首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To investigate the role of Forkhead box M1 (FoxM1) and B-cell leukemia/lymphoma-2 (Bcl-2) in the pathogenesis of acute myeloid leukemia (AML). METHODS: RT-qPCR and immunofluorescence analysis were used to determine the expression of FoxM1 at mRNA and protein levels in AML-de novo patients, AML-complete remission (CR) patients, AML-refractoriness and relapse (RR) patients and healthy controls. HL60 cells and K562 cells were transfected with FoxM1 siRNA. The cell proliferation was detected by cell proliferation assay and colony formation assay on soft agar, and the cell apoptosis was determined by flow cytometry. The expression of FoxM1 and Bcl-2 at mRNA and protein levels was detected by RT-qPCR and Western blotting. The activity of bcl-2 promoter was examined by luciferase reporter assay with FoxM1 targetting. RESULTS: FoxM1 expression level in the AML-de novo patients was significantly higher than that in the healthy controls. As compared with the AML-de novo patients, FoxM1 expression in the AML-CR patients was reduced, and the FoxM1 expression level was the highest in the AML-RR patients. FoxM1 expression was inhibited in the HL60 cells and K562 cells transfected with FoxM1 siRNA. Transfection with FoxM1 siRNA in the HL60 cells and K562 cells inhibited the proliferation as compared with NC siRNA transfection, and impaired the colony formation ability. On the contrary, transfection with FoxM1 siRNA promoted the cell apoptosis. FoxM1 regulated bcl-2 expression positively. CONCLUSION: FoxM1 promotes the development of AML by regulating bcl-2 expression. Silencing of FoxM1 expression suppresses cell proliferation and promotes cell apoptosis. FoxM1 is a potential target for AML treatment.  相似文献   

2.
AIM: To study the mechanism of multidrug resistance (MDR) of leukemia cells induced by homoharringtonine (HHT) and the reversal effect of mifepristone on MDR.METHODS: Human leukemia cell line K562 was induced into MDR cell line by intermittent administration of high dose of HHT.MTT assay was used to detect the sensitivity of these MDR cells to all sorts of chemotherapeutic agents with or without mifepristone.The cytotoxicity of mifepristone was also observed.RT-PCR was used to detect the expression of MDR1 gene and glucosylceramide synthase (GCS) gene.Flow cytometry was used to detect the expression of P-glucoprotein and the accumulative value of intracellular daunorubicin (DNR) in these MDR cells with or without mifepristone.Immunohistochemistry was used to detect the expression of Bcl-2,Bax and caspase-3 in these MDR cells with or without mifepristone.RESULTS: MDR cell line K562/HHT was acquired after induced by HHT for 2 months.This MDR cell line possessed the ability of 462.6 fold resistance to HHT and cross-resistance to adriamycin,vincristine and etoposide.The expression of MDR1 gene,GCS gene,P-glucoprotein and Bcl-2/Bax ratio in K562/HHT cells were significantly higher than those in K562 cells (P<0.05).The caspase-3 expression and the accumulative value of intracellular DNR in K562/HHT cells were significantly lower than those in K562 cells (P<0.05).10 μmol/L mifepristone reversed the resistance of K562/HHT cells to HHT,adriamycin,vincristine and etoposide at different levels.The Bcl-2/Bax ratio,caspase-3 expression and accumulative value of intracellular DNR in K562/HHT cells treated with RU486 were significantly different compared with K562/HHT cells without RU486 treatment (P<0.05).CONCLUSIONS: Leukemia cell line K562 can be induced into MDR cell line K562/HHT by HHT.P-glucoprotein,GCS,Bcl-2/Bax ratio and caspase-3 may play an important role in K562/HHT cells.Mifepristone can reverse MDR in K562/HHT cells by decreasing the accumulative value of intracellular drug and regulating the expression of Bcl-2,Bax and caspase-3.  相似文献   

