首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 890 毫秒
1.
从耐药性木霉菌株的诱变选育过程中,得到一株能在含多菌灵2000mgL-1培养基上生长的变异菌株T12。该菌株在以多菌灵为唯一碳源的无机盐培养基中,于25℃、200rmin-1振荡培养5d,对多菌灵的降解率达到73.1%。在pH6.0、温度25℃、5%接种量和加入0.5%酵母粉为最适降解条件下,该菌株对多菌灵的降解率达到92.1%。对原土壤、自然风干土壤和高温烘干土壤中的多菌灵进行室内降解实验,在25℃~28℃,5%接种量,15%含水量的条件下处理10d,对多菌灵的降解率分别达到79.7%、76.5%和70.5%。研究结果为该菌株在土壤生物修复中的应用提供了科学依据。  相似文献   

2.
从长期施用多菌灵农药的土壤中,通过富集筛选,获得1株新的多菌灵高效降解菌株。通过生理生化实验和16SrDNA序列同源性分析鉴定该菌株,应用高效液相色谱法对纯培养条件下菌株的降解特性和粗酶提取液的降解性能进行了分析。结果表明,筛选所获得的菌株与Raoultella菌属的亲缘关系最近,将其命名为Raoultellasp.MBC,该菌株能在以多菌灵为唯-碳源的无机盐培养基中生长;25℃、pH7.0、200r·min。的最适生长条件下避光振荡培养72h,多菌灵的降解率达到100%;在最适培养条件下外加氮源和碳源在培养后期均可以提高多菌灵的降解率,外加氮源对多菌灵的降解效果优于外加碳源;该菌体的粗酶提取液具有降解多菌灵活性,且多菌灵降解酶为诱导酶。研究结果为多菌灵污染土壤的生物修复和酶修复提供了材料和理论依据。  相似文献   

3.
李锦涛  杨涵  陈洋  焦宸  汤浩宇  何健  黄星 《土壤》2022,54(3):646-652
针对菜田土壤中多菌灵和啶虫脒的残留问题,以多菌灵降解菌株Rhodococcusqingshengiidjl-6和啶虫脒降解菌株Pigmentiphaga D-2作为材料,进行降解菌剂的复配,研究了使用复合降解菌剂对复合农药残留土壤的修复效果及微生态效应。研究结果表明:(1)复配降解菌株djl-6与D-2的最适体积比为5∶3,复合降解菌剂在3 d内对无机盐培养基中50μg/ml的多菌灵降解率为87.14%,对50μg/ml的啶虫脒降解率为96.10%。(2)初始接种量为7%时,复合降解菌剂可在6 d内将复合农药污染土壤中5 mg/kg多菌灵降解74.40%,将5 mg/kg啶虫脒降解95.87%。土壤含水率为25%时,复合降解菌剂对复合农药污染土壤中5 mg/kg多菌灵的降解率为80.80%,对5 mg/kg啶虫脒的降解率为97.87%。(3)复合农药污染土壤中10 mg/kg多菌灵和10 mg/kg啶虫脒即可对小青菜的生长产生明显的药害,小青菜生长24d时根长仅为空白对照的66.56%、茎叶长为58.35%、鲜重为45.13%。在7%的接种量条件下,复合降解菌剂可解除药害,使小青菜的生...  相似文献   

4.
从石油污染土壤中富集分离、筛选出3株高效降解石油的微生物菌株,通过生理生化特性研究及16SrRNA基因序列分析,确定3株菌均属于红球菌属(Rhodococcus sp),研究和比较了它们与实验室保存的4株菌(分别属于Gordonia sp,Comamonas sp,Pesudomonas sp)降解石油的能力。这7株菌株对石油的不同组分具有不同的降解能力,对7株菌进行不同的组合用以研究复合菌群对石油的降解。结果表明,由两株Rhodococcus sp,一株Gordonia sp和一株Pesudomonas sp组成的复合菌群D,降解石油的能力超过任何单一菌株和其他组合菌群。混合菌群D在5d的培养中能降解70.3%的石油总量和71.4%的芳香化合物。混合菌群D能降解99.8%的C13-19烷烃,92.6%的C20-26烷烃,82.2%的C27-32烷烃以及90.2%的植烷。在实验室模拟条件下,对土壤中石油的降解率达到50%以上。降解土壤中石油的最适温度为10~30℃、pH值为6.5~9.5,接种量需要在106CFU·g-1以上。  相似文献   

