首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Tomato leaf curl disease is a severe threat to tomato production. Yield losses are generally high in the absence of effective management strategies. The disease is caused by tomato leaf curl virus (ToLCV) and is transmitted by a whitefly vector that is challenging to control. Resistance to ToLCV is absent from most cultivated tomato gene pools, although the use of resistant cultivars would provide a better control option than minimizing the vector population. Unfortunately, resistance sources based on field screening break down when virus pressure is severe. Our previous screening and virus testing of 40 tomato genotypes led to the identification of a highly resistant genotype, Solanum pimpinellifolium AAU2019, as a new source of resistance. In this study, we investigated the inheritance and genetics of resistance to ToLCV in the cross of Pusa Ruby × S. pimpinellifolium AAU2019 in F2 and BC1Ps populations, revealing a monogenic recessive gene (best-fit ratios of resistance: susceptible to be 1:3 and 0:1) responsible for ToLCV resistance in S. pimpinellifolium AAU2019. Hence, S. pimpinellifolium AAU2019 could be considered as a potential donor parent in breeding programmes to develop tomato cultivars with resistance to ToLCV.  相似文献   

2.
ABSTRACT The genome of Tomato leaf curl virus (ToLCV) from Bangalore, India, a whitefly-transmitted geminivirus, was cloned (pIND9) and sequenced. The circular DNA of 2,759 nucleotides (U38239) is organized similarly to that of other begomoviruses with monopartite genomes. Comparison of the nucleotide sequence of pIND9 with other tomato-associated begomoviruses from India (Tomato leaf curl Bangalore virus [ToLCBV, Z48182]) and Tomato leaf curl New Delhi virus-Severe (ToLCNdV-Svr, U15015) showed moderate DNA sequence identities (82 to 87%) between capsid protein (CP) genes but low identities (66 to 67%) for the intergenic regions and the replication-associated protein (Rep) genes (75 to 81% identity). Phylogenetic trees generated with nucleotide sequences of the Rep and CP genes of 26 begomoviruses indicated that this ToLCV is distinct from other begomoviruses and that it may be a recombinant virus derived from at least three different viral lineages. Tomatoes (Lycopersicon esculentum) inoculated with the cloned DNA monomer of ToLCV (pIND9) via particle bombardment developed leaf curling and yellowing symptoms. The virus was transmitted by Bemisia tabaci biotype B from tomatoes infected via particle bombardment to healthy tomatoes and by sap inoculation from infected tomatoes to tomato, Nicotiana benthamiana and N. tabacum. This ToLCV is a distinct member of the genus Begomovirus from India that differs from the previously characterized Tomato leaf curl Sadasivanagar virus isolate Bangalore 1 (L12739), ToLCBV (Z48182), ToLCBV isolate Bangalore 4 (AF165098), and the bipartite ToLCNdV (U15015, U15016). Thus, this ToLCV is named Tomato leaf curl Karnataka virus (ToLCKV).  相似文献   

3.
ABSTRACT The molecular diversity of Tomato leaf curl viruses (ToLCVs), from the two main tomato growing areas of Jessore and Joydebpur, Bangladesh, was investigated. The viral DNA was amplified from tomato plants exhibiting mild and severe symptoms by polymerase chain reaction, and the complete genomes of the ToLCVs were sequenced. An isolate of the bipartite Tomato leaf curl New Delhi virus-Severe (ToLCNDV-Svr) was associated with the severe symptom phenotype from Jessore (ToLCNDV-Svr[Jes]). A previously undescribed monopartite virus, designated Tomato leaf curl Joydebpur virus-Mild (ToLCJV-Mld), was sequenced from plants showing mild symptoms. ToLCNDV-Svr[Jes] was most closely related to ToLCNDV-[Lucknow] at 95.7% nucleotide (nt) identity and Tomato leaf curl Gujarat virus-[Varanasi] at 90.6% nt identity, based on DNA-A and -B component sequences. ToLCJV-Mld was similar to Pepper leaf curl Bangladesh virus at 87.1% DNA-A nt identity. Identification of ToLCNDV-Svr[Jes] and ToLCJV-Mld was in addition to the previously described Tomato leaf curl Bangladesh virus, with which they shared 73.2 and 86.0% DNA-A nt identities, thus demonstrating the existence of at least three distinct viruses infecting tomato in Bangladesh. Nucleotide identities and placement in phylogenetic trees suggested that the three ToLCVs may have had different evolutionary pathways. The whitefly, Bemisia tabaci, transmitted the viruses of this study equally efficiently. Four tomato cultivars (TLB111, TLB130, TLB133, and TLB182) resistant/ tolerant to South Indian ToLCV were screened against the Bangladesh ToLCVs in 2003-04. Although challenged by diverse viruses and potentially mixed infections, disease incidence remained low (6 to 45%) in the resistant cultivars compared with local cultivars (68 to 100%).  相似文献   