3.
AIM:To study the reversal effect of a cyclosporin D analogue PSC833 on multidrug resistance of doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells. METHODS:The reversal effects of PSC833 on resistance to doxorubicin (DOX)/vincristine (VCR) in K562/DOX cells were observed by MTT assay. The cell cycle analysis was performed by flow cytometry. Annexin V/PI staining was used to identify PSC833-induced apoptosis in K562/ DOX cells. These cells underwent incubation with DCFH-DA, JC-1 and Fluo-3/AM followed by flow cytometry for the measurement of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), and intracellular calcium, respectively. The protein levels of cytochrome C (Cyt C), Bcl-2, Bax, and cleaved caspase-3 were detected by Western blotting. RESULTS:The DOX/VCR-induced cytotoxicity was significantly potentiated by PSC833. PSC833 arrested the cells in G2/M phase and increased the apoptosis induced by DOX in K562/DOX cells. During the apoptosis, the level of ROS and intracellular calcium increased, while the level of ΔΨm decreased. Furthermore, the release of Cyt C, activation of caspase-3, up-regulation of Bax and down-regulation of Bcl-2 were observed in K562/DOX cells treated with PSC833 and DOX. CONCLUSION: The reversal effect of PSC833 on multidrug resistance in K562/DOX cells is associated with the induction of apoptosis through a mitochondria-dependent pathway.  相似文献   

4.
AIM: To investigate the effect of DEK downregulation on the apoptosis of gastric carcinoma SGC-7901 cells, and to explore its associations with NF-κB signaling pathway and apoptosis related proteins. METHODS: SGC-7901 cells with different treatments were divided into 3 groups including untreated group, control siRNA group and DEK siRNA group. The expression of DEK at mRNA and protein levels in the SGC-7901 cells was detected by real-time PCR and Western blot. The cell apoptosis was examined by flow cytometry. Furthermore, the activities of caspase-3 and caspase-9 in the SGC-7901 cells were investigated by Caspase-Glo®-3/9 kit. Finally, the expression of key regulatory protein p65 of NF-κB signaling pathway and apoptosis-related proteins Bcl-2 and Bax in the SGC-7901 cells was investigated by Western blot. RESULTS: Compared with untreated group and control siRNA group, the expression of DEK at mRNA and protein levels was significantly downregulated in DEK siRNA group (P<0.05). In addition, the ratios of early phase apoptosis and total apoptosis in DEK siRNA group were markedly higher than those in untreated group and control siRNA group (P<0.05). Most notably, the decrease in p65 and Bcl-2 proteins, increase in Bax protein and the increases of caspase-3 and caspase-9 activities were observed in DEK siRNA group. CONCLUSION: Downregulation of DEK mediates cell apoptosis of gastric carcinoma may be tightly associated with NF-κB signaling pathway.  相似文献   

5.
LI Jin-xia  MA Li 《园艺学报》2018,34(2):218-224
AIM: To study the effect of poly(ADP-ribose) polymerase-1 (PARP-1) on cisplatin resistance of human breast cancer MCF-7 cells and its possible mechanisms.METHODS: The expression of PARP-1 at mRNA and protein levels in MCF-7 cells and MCF-7/DDP cells was determined by real-time PCR and Western blot. The expression of PARP-1 in the MCF-7/DDP cells was blocked by PARP-1 siRNA. The cell viability and apoptosis were detected by the CCK-8 assay and flow cytometry analysis, respectively. Furthermore, the protein levels of PARP-1, Bcl-2, Bax, cleaved caspase-3, caspase-3, cytochrome C (Cyto-C), extracellular signal-regulated kinase (ERK) and phosphorylated ERK (p-ERK) were detected by Western blot.RESULTS: The expression of PARP-1 at both mRNA and protein levels was significantly up-regulated in the MCF-7/DDP cells. The expression of PARP-1 was increased in the MCF-7 cells treated with cisplatin. Knockdown of PARP-1 induced the apoptosis of MCF-7/DDP cells with an increased sensitivity to cisplatin. Meanwhile, knockdown of PARP-1 down-regulated the protein levels of Bcl-2/Bax and p-ERK, but up-regulated the protein levels of cleaved caspase-3 and Cyto-C. After incubated with a specific ERK inhibitor U0126, the cell viability in PARP-1 siRNA group was down-regulated significantly.CONCLUSION: Knockdown of PARP-1 increases the sensitivity of MCF-7/DDP cells to cisplatin, and promotes the cell apoptosis via mitochondrial apoptosis pathway. The mechanism may be related to the attenuation of ERK signaling pathway by inhibiting phosphorylation of ERK.  相似文献   