5.
从土壤中分离到一株能有效降解毒死蜱的细菌DSP,该分离株鉴定为侧芽孢杆菌(Bacillus latersprorus)。在纯培养条件下测定了分离株DSP对毒死蜱的降解性能。在接种量为菌浓度OD415=0.2,pH7.0、25℃条件下,测得1、10mg L^-1毒死蜱的降解符合一级动力学特征,其降解半衰期分别为1.48d、5.00d,100mg L^-1毒死蜱对DSP菌有明显的抑制作用;分离株DSP在不同pH及温度下对毒死蜱的降解作用为pH7.0〉pH5.0〉pH9.0,35℃〉25℃〉15℃。该菌株含有一个20kb左右的质粒,通过吖啶橙与升温法对质粒消除实验证实,随着质粒的丢失,菌株利用毒死蜱的能力也丧失,用热击法和CaCl2法将菌株质粒转人大肠杆菌JM109和质粒消除处理的DSP^-菌中,随着质粒的获得,这些转化子获得了降解毒死蜱的能力。研究结果表明,Bacillus latersprorus DSP降解毒死蜱的功能和质粒有关。  相似文献   

6.
多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)是土壤中一种典型的持久性有机污染物。典型寒区东北地区因农业投入品不合理使用、污灌等造成农田土壤中含有大量致癌、致畸与致突变的多环芳烃,针对寒区气候特征致使农田中微生物降解多环芳烃效果不佳,难以改善农田土壤环境并降低食品风险的关键问题,基于目前常用商品化的降解微生物多来自于温暖地区,且难以适应寒区气候的特性,该研究以PAHs典型污染物-菲(PHE)为研究底物,驯化温度15 ℃,筛选分离出适应寒区低温环境的7株菌。经鉴定及降解性能研究,筛选了3株在温度20 ℃、接种量5%、pH值为8、底物浓度500 mg/L,以及外源物质腐殖酸的促进的条件下PHE降解率达到80%的高效降解耐冷菌。以上3株菌两两之间与三者组合均无拮抗关系。对菌株进行碳源的广谱性分析,菌株对2-5环多环芳烃降解率可达15%~85%之间,在将菌株应用至20 ℃土壤环境时,60 d可降解土壤中75%的PHE。该耐冷菌群适应条件符合寒区农田土壤实际环境,研究结果对黑土地区土壤多环芳烃污染的微生物修复提供了一定的基础资料。  相似文献   

7.
联苯菊酯是一种广谱高效杀虫剂,大规模的应用使其广泛残留在环境中,因此筛选联苯菊酯的高效降解菌具有重要意义。从扬州农药厂附近的地表土壤取样,利用富集驯化培养分离得到一株编号为S8的降解细菌,经表形特征、生理生化特性和16S rDNA序列分析其为醋酸钙不动杆菌(Acinetobacter calcoaceticus),该菌株在pH7.0和30 ℃的条件下,对100 mg·L-1联苯菊酯的3 d降解率达56.4%,半衰期为60.7 h。其最适生长条件为:pH6.0~8.0,温度30~35 ℃,接种量5%。研究结果可为今后治理联苯菊酯残留污染提供理论参考。  相似文献   

