2,4-triazin-5-one for sugarbeet and sulcotrione, 2-(2-chloro-4-mesylbenzoyl)cyclohexane-1,3-dione for maize. The distribution of herbicides between the volatilized, mineralized, extractable and non-extractable fractions was studied, along with the formation of their metabolites in laboratory experiments using 14C-labelled herbicides, over a period of 140 days. The main dissipation pathways were mineralization for glyphosate and sulcotrione, volatilization for trifluralin and non-extractable residues formation for metazachlor and metamitron. The five herbicides had low persistence. Glyphosate had the shortest half-life, which varied with soil type, whereas trifluralin had the longest. The half-lives of metazachlor and sulcotrione were comparable, whereas that of metamitron was highly variable. Glyphosate, metazachlor and sulcotrione were degraded into persistent metabolites. Low amounts of trifluralin and metamitron metabolites were observed. At 140 days after herbicide applications, the amounts of glyphosate and its metabolite residues in soils were the lowest in two soils, but not in the third soil, a loamy sand with low pH. The environmental advantage in using glyphosate due to its rapid degradation is counterbalanced by accumulation of aminomethylphosphonic acid specifically in the context of extensive use of glyphosate.  相似文献   

6.
The rates of degradation of metamitron, metazachlor and metribuzin were measured in 12 mineral soils and the first order rate constants were compared with soil properties by regression analysis. Rates of metamitron degradation were best described by a multiple regression involving the silt content of the soil and the fraction of the total herbicide content which was available in the soil solution. Metazachlor degradation was best described by a multiple regression involving the sand content of the soil, the availability of the herbicide in the soil solution and soil microbial respiration. There was evidence that metribuzin degradation in any one soil was closely related to microbial activity, and rate constants per unit microbial respiration were derived for each soil. These rate constants were best described by a multiple regression involving the Freundlich adsorption constant and the sand content of the soils. The best regression equations for each herbicide were tested against observed degradation rates in an additional group of six soils. The calculated rates compared favourably with those observed for both metamitron and metazachlor, but with metribuzin, there was good agreement with one soil only.  相似文献   

7.
Application of urea fertilisers to soils influences the soil solution characteristics and thus may affect the sorption of soil-applied herbicides. The present investigation reports the influence of urea co-application on sorption and leaching of metribuzin, a triazine herbicide. Urea application at 60 and 120 kg N ha(-1) increased metribuzin sorption in soils over that in untreated natural soil. The Kf (Freundlich adsorption coefficient) values of metribuzin for natural, 60 and 120 kg N ha(-1) treatments were 0.43, 0.46 and 0.84 microg(1 - 1/n) g(-1) ml1/n respectively. Downward mobility of metribuzin was studied in packed soil columns (300 mm length x 59 mm i.d.) at two irrigation intensities, 720 m3 ha(-1) (72 mm) and 3600 m3 ha(-1) (360 mm). After 720 m3 ha(-1) irrigation, metribuzin did not leach out of any column and was not detected in the leachate. Urea amendment slowed the leaching of metribuzin by 20 and 40% in 60 and 120 kg N ha(-1) urea-treated columns respectively. Also, following urea application, greater amounts of metribuzin were retained in the application zone. Upon increasing the irrigation intensity fivefold, urea application did not have any effect on metribuzin mobility, and its breakthrough from both natural and urea-amended columns occurred after 126 mm irrigation. However, there was a marked difference in the maximum concentration of metribuzin in the breakthrough curves obtained from natural and urea-amended columns. The study indicated that co-application of metribuzin and urea fertiliser is a safe practice as far as leaching of herbicide is concerned.  相似文献   