6.
AIM: To investigate the effect of siRNA-induced knockdown of v-ral simian leukemia viral oncogene homolog A(RALA) on proliferation and apoptosis of chronic myelogenous leukemia(CML) K562 cells. METHODS: The chemically synthesized siRNA targeting to RALA gene was transfected into K562 cells using LipofectamineTM 2000. The proliferation and viability of K562 cells were detected by MTT assay and trypan blue dye exclusion. The expression levels of RALA mRNA and protein were determined by quantitative real-time PCR and Western blotting,respectively. The cell apoptosis was analyzed using flow cytometry by double staining with annexin V and propidium iodide, and the apoptotic morphological changes were detected by Hoechst 33258 staining. RESULTS: RALA siRNA significantly down-regulated RALA mRNA and protein expression in K562 cells(P<0.05). The proliferation of K562 cells in RALA siRNA group was inhibited compared with control group(P<0.05). The apoptotic rate was much higher in RALA siRNA group than that in negative control group(P<0.05). The apoptotic morphological changes were observed in the nuclei of K562 cells transfected with RALA siRNA. CONCLUSION: The siRNA-mediated knockdown of RALA results in inhibition of proliferation and induction of apoptosis in K562 cells, indicating that RALA might be used as a potential therapeutic target in chronic myelogenous leukemia.  相似文献   

7.
AIM:To investigate the role of mitochondri al ceramidase in mitochondrial functions,especially in the regulation of apopto sis.METHODS:pCDNA3.1/His-MtCDase plasmid,containing mitochondrial ceramidase cDNA sequence,was transfected into K562 cells by liposome,and G418 was used to screen the positive clones.A stable transfected K562 cell line was established and defined as ‘K562TC’.The differences between K562 an d K562TC cells in serum withdrawal resistance and Bcl-2 protein expression were evaluated by annexin V/PI test,flow cytometry and Western blotting,respectivel y.RESULTS:K562TC cells with elevated Bcl-2 protein expression lev el identified by FCM or Western blotting showed stronger resistance to apoptosis induced by serum withdrawal than their parental cells.Inhibition of mitochondr ial ceramidase expression in K562TC cells by its specific antisense oligodeoxynu cleotide was correlated with a decrease in Bcl-2 protein level.N,N'-dimethylsp hingosine (DMS),a sphingosine kinase inhibitor,depleted intracellular sphingos ine-1-phosphate (SPP) production,also abrogated Bcl-2 protein expression in K56 2TC cells,while exogenous sphingosine-1-phosphate up-regulated Bcl-2 protein le vel in K562 cells.CONCLUSION:Mitochondrial ceramidase overexpression in K562 cell s leads to markedly elevated level of Bcl-2 protein a nd results in more resistance to serum withdrawal.This effect is initiated no t by sphingosine,the direct metabolite of mitochondrial ceramidase,but via sph ingosine-1-phosphate,its phosphorylated form,indicating that mitochondrial cer amidase,through its sphingoid metabolite sphingosine-1-phosphate,up-regulates Bcl-2 protein expression in K562 cells.  相似文献   

8.
AIM:To investigate whether the bcl-2 antisense oligonucleotide increases the sensitivity of HL60 and K562 cell lines to daunorubicin.METHODS:IC50 for HL60 and K562 was determined with MTT method, the expression levels of Bcl-2 protein were assayed by immunofluorescence using fluoresce isothiocyanate labeling. In addition, apoptosis was detected by morphological observation and flow cytometric analysis of DNA fragmentation.RESULTS:It was found that the two oligonucleotides directed against the coding region and the translation initiation of bcl-2 mRNA, combined respectively with daunorubicin, inhibited expression of bcl-2 protein, increased apoptosis in HL60 and K562 cells, and decreased IC50 of daunorubicin significantly (P<0.05). Compared to the antisense oligonucleotide directed against the translation initiation of bcl-2 mRNA, the antisense oligonucleotide directed against the coding region showed stronger effects in the aspects of increasing the sensitivity of HL60 cells to daunorubicin (P<0.05).CONCLUSIONS:These two antisense sequences in the translation initiation and the coding region of bcl-2 mRNA increased the sensitivity of HL60 and K562 cell lines to daunorubicin in a sequence-specific manner.  相似文献   