8.
四环素降解菌的选育、鉴定及其降解特性   总被引:2,自引:0,他引:2  
生产四环素过程中产生大量发酵底物(俗称"药渣"),采用生物二次发酵法可消除药渣中四环素,使其能作为饲料原料使用.本研究从长期堆放四环素药渣的土壤中筛选四环素降解菌株,经驯化富集后筛选得到TD2和TD3两株能高效降解四环素的菌株.根据表型特征、生理生化特性及16S rDNA序列同源性分析,鉴定TD2为缺陷短波单胞菌(Brevundimonas diminuta),TD3为人苍白杆菌(Ochrobactrum anthropi).TD2和TD3均可利用四环素作为碳源生长.TD2在碳源、氮源、矿物质分别为无碳源、蛋白胨0.5%、CuSO4 0.015%时,降解性能最优;而TD3在葡萄糖0.5%、牛肉膏1.5%、CuSO4 0.015%的培养基中降解效率最大.两株菌的最适培养条件相同:培养时间5 d、温度30℃、接种量1%,且四环素降解率与通气量成正相关.在最适条件下,TD2和TD3的四环素降解率均达90%以上.本实验筛选所得的两株四环素降解菌株可作为四环素药渣进行二次发酵的候选菌株.  相似文献   

9.
降解菌HQ-C-01对克百威污染土壤的生物修复   总被引:1,自引:0,他引:1  
杨柳  陈少华  胡美英  郝卫宁 《土壤》2011,43(5):798-803
在室内模拟条件下,研究了降解菌HQ-C-01(Pichia anomala)对克百威污染土壤的修复作用及其影响因素,同时研究了克百威及该菌株对土壤微生物的影响。结果表明,克百威降解率与降解菌HQ-C-01接种量呈正相关,降解菌接种量为2.09×108 CFU/g干土时,对土壤中50 mg/kg克百威10天降解率达82.89%;当降解菌接种量低于106 CFU/g干土时,降解菌对克百威的降解效果较弱。土壤含水量显著影响降解菌对克百威的降解率,含水量为600 g/kg时降解效果最好,降解率达85.32%,而当含水量低于200 g/kg时降解效果较差。在温度范围25℃~35℃降解菌对克百威都具有较好的降解效果。不同土壤pH值对降解菌的降解作用有显著影响,在pH值为7时,降解菌对土壤中50 mg/kg克百威10天降解率达85.62%,在较低和较高pH值下,降解效果较差。克百威使用对土壤菌落结构有一定的影响,对土壤真菌具有强烈刺激作用,从而使土壤微生物群落结构发生改变,而降解菌的使用可缓解克百威对土壤微生物的影响,修复受污染土壤。  相似文献   

10.
集约化畜禽养殖场产生的沼液通常就地回用,在循环利用有机物的同时也会带来类固醇雌激素(Steroid Estrogens,SEs)的累积及污染。为降低沼灌后SEs对水土环境的污染风险,该研究采用富集和纯化培养法,对西南地区某奶牛养殖场沼灌区土壤中雌激素降解菌进行分离及筛选,获得一株利用17β-雌二醇(17β-E2)为唯一碳源生长繁殖的降解菌。通过16S rDNA 基因序列进行同源性比对以确定种属,并研究其降解特性。分别研究了菌株在不同温度、pH值、底物浓度三种单因素条件下的降解特性,然后利用三因素三水平正交试验继续优化菌株最适降解条件。结果表明:分离出的优势菌为生丝微菌属(Hyphomicrobium sp.),命名为Hyphomicrobium sp.SS-1,该菌株在10~40 ℃、pH值为5~9、底物浓度为1~10 mg/L的条件下,均能不同程度降解17β-E2。其中菌株在温度为30 ℃、pH值为7、底物浓度5 mg/L的条件下,培养7 d对17β-E2的降解率可达71%,并伴随毒性低于E2的降解产物E1和E3生成,总雌激素去除率为56.8%。正交试验结果显示,各因素对菌株降解能力的影响顺序从小到大为:底物浓度、温度、pH值,且都为显著影响(P<0.05);菌株最适降解条件为温度35 ℃、pH值为7、底物浓度5 mg/L,该条件下培养7 d,菌株对17β-E2的降解率可达97.09%。研究结果可为复杂基质环境中微生物降解SEs提供优质菌种资源,并为沼液灌溉区土壤的雌激素污染修复提供有效途径。  相似文献   