8.
Summary. Adsorption and degradation rates of triasulfuron in 8 different soils were negatively correlated with soil pH and were generally lower in subsoils than in soils from the plough layer. The half-life at 20°C varied from 33 days in a top soil at pH 5·8 to 120 days in a subsoil at pH 7·4. Adsorption distribution coefficients in these two soils were 0·55 and 0·19, respectively. Movement and persistence of residues of chlorsulfuron, triasulfuron and metsulfuron-methyl were compared in a field experiment prepared in spring 1987. Triasulfuron was less mobile in the soil than the other two compounds. Residues of all three herbicides were largely confined to the upper 40–50 cm soil 148 days after application. With an initial dose of 32 g ha−1, residues in the surface soil layers were sufficient to affect growth of lettuce and sugar-beet sown approximately one year after application. Laboratory adsorption and degradation data were used with appropriate weather data in a computer model of herbicide transport in soil. The model gave good predictions of total soil residues during the first five months following application, and also predicted successfully the maximum depth of penetration of the herbicides into the soil during this period. However, more herbicide was retained close to the soil surface than was predicted by the model. The model predicted extensive movement of the herbicides in the soil during winter but did not predict that residues sufficient to affect crop growth could be present in the upper 15–20 cm soil after one year.  相似文献   

9.
The spatial variability in mineralization of atrazine, isoproturon and metamitron in soil and subsoil samples taken from a 135-ha catchment in north France was studied. Fifty-one samples from the top layer were taken to represent exhaustively the 31 agricultural fields and 21 soil types of the catchment. Sixteen additional samples were collected between depths of 0.7 and 10 m to represent the major geological materials encountered in the vadose zone of the catchment. All these samples were incubated with 14C-labelled atrazine under laboratory conditions at 28 degrees C. Fourteen selected surface samples which exhibited distinctly different behaviour for atrazine dissipation (including sorption and mineralization) were incubated with 14C-isoproturon and 14C-metamitron. Overall soil microbial activity and specific herbicide degradation activities were monitored during the incubations through measurements of total carbon dioxide and 14C-carbon dioxide respectively. At the end of the incubations, extractable and non-extractable (bound) residues remaining in soils were measured. Variability of herbicide dissipation half-life in soil surface samples was lower for atrazine and metamitron (CV < 12%) than for isoproturon (CV = 46%). The main contributor to the isoproturon dissipation variability was the variability of the extractable residues. For the other herbicides, spatial variability was mainly related to the variability of their mineralization. In all cases, herbicide mineralization half-lives showed higher variability than those of dissipation. Sorption or physicochemical soil properties could not explain atrazine and isoproturon degradation, whose main factors were probably directly related to the dynamics of the specific microbial degradation activity. In contrast, variability of metamitron degradation was significantly correlated to sorption coefficient (K(d)) through correlation with the sorptive soil components, organic matter and clay. Herbicide degradation decreased with depth as did the overall microbial activity. Atrazine mineralization activity was found down to a depth of 2.5 m; beyond that, it was negligible.  相似文献   

10.
The behaviour of the herbicide metamitron and of the main transformation product, hydroxy-chlorothalonil (HTI), of the fungicide chlorothalonil was studied to assess the risk of leaching from low-humic sandy soil. The adsorption of metamitron corresponded to a Kom value of about 60 dm3 kg−1 (moderate adsorption). The half-life of metamitron in soil at 15 °C was only three days, presumably due to adaptation of the micro-organisms. In the autumn, the residue of metamitron in the soil profiles corresponded to less than 1% of the cumulative dosage. The half-life of chlorothalonil at 15 °C was about 12 days and about 45% of it was transformed to HTI. The adsorption of HTI to the soils corresponded to a Kom value of 260 dm3 kg−1. The incubation study (15 °C) showed the transformation of HTI in the soils to be very slow. The amounts of HTI remaining in the soil profiles in the autumn corresponded to 4 and 16% of the cumulative dosage of chlorothalonil. In winter, the HTI residue decreased by 40% relative to the autumn level. Occasionally, HTI could be detected in the upper ground-water level (at a depth of about 1 m), at an average concentration of 0.1 to 0.2 µg dm−3. © 1999 Society of Chemical Industry  相似文献   