4.
北京地区番茄黄化曲叶病毒病的鉴定及防治对策   总被引:14,自引:2,他引:12  
番茄黄化曲叶病毒病是一种由烟粉虱传播的病毒病,给番茄生产造成严重威胁。2009年在北京郊区调查时发现部分保护地种植的番茄植株表现典型黄化曲叶症状。通过提取典型症状样品总DNA利用粉虱传双生病毒检测简并引物PA/PB,进行PCR扩增到541bp的特异条带。通过测序和核苷酸序列比对表明该序列与番茄黄化曲叶病毒序列相似性最高为99%。分子检测结果表明北京郊区部分保护地种植的番茄已被烟粉虱传播的番茄黄化曲叶病毒侵染危害。  相似文献   

5.
Three begomovirus isolates were obtained from tomato plants showing leaf curl symptoms in Guangxi province of China. Typical begomovirus DNA components representing the three isolates (GX-1, GX-2 and GX-3) were cloned and their full-length sequences were determined to be 2752 nucleotides. Nucleotide identities among the three viral sequences were 98.9–99.7%, but all shared <86.7% nucleotide sequence identity with other reported begomoviruses. The sequence data indicated that GX-1, GX-2 and GX-3 are isolates of a distinct begomovirus species for which the name Tomato leaf curl Guangxi virus (ToLCGXV) is proposed. Further analysis indicated that ToLCGXV probably originated through recombination among viruses related to Ageratum yellow vein virus, Tomato leaf curl China virus and Euphorbia leaf curl virus. PCR and Southern blot analyses demonstrated that isolates GX-1 and GX-2 were associated with DNAβ components, but not isolate GX-3. Sequence comparisons revealed that GX-1 and GX-2 DNAβ components shared the highest sequence identity (86.2%) with that of Tomato yellow leaf curl China virus (TYLCCNV). An infectious construct of ToLCGXV isolate GX-1 (ToLCGXV-GX) was produced and determined to be highly infectious in Nicotiana benthamiana, N. glutinosa, tobacco cvs. Samsun and Xanthi, tomato and Petunia hybrida plants inducing leaf curl and stunting symptoms. Co-inoculation of tomato plants with ToLCGXV-GX and TYLCCNV DNAβ resulted in disease symptoms similar to that caused by ToLCGXV-GX alone or that observed in infected field tomato plants.  相似文献   

6.
Tomato leaf curl disease (ToLCD) affected 25% of the tomato crop in Chitrakoot, India and symptomatic leaves were collected for molecular assay. The complete sequences of bipartite begomovirus DNA-A and a betasatellite DNA were amplified. In a sequence analysis, begomovirus DNA-A and betasatellite shared highest sequence identity (91–99%) with Tomato leaf curl New Delhi virus (ToLCNDV) DNA-A and chili leaf curl betasatellite (ChLCB), respectively. The virus was transmitted by whitefly to tomato plants and caused ToLCD symptoms with 70% transmission rate. To our knowledge, this is the first report of the natural occurrence of ToLCNDV and ChLCB in India.  相似文献   

7.
 由粉虱传双生病毒引起的番茄曲叶病[1]在我国最初仅分布在海南、云南、广东和广西,自2006年上海市和浙江省先后在番茄上发现番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)以来,该病害蔓延迅速,在多个省份的番茄上暴发成灾[2]。引起番茄曲叶病害的病原较复杂,在我国其主要病原为TYLCV、中国番木瓜曲叶病毒(Papaya leaf curl China virus, PaLCuCNV)、中国番茄黄化曲叶病毒(Tomato yellow leaf curl China virus, TYLCCNV)、泰国番茄黄化曲叶病毒(Tomato yellow leaf curl Thailand virus, TYLCTHV)和台湾番茄曲叶病毒(Tomato leaf curl Taiwan virus, ToLCTWV)[2~5],而浙江省的主要病原为TYLCV和ToLCTWV。选育抗病品种是防治番茄黄化曲叶病最有效的手段。了解番茄品种对不同双生病毒的抗性,对因地制宜布局抗病品种具有重要意义。浙杂502、浙粉701、浙粉702是浙江省大规模种植的番茄品种,为了解这些品种对上述5种病毒的抗性,本研究利用5种病毒的侵染性克隆,在人工接种条件下,综合评定分析这3个番茄品种的抗病指标。  相似文献   