11.
采集除草剂阿特拉津污染的土壤,通过直接涂布法和富集驯化培养分离法,分别获得6株和5株能够降解阿特拉津的细菌。通过降解效率和降解动态试验,筛选到1株高效降解阿特拉津的菌株FM326,该菌株能以阿特拉津为唯一的碳源和氮源生长,培养96h后对1000mg·L-1阿特拉津降解效率达到97%。通过生理生化鉴定和16SrDNA序列分析,菌株FM326鉴定为节杆菌属(Arthrobacter sp.)细菌。该菌株表现出最适生长温度30~35℃,最适生长pH值5~9,好氧生长的生长特性。  相似文献   

12.
芽孢杆菌zx2和zx7是普施特高效降解菌,研究其生长和降解特性旨在为普施特污染土壤的生物修复提供科学依据。采用瓶培养法,对芽孢杆菌zx2和zx7的生长特性及单菌和复合菌对普施特的降解特性进行了研究。结果表明,zx2和zx7均可在普施特初始浓度≤200mg·L-1的无机盐培养液中生长良好,zx2在温度25~35℃和pH4.0~7.0时生长良好,而zx7适宜在温度30~35℃和pH5.0~8.0时生长,可见在适应性上二者互补。在最佳条件(温度32℃、pH6.0和普施特初始浓度为200mg·L-1)下,zx2和zx7在无机盐培养液中对普施特降解动态均符合阻滞动力学,半衰期分别为3.8d和2.8d,培养6d时普施特降解率分别为85.81%和90.27%。在培养过程中,zx2的pH是降低的,而zx7的pH基本不变,可初步表明二者降解机理不同;zx2和zx7复合菌(1∶1)对普施特降解率比单菌低,为82.70%,这可能是因为zx2或zx7降解普施特的过程中利用了对方产生的降解产物。  相似文献   

13.
将菌株D1、D2分别与小克银汉按一定比例富集培养制成两种复合微生物菌剂(Ⅰ、Ⅱ),在充分供氧的条件下,通过气相色谱法研究两种复合菌剂的生长条件并筛选一种对毒死蜱有较好降解效果的高效复合微生物菌剂。结果表明,当接种量菌浓度为OD560=0.906时,两种菌剂生长的最适温度均为30 ℃,最适pH均为7.0;当毒死蜱浓度为100 mg·L^-1时,培养5 d后两种复合菌剂的降解效率分别为81.21%和86.57%,当温度为30 ℃、pH为6.0-8.0、毒死蜱浓度为20 mg·L^-1时,对毒死蜱的降解效率最高。本研究工作为复合菌剂的大规模生产提供了理论参数,为利用微生物进行有机磷农药土壤修复提供了理论依据。  相似文献   