11.
The fate of five herbicides (glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron) was studied in two Finnish sugar beet fields for 26 months. Soil types were sandy loam and clay. Two different herbicide-tolerant sugar beet cultivars and three different herbicide application schedules were used. Meteorological data were collected throughout the study and soil properties were thoroughly analysed. An extensive data set of herbicide residue concentrations in soil was collected. Five different soil depths were sampled. The study was carried out using common Finnish agricultural practices and represents typical sugar beet cultivation conditions in Finland. The overall observed order of persistence was ethofumesate > glyphosate > phenmedipham > metamitron > glufosinate-ammonium. Only ethofumesate and glyphosate persisted until the subsequent spring. Seasonal variation in herbicide dissipation was very high and dissipation ceased almost completely during winter. During the 2 year experiment no indication of potential groundwater pollution risk was obtained, but herbicides may cause surface water pollution.  相似文献   

12.
吡啶甲酸类除草剂属合成激素类, 目前登记使用的有效成分包括氨氯吡啶酸、二氯吡啶酸和氯氨吡啶酸, 分别于1963年、1977年和2005年上市, 主要用于阔叶杂草和灌木的茎叶处理防控, 其中氯氨吡啶酸具有土壤封闭活性。吡啶甲酸类除草剂的作用靶标仍未明确, 有可能来自生长素结合蛋白家族。全世界报道的抗吡啶甲酸类除草剂杂草共涉及7种8个生物型。目前, 我国登记的除草剂品种中共有13个复配剂含氨氯吡啶酸和二氯吡啶酸, 1个含氨氯吡啶酸、氯氨吡啶酸和二氯吡啶酸;国外登记的吡啶甲酸类除草剂复配剂主要为与其他激素型除草剂、ALS(乙酰乳酸合酶)抑制剂、ACCase(乙酰辅酶A羧化酶)抑制剂的组合。该类除草剂仍然具有较好的应用前景, 在主要应用场景下常见杂草对氨氯吡啶酸、二氯吡啶酸、氯氨吡啶酸的敏感性仍需系统研究, 该类除草剂主要靶标杂草种群的抗药性水平也亟须检测。  相似文献   

13.
Adsorption, incubation and soil-column experiments with bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] were carried out in ten different soils from the marches surrounding the Doñana National Park (Huelva, SW Spain). Adsorption isotherms for the different soils showed a good fit with the Freundlich equation. Bentazone was poorly adsorbed in all the soils studied, with no significant relationship between theKf values and soil characteristics. A significant correlation was obtained between the soil organic matter content and the distribution constant values (Kd) calculated at an equilibrium concentration of 200 μg cm−3. The low adsorption and non-degradation of bentazone on these soils suggest that the herbicide readily percolates through soils to reach the surface and ground waters. The mobility of bentazone through three soil columns was also studied. The mass balances carried out showed that bentazone was totally eluted from the soil columns. The theoretical model applied to explain bentazone leaching under our experimental conditions seems to be suitable for soil columns with a uniform water-flow rate.  相似文献   

14.
Activity, adsorption, and mobility of emulsifiable concentrate (EC) and microencapsulated (ME) formulations of alachlor and acetochlor as well as of metolachlor, S-metolachlor, dimethenamid and flufenacet were studied. Petri-dish bioassay, based on root response of oats ( Avena sativa L.), was used for their activity in sand and in a silty clay loam soil, and for determination of herbicide concentrations in soil solution (not adsorbed) and in column leachates of the adsorption and mobility studies respectively. Flufenacet and both acetochlor formulations showed the highest activity in both soils and ME-alachlor and metolachlor the lowest; the activity of dimethenamid, EC-alachlor and S-metolachlor was intermediate. Activity of both formulations of alachlor and acetochlor decreased with increasing organic matter content, but alachlor activity was reduced more than that of acetochlor. Lower amounts of dimethenamid and S-metolachlor were adsorbed by soil compared with the other herbicides and, consequently, greater amounts of these two herbicides were leached through that soil. None of the herbicides tested was detected below 30 cm. Less alachlor and acetochlor were biologically available in soil solution after their application as ME-formulations and, therefore, lower amounts of both ME-alachlor and ME-acetochlor were leached through the soil compared with those applied as EC-formulations.  相似文献   