8.
正番茄病毒病是番茄(Solanum lycopersicum)安全生产的主要限制因素,感染番茄作物的病毒种类高达136 种~[1]。小RNA测序和组装技术(small RNA sequencing and assembly, sRSA)已用于不同物种的病毒检测~[2]。Xu等~[2]对采自我国的170个番茄样本进行小RNA深度测序分析,鉴定出22种病毒。其采样地点未包括宁夏回族自治区。宁夏是我国重要的设施番茄生产基地, 2011 年宁夏银川市  相似文献   

9.
Journal of Plant Diseases and Protection - Potato apical leaf curl disease (PALCD) caused by a unique bipartite virus [tomato leaf curl New Delhi virus (ToLCNDV)] has emerged as a global threat....  相似文献   

10.
南疆温室番茄黄化曲叶病病毒种类的分子鉴定   总被引:1,自引:1,他引:0  
为明确南疆温室番茄黄化曲叶病的病毒种类,利用双生病毒的兼并引物通过PCR扩增,对采集的20个番茄病株进行了分子检测.从20个病株中均扩增到约500 bp的目标片段,对其中4株进行克隆和测序,其相互间序列同源性为97.1% ~99.3%,与番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)的同源性较高,为98.6% ~ 99.5%.随机选取莎车分离物KS2-5进行全基因组的克隆和测序,KS2-5 DNA全长为2781 nt(序列号:JQ807735),具有典型的双生病毒基因组特征,与TYLCV其它分离物同源性达到98.9%~99.5%,而与其它粉虱传双生病毒的序列同源性较低,为68.3% ~75.5%,表明危害南疆温室番茄的病毒种类为番茄黄化曲叶病毒TYLCV.  相似文献   

11.
不同番茄品种对番茄黄化曲叶病毒的抗病性鉴定   总被引:2,自引:2,他引:0  
为评估生产上常用番茄栽培品种对番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)的抗性水平,采用田间大棚自然传毒的方式,通过对各品种的发病时间、发病率及病情指数等参数的比较,结合PCR及ELISA对TYLCV的检测结果,综合分析了20个番茄品种对番茄黄化曲叶病毒的抗病性。不同品种对番茄黄化曲叶病毒的抗性差异较大,试验筛选出仙客6号和金棚1号2份感病材料,发病率和病情指数在90%和60.9以上;佳红8号、10-秋展47和红罗曼2号3份高抗材料,发病率和病情指数均为0;其它表现不同程度抗、耐病水平的材料15份,发病率和病情指数分别在10.0%~85.0%和1.0~40.6之间。  相似文献   

12.
Potato (Solanum tuberosum) is one of the important vegetable crops in the world and its production is seriously affected by apical leaf curl disease in northern India. This paper reveals the role of cucurbits in maintaining Tomato leaf curl New Delhi virus (ToLCNDV) and Potato apical leaf curl (PALCD) disease in that region. The affected plants showed severe leaf curling and stunted growth. The begomovirus causing leaf curling and mosaic disease in cucurbits could be easily transmitted by the whitefly to potato crops and develop apical leaf curl disease in northern India. The movement of the virus by whiteflies from cucurbits to potato and tomato is possible because of overlapping of planting and harvesting dates of these crops. The causal virus was identified as a begomovirus on the basis of whitefly transmission, PCR, dot blot hybridization, cloning and sequencing of the coat protein gene. The comparison of full length coat protein gene sequence homology revealed that 90% identity with the coat protein gene of ToLCNDV- [Luffa] isolate and the phylogenetic tree derived from these sequences with other selected begomoviruses formed a close cluster with ToLCNDV isolates. The findings proved that the virus causing disease in cucurbits could easily move to tomato and potato and cause leaf curl disease naturally. This is the first observation on the role of sponge gourd for maintenance of ToLCNDV and serving as a host for PALCD in northern India. The findings indicate that the causal organism is a strain of ToLCNDV.  相似文献   