14.
土霉素降解菌筛选及降解特性研究   总被引:1,自引:0,他引:1  
【目的】 近年来,抗生素在畜禽及水产养殖中的使用量增加,导致固体废弃物和污水中存在大量的抗生素和耐药菌。土霉素作为用于养殖业主要的抗生素之一,在畜禽粪便和污水中的残留含量较高,因此,筛选并鉴定了能降解残留土霉素的微生物。 【方法】 采用富集驯化法,以菌肥、药渣和畜禽粪便为原料,采用摇床震荡的方法进行微生物培养,采用高效液相色谱法 (HPLC) 进行土霉素含量测定,筛选出能够高效降解土霉素的微生物。本研究还对降解菌在不同温度、pH、转速和接种量条件下的土霉素降解效果进行优化,并最终利用16S rDNA的方法鉴定菌种。 【结果】 筛选出一株能够高效降解土霉素的菌株T4菌,经16S rDNA测序鉴定该菌株为假单胞菌 (Pseudomonas sp.) ,该菌株在30℃时对土霉素的降解率最高,达到了26.75%;不同pH梯度下,T4菌在pH为7时对土霉素的降解率达到最高,为27.03%;转速为150 rpm和170 rpm时,T4菌对土霉素的降解率分别为26.18%和25.59%,考虑到摇床高转速耗能高的因素,因此选择150 rpm为优化的转速;接种量对T4菌降解土霉素的影响较小,而且二者之间呈负相关,接种量1%时降解率最高,为26.88%。优化条件下,T4菌对100 mg/L土霉素的降解率为26.29%;堆肥试验表明,添加了T4菌之后,土霉素去除率更高,为93.21%。 【结论】 本研究筛选出的菌株T4对土霉素有较好的降解能力。通过16S rDNA基因序列分析,T4菌属于假单胞菌 (Pseudomonas sp.),其降解土霉素的优化条件为温度30℃、pH 7.0、转速150 rpm、接种量1%。在堆肥中接种T4菌后,提高了对土霉素的去除作用,表明T4菌作为土霉素降解菌具有污染治理的潜力。   相似文献   

15.
抗药性木霉菌株的选育及其与多菌灵的协同作用   总被引:3,自引:0,他引:3  
田连生 《核农学报》2008,22(1):32-35
在含多菌灵药物培养基上,采用紫外线重复诱导处理的方法,对拮抗性木霉T21进行改良,筛选到5株在多菌灵2000mg/L浓度下仍能较好生长的具有显著抗性菌株T21-1~T21-5,通过抗药遗传稳定性和对灰霉菌拮抗性测定,从中选育出性能较优良的抗药性菌株T21-4,并与多菌灵协同作用进行防治黄瓜灰霉病试验。结果表明:菌和药配比在9∶1,8∶2,7∶3时协同防治效果分别达到75.7%,78.9%和79.5%;单独使用T21-4和多菌灵的防效分别为70.5%和71.7%。表明菌和药协同作用防治效果明显高于单独使用的防效。因此,在使用木霉T21-4菌剂防治农作物病害时,添加少量的多菌灵,可降低植物病原菌的活性和侵染力,提高生物菌剂生防效果。  相似文献   

16.
Degradation of ZJ0273, a recently developed pyrimidynyloxybenzoic‐based herbicide, was investigated in five different soils under aerobic conditions. ZJ0273 degradation rate was strongly affected by soil physico‐chemical characteristics and the inoculation of ZJ0273‐degrading bacteria. Greater organic matter (OM) content, neutral pH and inoculation of ZJ0273‐degrading bacteria can increase degradation rate and decrease the half‐life value (DT50). At 30°C the biodegradation rate of ZJ0273 reached 41–85% in natural (unsterilized) soils. It ranged from 69 to 96% at 90 days after treatment (DAT) in five different types of soils after re‐inoculation of Amycolatopsis sp. M3‐1 and DT50 decreased by 34 , 81, 16, 20 and 32 days, respectively, in soils S1, S2, S3, S4 and S5. Furthermore, using the six metabolites (M1–M6) identified six metabolites (M1–M6) by liquid chromatography‐mass spectrometry (LC‐MS) and their behaviour, a biodegradation pathway of ZJ0273 in soils was proposed. New metabolites, M5 and M6, were found in soils. Biodegradation of ZJ0273 involved continuous biocatalytic reactions, such as de‐estering, hydrolysis, acylation, C‐N cleavage, de‐methyl and ether cleavage reactions. Finally, ZJ0273 was bio‐transformed into M4 and M6, which could be degraded and oxidized into CO2 and H2O through the tricarboxylic acid (TCA) cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号