15.
In the last decade, the prevalence of Atriplex patula as a weed in the Belgian sugar beet area has increased. Possible reasons for its expansion in sugar beet fields, besides a poor implementation of the low‐dose phenmedipham/activator/soil‐acting herbicide (FAR) system, might be low sensitivity or evolved resistance to one or more herbicides used in sugar beet. Dose – response pot bioassays were conducted in the glasshouse to evaluate the effectiveness of five foliar‐applied sugar beet herbicides (metamitron, phenmedipham, desmedipham, ethofumesate and triallate) and three pre‐plant‐incorporated herbicides (metamitron, lenacil, dimethenamid‐P) for controlling five Belgian A. patula populations. Local metamitron‐susceptible and metamitron‐resistant populations of Chenopodium album were used as reference populations. Effective dosages and resistance indices were calculated. DNA sequence analysis of the photosystem II psbA gene was performed on putative resistant A. patula populations. Overall, A. patula exhibited large intraspecific variation in herbicide sensitivity. In general, A. patula populations were less susceptible to phenmedipham, desmedipham, ethofumesate and triallate relative to C. album populations. Two A. patula populations bear the leucine‐218 to valine mutation on the chloroplast psbA gene conferring low level to high level cross‐resistance to the photosystem II inhibitors phenmedipham, desmedipham, metamitron and lenacil. In order to avoid insufficient A. patula control and further spread, seedlings should preferentially be treated with FAR mixtures containing higher‐than‐standard doses of metamitron and phenmedipham/desmedipham and no later than the cotyledon stage.  相似文献   

16.
A model system consisting of chemically isolated cuticular membranes placed on agar was used to study the penetration of various formulations of 14C-labelled clopyralid, fluroxypyr, triclopyr, picloram, and 2,4-D into and through cuticular membranes. Clopyralid, commercially formulated as the acid, or 1-decyl ester was rapidly absorbed after 12 h by isolated cuticles of Euonymus fortunei. There was less absorption of the monoethanolamine and potassium salt formulations when compared to the acid and 1-decyl ester. However, in terms of the absorbed 14C-activity that partitioned into the agar, there was no difference between the acid and salt formulations with approximately 90% being partitioned after 48 h. Conversely, the 1-decyl ester formulation of clopyralid was retained in the cuticle; less than 5% of the absorbed fraction was recovered in the agar after 48 h. When the acid forms of clopyralid, fluroxypyr, triclopyr, picloram, and 2,4-D were compared, there was little or no difference in absorption among the herbicides. However, the 14C-activity from clopyralid partitioned the most (90%) and triclopyr the least (50%) into the agar. When ester formulations of clopyralid, fluroxypyr, and triclopyr were compared, at least 95% of the 14C-activity was absorbed 24 h after application. However, of the amount absorbed, significantly more of the butoxyethyl ester of triclopyr (36%) partitioned into the agar than did the 1-decyl ester of clopyralid (6%) or the 1-methylheptyl ester of fluroxypyr (5%). Differential retention of various herbicide formulations in this model system may explain, in part, the differences in absorption and translocation among radiolabelled clopyralid formulations observed in previous research (Kloppenburg & Hall, 1990).  相似文献   

17.
In a column experiment with dry aggregated soils, the effect of aggregate size on leaching of metribuzin from the upper soil layer (2.5 cm) was studied. The penetration of the herbicide was less than predicted by the equilibrium retardation factor. The penetration was less for large than for smalt aggregates due to kinetic effects induced by the aggregates. These kinetic effects overruled the effect of adsorption. Although the mean herbicide penetration was limited, part of the herbicide moved freely with the water as the herbicide was found throughout the column and in the leachate.  相似文献   