13.
为了明确早春茬番茄定植时间与番茄黄化曲叶病毒病发生的关系,采取小区对比试验对不同定植时间下番茄上烟粉虱种群消长动态、番茄黄化曲叶病毒病发病株率、发病程度及番茄产量和经济效益等进行了系统调查。结果表明:番茄田烟粉虱种群消长动态在年度间基本相同,4月上旬始见,5月中旬达到高峰,烟粉虱发生后15 d左右出现番茄黄化曲叶病毒病症状。4月上旬以前定植番茄黄化曲叶病毒病发生较轻,单位面积产量和经济效益较高,4月上旬以后定植发病较重,产量和经济效益较低。定植时间(X_1)与番茄黄化曲叶病毒发病株率(Y_1)及病情指数(Y_2)均呈显著正相关,其相关关系为Y_1=1.470 4X_1+7.947 2,Y_2=0.876 7X_1-6.441 7。生产实践中采取双膜或三膜覆盖栽培等措施适当提早定植,避免番茄感病期与烟粉虱发生高峰期相遇,在不使用任何防治措施下,可有效预防番茄黄化曲叶病毒病暴发成灾。  相似文献   

14.
从吉林省松原市田间表现黄化曲叶症状的番茄上分离到病毒分离物JLSY,基因组全序列测定结果表明,基因组全长2781 bp,共编码6个ORF。序列比对表明,JLSY基因组与番茄黄化曲叶病毒(TYLCV)安徽分离物(FN650807)相似性最高,为99.5%,而与其他双生病毒的序列相似性低于89%。经系统进化分析,该病毒分离物属于TYLCV以色列株系(TYLCV-IL)。这是首次在我国吉林省检测到番茄黄化曲叶病毒。  相似文献   

15.
An investigation of the biological properties of the virus causing tomato yellow leaf curl disease in Tanzania was initiated to compare it with other known tomato yellow leaf curl viruses. Properties relating to acquisition and inoculation feeding time, persistence, mechanical inoculation, seed transmission and host range were studied. Results obtained indicate that the virus was transmitted persistently byBemisia tabaci Genn., but it was not mechanically, sap- or seed-transmissible. Minimum acquisition and inoculation feeding time was 30 min.Capsicum annuum, Datura stramonium, Nicotiana glutinosa, N. tabacum andLycopersicon esculentum were found to be hosts of the virus among the plant species tested, whereasPhaseolus vulgaris was not. It is concluded that the properties of the agent causing yellow leaf curl symptoms in tomato plants from different regions in Tanzania are similar to those ofTomato yellow leaf curl Sardinia virus species studied elsewhere. http://www.phytoparasitica.org posting Feb. 20, 2003.  相似文献   

16.
A new approach for the simultaneous identification of the viruses and vectors responsible for tomato yellow leaf curl disease (TYLCD) epidemics is presented. A panel of quantitative multiplexed real‐time PCR assays was developed for the sensitive and reliable detection of Tomato yellow leaf curl virus‐Israel (TYLCV‐IL), Tomato leaf curl virus (ToLCV), Bemisia tabaci Middle East Asia Minor 1 species (MEAM1, B biotype) and B. tabaci Mediterranean species (MED, Q biotype) from either plant or whitefly samples. For quality‐assurance purposes, two internal control assays were included in the assay panel for the co‐amplification of solanaceous plant DNA or B. tabaci DNA. All assays were shown to be specific and reproducible. The multiplexed assays were able to reliably detect as few as 10 plasmid copies of TYLCV‐IL, 100 plasmid copies of ToLCV, 500 fg B. tabaci MEAM1 and 300 fg B. tabaci MED DNA. Evaluated methods for routine testing of field‐collected whiteflies are presented, including protocols for processing B. tabaci captured on yellow sticky traps and for bulking of multiple B. tabaci individuals prior to DNA extraction. This work assembles all of the essential features of a validated and quality‐assured diagnostic method for the identification and discrimination of tomato‐infecting begomovirus and B. tabaci vector species in Australia. This flexible panel of assays will facilitate improved quarantine, biosecurity and disease‐management programmes both in Australia and worldwide.  相似文献   