9.
AIM: To investigate the synergetic inhibitory effect of sorafenib and daunorubicin (DNR) on K562 and U937 cells. METHODS: The inhibitory rate of sorafenib or daunorubicin alone, and the combined inhibitory rate of sorafenib and IC10 daunorubicin were measured by MTT assay. Apoptotic rate of single drug or combination was assessed by flow cytometry (Annexin Ⅴ/PI staining) and Hoechst 33258 staining assay. p-ERK1/2 level was detected by Western blotting after the cells were treated with sorafenib, daunorubicin and U0126 or combinations. Synergistic or antagonistic effect of proliferation and apoptosis on K562 and U937 was estimated according to the Jins Method. RESULTS: Combination of sorafenib and DNR showed synergistic growth inhibition (q>1.15, P<0.01) and synergistic promotion of apoptosis (q>1.15, P<0.05) in K562 and U937 cells. The level of p-ERK1/2 in K562 cells was obviously higher than that in U937 cells (P<0.01). p-ERK1/2 expression was completely inhibited in sorafenib or U0126 treated K562 cells for 24 h. Combination of U0126 with DNR inhibited the proliferation of K562 cells synergistically. CONCLUSION: Combination of sorafenib with DNR showed synergistic cell growth inhibition and promotion of apoptosis in K562 and U937 cells. U937 cells were more sensitive to DNR than K562 cells while K562 cells were more sensitive to sorafenib. Sorafenib enhances the anti-leukemic activity of DNR in K562 and U937 cells via down-regulation of p-ERK1/2 expression.  相似文献   

10.
AIM: To study the effect of salinomycin on inhibiting proliferation and inducing apoptosis of Gleevec-resistant chronic myeloid leukemia cell line K562/Glv. METHODS: The inhibitory effect of salinomycin on the growth of K562/Glv cells was detected by CCK-8 assay in vitro. Flow cytometry was used to observe apoptosis, mitochondria membrane potential (ΔΨm), reactive oxygen species (ROS) and the concentration of intracellular Ca2+ ([Ca2+]i) in K562/Glv cells. The activity of caspase-3, -8 and -9 was measured by the method of colorimetry. The levels of cytochrome C, Bcl-2, Bax, β-catenin and phosphorylated low-density lipoprotein receptor-related protein 6 (p-LRP6) were determined by Western blotting. RESULTS: Salinomycin inhibited the growth of K562/Glv cells in a dose-dependent manner. Salinomycin at concentration of 0.2 μmol/L inhibited the growth of the cells with the inhibitory rate of (36.70±2.31)%. The cell apoptotic rate was (19.66±2.23)%. Salinomycin at concentration of 0.2 μmol/L decreased the level of ΔΨm, and increased the levels of ROS, cytochrome C and[Ca2+]i in the cells. Salinomycin also increased the activity of caspase-3, -8 and -9 in the cells, reduced the ratio of Bcl-2/Bax, and attenuated the levels of β-catenin and p-LRP6. CONCLUSION: Salinomycin induces the apoptosis of Gleevec-resistant myeloid leukemia cell line K562/Glv via Bcl-2/Bax and mitochondria-dependent pathways, and inhibits the cell growth through Wnt signal pathway.  相似文献   

11.
AIM: To investigate the effects of marrow stromal cell line HS-5 on human lung adenocarcinoma A549 cells in the tumor microenvironment. METHODS: The effects of HS-5 cell-conditioned medium (HS-5-CM) on the viability and migration ability of A549 cells were detected by MTT assay and wound-healing assay. After treatment with HS-5-CM, the expression of CX3C chemokine receptor 1 (CX3CR1) at mRNA level in the A549 cells was examined by qPCR. The protein levels of p-ERK and ERK in the A549 cells treated with MAPK/ERK pathway inhibitor U0126 were observed by Western blot, the migration ability of the A549 cells was measured by wound-healing assay, and the protein expression of CX3CR1 was determined by Western blot. RESULTS: HS-5-CM promoted the viability and migration ability of the A549 cells (P<0.01). The expression of CX3CR1 at mRNA level in the A549 cells was increased after treatment with HS-5-CM. MAPK/ERK inhibitor U0126 inhibited the activation of MAPK/ERK signaling pathway (P<0.01), and reduced the migration ability (P<0.01) and the expression of CX3CR1 (P<0.05) in the A549 cells. CONCLUSION: HS-5-CM significantly promotes the A549 cell viability and migration ability. Activation of MAPK/ERK signaling pathway and the expression of CX3CR1 may play a important role in this process.  相似文献   