18.
BACKGROUND: Surfactants are very often used for more efficient pesticide spraying, but knowledge about their influence on the leaching potential for pesticides is very limited. In the present study, the leaching of the herbicide bentazone [3‐isopropyl‐1H‐2, 1,3‐benzothiadiazin‐4(3H)‐one 2,2‐dioxide] was measured in columns with sandy loam soil with or without the addition of a non‐ionic surfactant, octylphenol ethylene oxide condensate (Triton X‐100, Triton), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), and in the presence of both surfactants (SDBS + Triton). RESULTS: The mobility of bentazone (B) increased in the following order: B + Triton (slowest) < B + SDBS + Triton < B < B + SDBS (fastest). When Triton X‐100 was applied to the soil together with bentazone, the leaching of bentazone in the soil decreased significantly compared with leaching of bentazone without the addition of surfactant. SDBS and Triton X‐100 neutralised their influence on the leaching speed of bentazone in the soil columns when both surfactants were applied with bentazone. CONCLUSION: From the study it can be concluded that, depending on their properties, surfactants can enhance or reduce the mobility of bentazone. By choosing a non‐ionic surfactant, bentazone mobility can be reduced, giving time for degradation and thereby reducing the risk of groundwater pollution. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
We present a set of adsorption coefficients measured on various Eocene and Quaternary materials sampled from the vadose zone of a catchment in Northern France for three herbicides, atrazine, isoproturon and metamitron. Some vadose zone materials were found to have higher adsorption coefficients than the topsoil. The adsorption coefficients were strongly dependent on the clay content of the material. From 83% to 97% of the variability in the adsorption coefficients could be explained by a linear relationship to the clay content. Adsorption coefficients normalized for clay content, Kclay, ranged between 1.6 and 17.6 litre kg(-1) for atrazine. Neglecting the adsorption properties of the vadose zone and relying exclusively on Koc values to predict mobility may bias regional or local risk assessment of groundwater contamination by pesticides. More information on the adsorption properties of geological materials should be collected to improve our ability to predict pesticide concentrations in groundwaters.  相似文献   

20.
BACKGROUND: Pesticide degradation and adsorption in soils are key processes determining whether pesticide use will have any impact on environmental quality. Pesticide degradation in soil generally results in a reduction in toxicity, but some pesticides have breakdown products that are more toxic than the parent compound. Adsorption to soil particles ensures that herbicide is retained in the place where its biological activity is expressed and also determines potential for transportation away from the site of action. Degradation and adsorption are complex processes, and shortcomings in understanding them still restrict the ability to predict the fate and behaviour of ionisable pesticides. This paper reports the sorption and degradation behaviour of four acidic pesticides in five soils from southern Spain. Results are used to investigate the influence of soil and pesticide properties on adsorption and degradation as well as the potential link between the two processes. RESULTS: Adsorption and degradation of four acidic pesticides were measured in four soils from Spain characterised by small organic matter (OM) contents (0.3-1.0%) and varying clay contents (3-66%). In general, sorption increased in the order dicamba < metsulfuron-methyl < 2,4-D < flupyrsulfuron-methyl-sodium. Both OM and clay content were found to be important in determining adsorption, but relative differences in clay content between soils were much larger than those in OM content, and therefore clay content was the main property determining the extent of herbicide adsorption for these soils. pH was negatively correlated with adsorption for all compounds apart from metsulfuron-methyl. A clear positive correlation was observed for degradation rate with clay and OM content (P < 0.01), and a negative correlation was observed with pH (P < 0.01). The exception was metsulfuron-methyl, for which degradation was found to be significantly correlated only with soil bioactivity (P < 0.05). CONCLUSIONS: Both OM and clay content were found to be important in determining adsorption, but relative differences in clay content between soils were much larger than those in OM content, and therefore clay content was the main property determining the extent of herbicide adsorption for soils of this type. pH was negatively correlated with adsorption for all compounds apart from metsulfuron-methyl. The contrasting behaviour shown for these four acidic pesticides indicates that chemical degradation in soil is more difficult to predict than adsorption. Most of the variables measured were interrelated, and different behaviours were observed even for compounds from the same chemical class and with similar structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号