17.
Whitefly‐transmitted begomoviruses are the most important limiting factor for tomato cultivation in Oman, particularly in the Al‐Batinah region, the major agricultural area of the country. Commercial farms in the Al‐Batinah region were surveyed during January–March 2013. Samples of tomato showing leaf curl disease symptoms typical of begomoviruses were collected and analysed. Full‐length sequences of five clones were shown to have relatively low percentage identity values to known begomoviruses, with the highest (88·6%) to isolates of Tomato leaf curl Oman virus (ToLCOMV), a begomovirus previously reported in Oman, indicating that these represent a newly identified species, for which the name Tomato leaf curl Barka virus (ToLCBrV) is proposed. Four isolates of ToLCBrV were found associated with Tomato leaf curl betasatellite (ToLCB). The five isolates of ToLCBrV characterized in this study were shown to be recombinants, with ToLCOMV as the major parent, and a fragment of Croton yellow vein virus (CrYVV) spanning the 3′ half of the replication‐associated protein. The significance of these findings is discussed.  相似文献   

18.
ABSTRACT Two begomoviruses (Java virus-1 and Java virus-2), two satellite DNAs (DNAbeta01 and DNAbeta02), and a recombinant DNA (recDNA) were cloned from a single tomato plant from Indonesia with leaf curl symptoms, and the role of these satellite DNAs in the etiology of begomovirus disease was investigated. The genome organizations of the two viruses were similar to those of other Old World monopartite begomoviruses. Comparison of the sequences with other begomoviruses revealed that Java virus-1 was a newly described virus for which the name Tomato leaf curl Java virus (ToLCJAV) is proposed. Java virus-2 was a strain of Ageratum yellow vein virus (AYVV) (AYVV-[Java]). ToLCJAV or AYVV-[Java] alone did not induce leaf curl symptoms in tomato plants. However, in the presence of DNAbeta02, both ToLCJAV and AYVV-[Java] induced leaf curl symptoms in tomato plants. In the presence of DNAbeta01, these viruses induced mild leaf curl symptoms in tomato plants. The recDNA had a chimeric sequence, which arose from recombination among ToLCJAV, AYVV-[Java], DNAbeta01, and DNAbeta02; it was replicated only in the presence of AYVV-[Java] in tomato plants.  相似文献   

19.
In West and Central Africa, as in many regions of the world, vegetables are severely affected by geminivirus diseases. In Burkina Faso, observation of various virus-like symptoms, especially on tomato, suggests the involvement of several geminiviruses and underlines the pressing need for additional information on their diversity, distribution, prevalence and host plant reservoirs. Large-scale surveys conducted in Burkina Faso confirmed the presence of tomato (yellow) leaf curl diseases (ToLCD-TYLCD) and geminiviruses in all localities with mean prevalences of 25% and 45%, respectively. Five geminiviruses including four begomoviruses (pepper yellow vein Mali virus (PepYVMLV), tomato leaf curl Burkina Faso virus, tomato leaf curl Mali virus and tomato leaf curl Ghana virus) and a dicot-infecting mastrevirus (chickpea chlorotic dwarf virus) were characterized on tomato. In addition, PepYVMLV and cotton leaf curl Gezira virus (CLCuGeV) were characterized on pepper and okra, respectively, in combination or not with alphasatellites and betasatellites for CLCuGeV. The most severe, prevalent and widely distributed virus on vegetables was PepYVMLV, which was characterized for the first time in combination with a genetically divergent DNA-B component that may constitute a key factor of PepYVMLV pathogenicity. Of the eight weeds identified as potential reservoir hosts of begomoviruses, four host PepYVMLV. The results confirm the importance of geminivirus diseases on vegetable crops in Burkina Faso and highlight the complex association of geminiviruses and satellites. The detection of begomoviruses in weeds growing close to crops points to the increasing necessity to consider reservoir plants and virus communities in the control of virus diseases.  相似文献   

20.
2014年春季,在湖北省武汉市发现种植的番茄表现植株矮缩,叶片上卷,叶缘黄化等症状。PCR检测结果显示,所有采集的病样中均存在菜豆金色花叶病毒属病毒。进一步通过滚环扩增方法获得了该病毒的湖北分离物HB01的全基因组。基因克隆及序列分析结果表明,该病毒基因组全长为2 781nt,与已报道的番茄黄化曲叶病毒(TYLCV)各分离物同源性在89.0%以上,而与来自中国不同地区的TYLCV分离物的同源率均在97.0%以上。因此,HB01属于TYLCV的一个分离物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号