12.
AIM:To develop an anti-lymphoblastic leukemia TCR idiotypic DNA vaccine, analyze its transfer activity into K562 cells and to detect its expression in vitro. METHODS:The TCR Vβ2 gene segment, which was identified from an idiotypic TCR Vβ2 clone-Molt4 cell line, was amplified using RT-PCR, and the PCR products were then cloned into pIRES vector. The recombinant plasmids were transferred into K562 cells. The condition of idiotypic protein expression was tested by indirect immunophenotyping fluorescein dyeing, SDS-PAGE and Western blotting. RESULTS:The recombinant DNA plasmid, pIRES-TCR Vβ2, was developed successfully. The expression of TCR Vβ2 was identified on the surface of K562 cells. A 15 kD protein, which bound to TCR Vβ2 antibody specifically, were identified from pIRES-TCR Vβ2 transfected K562 cells by Western blotting, indicating that TCR Vβ2 protein was expressed in vitro. CONCLUSION:The recombinant plasmid pIRES-TCR Vβ2 DNA vaccine was developed successfully, which was expressed TCR Vβ2 protein specifically in transfected K562 cells.  相似文献   

13.
14.
AIM: To investigate the role of mitogen-activated protein kinases (MAPKs) pathways and the molecular mechanism by which the proto-oncogene Pim-3 protects cardiomyocyte against anoxia/reoxygenation (A/R) injury. METHODS: The primarily cultured neonatal rat ventricular cardiomyocytes were randomly divided into 4 groups: control group; A/R group; APC+A/R group; SB203850, U0126 or SP600125+APC+A/R group. The cells were pre-incubated with U0126 (ERK1/2 inhibitor), SP600125 (SAPK/JNK inhibitor), or SB203850 (p38 MAPK inhibitor) at concentration of 10 μmol/L for 30 min before the APC. The activities of p38 MAPK, JNK and ERK1/2 were detected by Western blotting. The viability of cardiomyocytes was assayed by MTT and the apoptosis of cardiomyocyte was detected by TUNEL. RESULTS: U0126, SB203850, and SP600125 abolished the increased expression of ERK1/2, p38-MAPK, and JNK proteins induced by APC+A/R or A/R, respectively. The expression level of Pim-3 protein significantly decreased when the p38 MAPK signal pathway was inhibited. Meanwhile, the activity of LDH and the apoptosis index increased, and the viability of cardiomyocytes decreased. CONCLUSION: Pim-3 expression through a p38 MAPK signaling pathway may protect cardiomyocytes from A/R injury.  相似文献   

15.
AIM: To study the effect of microRNA (miR)-24 on chemotherapy sensitivity and its possible mechanisms in human lung adenocarcinoma A549 cells. METHODS: The expression of miR-24 in the A549 cells and A549/DDP cells was determined by real-time PCR. Transfection of miR-24 inhibitor was used to down-regulate the miR-24 level in the A549/DDP cells. The viability and apoptosis rate were measured by CCK-8 assay and flow cytometry, respectively. The protein levels of Bcl-2, Bax, cleaved caspase-3, cleaved caspase-9, cytochrome C (Cyt C), phosphorylated extracellular signal regulated kinase (p-ERK) and P53 were detected by Western blot. Luciferase reporter assay was used to predict and identify the target genes of miR-24. RESULTS: The expression of miR-24 was significantly higher in the A549/DDP cells than that in the A549 cells (P<0.05). miR-24 inhibitor induced cell apoptosis and increased the sensitivity of the A549/DDP cells to cisplatin. Furthermore, miR-24 inhibitor down-regulated the ratio of Bcl-2/Bax, while up-regulated the protein levels of P53, p-ERK, cleaved caspase-9, cleaved caspase-3 and Cyt C. Incubation with U0126, a specific ERK inhibitor, partly reversed the viability of miR-24 inhibitor transfected A549/DDP cells. Bioinformatics analysis demonstrated that p53 was a potential target gene of miR-24. Co-teansfection of miR-24 inhibitor and P53 siRNA in A549/DDP cells partially reversed the effect of miR-24 inhibitor on cell viabiltiy. CONCLUSION: Down-regulation of miR-24 increases the sensitivity of A549/DDP cells to cisplatin. The mechanism may be related to directly targeting p53 gene and over-activation of ERK/P53 signaling pathway, thus promoting apoptosis via mitochondrial apoptosis pathway.  相似文献   

16.
AIM: To study the effects and mechanism of recombinant human defensin α1 on cell proliferation in cultured rat glomerular mesangial cells.METHODS: The influences of defensin α1 at various concentrations on rat 1097 mesangial cell line cultured in vitro were evaluated with MTT assay.The different concentrations of U0126,signal-regulated protein kinase (MEK) inhibitor,were added into the culture mediums of mesangial cells to do blocking test.Incubated with a final concentration of 3 mg/L defensin α1,the phosphorylation of extracellular signal regulated kinase (ERK)1/2 and type IV collagen of mesangial cells in different times were evaluated by Western blotting.RESULTS: Defensin α1 at 3-20 mg/L enhanced proliferation of rat glomerular mesangial cells.The incubation times for the maximum effect on proliferation was 12 h (P<0.01),whereas defensin α1 concentration >20 mg/L decreased cell proliferation.The cell proliferation induced by defensin α1 was inhibited by U0126.Stimulation of the cells with defensin α1 at concentration of 3 mg/L for 5 minutes induced a maximum effect on a ratio of phosphorylation of ERK1/2 to total ERK.After 12 h incubation with defensin α1,an increase in type IV collagen was observed by Western blotting and continued to increase at 24 h and 48 h (P<0.01).CONCLUSION: Defensin α1 enhances rat glomerular mesangial cell proliferation and induces type IV collagen production by MAPK signaling pathway.  相似文献   

17.
AIM:To investigate the effects of ethyl acetate (EtOAc) extract of Pleione bulbocodioides (Franch.) Rolfe on proliferation and apoptosis of human leukemia K562 and HL-60 cells and the possible apoptosis pathway. METHODS:Human leukemia cell lines were treated with EtOAc extract of Pleione bulbocodioides at different concentrations. XTT method was used to evaluate the viability of K562 cells and HL-60 cells. The cell growth inhibition was calculated by Trypan blue exclusion test. The percentage of apoptotic cells was determined by flow cytometry, and 4',6-diamidino-2-phenylindole (DAPI) was used to observe morphological changes of the cells. The cell cycle was observed by propidium iodide (PI) staining. The protein expression of Bcl-2, Bax, cleaved poly(ADP-ribose) polymerase (PARP), cleaved caspase-3, cytochrome C and apoptosis-inducing factor (AIF) wase determined by Western blot. RESULTS:The cell viability and proliferation were inhibited by EtOAc extract of Pleione bulbocodioides with IC50 of (42.14±2.54) mg/L for HL-60 cells and (51.28±3.12) mg/L for K562 cells at 24 h. The results of Annexin V-FITC/PI and DAPI staining showed that EtOAc extract of Pleione bulbocodioides induced cell apoptosis in a dose-dependent manner. The apoptotic rate was increased compared with control group (P<0.05). The G2 phase increased with typical cell apoptosis-induced morphological changes. The levels of pro-apoptotic proteins Bax, cleaved PARP and cleaved caspase-3 were increased, while Bcl-2 was down-regulated (P<0.05). Cytochrome C and AIF in cytosol, characteristic proteins of intrinsic mitochondrial apoptosis pathway, also increased with the concentration of EtOAc extract of Pleione bulbocodioides increasing (P<0.05). CONCLUSION:EtOAc extract of Pleione bulbocodioides significantly inhibits cell proliferation and induces cell apoptosis in human leukemia cell lines HL-60 and K562 through intrinsic mitochondrial apoptosis pathway.  相似文献   

18.
LI Wen-yu  ZHANG Yuan 《园艺学报》2001,17(9):851-854
AIM: To investigate whether antisense oligodeoxynucleotides of hTERT、bcl-2 and c-myc could enhance the sensitivity of leukemia cell K562 to cisplatin. METHODS: The inhibiting effects of cisplatin and cisplatin plus antisense oligodeoxynucleotide on K562 cells were determined by MTT. RESULTS: The inhibiting rate of 20 μmol/L cisplatin to K562 cell is 17.17%±1.36% and it becomes 25.41%±1.77%, 26.18%±1.43% and 28.29%±1.05%, respectively, as combinated with antisense oligodeoxynucleotide of hTERT, bcl-2 or c-myc. CONCLUSION: These results indicated that antisense oligodeoxynucleotides of hTERT, bcl-2 and c-myc enhanced efficacy of cisplatin in K562 leukemic cells.  相似文献   

19.
AIM: To study whether inhibition of forkhead box protein M1(FoxM1) sensitizes leukemia K562 cells to homoharringtonine (HHT). METHODS: K562 cells were incubated with HHT at different concentrations (0μmol/L, 0.015μmol/L, 0.030μmol/L and 0.045μmol/L) for different time (0 h, 24 h, 48 h and 72 h). The mRNA and protein levels of FoxM1 were detected by real-time PCR and Western blot. FoxM1 siRNA was transfected into K562 cells with 0.015μmol/L HHT after 6 h. After 72 h incubation, the cell proliferation was detected by cell counting and soft agar assay, and the proportion of apoptotic K562 cells was determined by flow cytometry. The expression of c-Myc and Sp1 were detected by real-time PCR and Western blot. RESULTS: FoxM1 expression was reduced time-dependently and dose-dependently, suggesting that HHT mediated the downregulation of FoxM1 in K562 cells. In K562 cells, treatment with FoxM1 siRNA and HHT inhibited the cell proliferation and promoted the apoptosis significantly. Therefore, inhibition of FoxM1 sensitized leukemia K562 cells to HHT. The expression of c-Myc and Sp1 was positively regulated by FoxM1. CONCLUSION: HHT inhibits Forkhead box protein M1 expression in K562 cells. Inhibition of FoxM1 sensitizes K562 cells to HHT.  相似文献   

20.
AIM: To investigate the effect of decitabine (DAC) on the resistance of human chronic myeloid leukemia cell line K562/A02 to adriamycin (ADR), and to explore the possible mechanism. METHODS: The K562/A02 cell line and its parental cell line K562 were treated with different concentrations of ADR or DAC alone, or in combination. The cytotoxic effects of these 2 agents were determined by CCK-8 assay. The degree of DNA methylation was evaluated by Sequenom MassARRAY system and colorimetric method. The cell cycle distribution and the apoptotic rate were determined by flow cytometry. RESULTS: K562/A02 cells were more significantly resistant to ADR than K562 cells.The half maximal inhibitory concentration of ADR for 24 h of the K562/A02 cells was about 50 times higher than that of the K562 cells. To DAC, in the concentration range of 0.5~8 μmol/L, K562/A02 cells were more sensitive than K562 cells. As compared with the same concentrations (4.31 μmol/L and 17.24 μmol/L) of ADR alone, the combination with 1 μmol/L DAC significantly improved the sensitivity of K562/A02 cells to ADR. Both DAC and ADR affected the cell cycle progression and apoptotic rate of K562/A02 cells. DAC (1 μmol/L) treatment mainly showed S phase arrest and increased early apoptotic rate for 24 h, and G2/M phase arrest and increased late apoptosis and necrosis for 48 h in a time-related manner. ADR treatment showed G2/M phase arrest and increased late apoptosis and necrosis in a concentration-dependent manner. In combination with 1 μmol/L DAC, the effect of ADR on the cell cycle distribution was further enhanced, showing more obvious G2/M phase arrest, but no significant difference of the apoptotic rate was observed. The degree of methylation in the genome had no significant difference between the 2 cells, and it before and after DAC treatment had no significant change. CONCLUSION: DAC enhances the sensitivity of K562/A02 cells to ADR, showing drug resistance-reversing potential. The mechanism may be related to regulating cell cycle progression and promoting apoptosis and necrosis of K562/A02 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号