首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To evaluate auditory maturation in puppies. ANIMALS: Ten clinically normal Beagle puppies. PROCEDURE: Puppies were examined repeatedly from days 11 to 36 after birth (8 measurements). Click-evoked brain stem auditory-evoked potentials (BAEP) were obtained in response to rarefaction and condensation click stimuli from 90 dB normal hearing level to wave V threshold, using steps of 10 dB. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation differential potential (RCDP). Steps of 5 dB were used to determine thresholds of RCDP and wave V. Slope of the low-intensity segment of the wave V latency-intensity curve was calculated. The intensity range at which RCDP could not be recorded (ie, pre-RCDP range) was calculated by subtracting the threshold of wave V from threshold of RCDP RESULTS: Slope of the wave V latency-intensity curve low-intensity segment evolved with age, changing from (mean +/- SD) -90.8 +/- 41.6 to -27.8 +/- 4.1 micros/dB. Similar results were obtained from days 23 through 36. The pre-RCDP range diminished as puppies became older, decreasing from 40.0 +/- 7.5 to 20.5 +/- 6.4 dB. CONCLUSION AND CLINICAL RELEVANCE: Changes in slope of the latency-intensity curve with age suggest enlargement of the audible range of frequencies toward high frequencies up to the third week after birth. Decrease in the pre-RCDP range may indicate an increase of the audible range of frequencies toward low frequencies. Age-related reference values will assist clinicians in detecting hearing loss in puppies.  相似文献   

2.
The objective of this study was to build audiograms from thresholds of brainstem tone-evoked potentials in dogs and to evaluate age-related change of the audiogram in puppies. Results were obtained from 9 Beagle puppies 10-47 days of age. Vertex to mastoid brainstem auditory-evoked potentials in response to 5.1-millisecond Hanning-gated sine waves with frequencies octave-spaced from 0.5 to 32 kHz were recorded. Three dogs were examined at 10, 13, 19, 25, and 45 days. Four other dogs were examined at 16 days. Data from 7 dogs between 42 and 47 days of age were pooled to obtain audiogram reference values in 1.5-month-old puppies. The best auditory threshold lowered from above 60 dB sound pressure level (SPL) to values close to 0 dB SPL between 13 and 25 days of age and then stabilized. The audible frequency range widened, including 32 kHz in all tested dogs from the 19th day. In the 7 1.5-month-old puppies, the mean auditory threshold decreased by 11 dB per octave from 0.5 to 2 kHz. The auditory threshold was lowest and held the same value from 2 to 8 kHz. The mean auditory threshold increased by 20 dB per octave from 8 to 32 kHz. Near threshold, click-evoked potentials test only a small part of the audible frequency range in dogs. Use of tone-evoked potentials may become a powerful tool in investigating dogs with possible partial hearing loss, including during the auditory system maturation period.  相似文献   

3.

Aims

Auditory plasticity in response to unilateral deafness has been reported in various animal species. Subcortical changes occurring in unilaterally deaf young dogs using the brainstem auditory evoked response have not been evaluated yet. The aim of this study was to assess the brainstem auditory evoked response findings in dogs with unilateral hearing loss, and compare them with recordings obtained from healthy dogs.

Methods

Brainstem auditory evoked responses (amplitudes and latencies of waves I, II, III, V, the V/I wave amplitude ratio, wave I-V, I-III and III-V interpeak intervals) were studied retrospectively in forty-six privately owned dogs, which were either unilaterally deaf or had bilateral hearing. The data obtained from the hearing ears in unilaterally deaf dogs were compared to values obtained from their healthy littermates.

Results

Statistically significant differences in the amplitude of wave III and the V/I wave amplitude ratio at 75 dB nHL were found between the group of unilaterally deaf puppies and the control group. The recordings of dogs with single-sided deafness were compared, and the results showed no statistically significant differences in the latencies and amplitudes of the waves between left- (AL) and right-sided (AR) deafness.

Conclusions

The recordings of the brainstem auditory evoked response in canines with unilateral inborn deafness in this study varied compared to recordings from healthy dogs. Future studies looking into electrophysiological assessment of hearing in conjunction with imaging modalities to determine subcortical auditory plasticity and auditory lateralization in unilaterally deaf dogs are warranted.
  相似文献   

4.
BACKGROUND: The brainstem auditory-evoked response (BAER) is currently the standard evaluation method of hearing in dogs. In asymmetrical hearing loss in human patients, simultaneous presentation of masking noise to the nontest ear is routinely performed during BAER to eliminate the crossover effect. HYPOTHESIS: The crossover effect occurs during canine BAER, and masking noise of 20 decibels (dB) below click stimulus intensity is sufficient to abolish this effect. ANIMALS: Fifty-six Dalmatian puppies with confirmed unilateral deafness. METHODS: The BAER was elicited with 80 and 100 dB normalized hearing level (dBnHL) stimulus intensity in the deaf ear. The 100 dBnHL stimulus was repeated while simultaneously applying 80 dBnHL white masking noise to the nontest ear. RESULTS: Ten dogs were excluded because of BAER trace baseline fluctuation. In the remaining 46 dogs, 8 dogs had no waveforms, but 38 dogs had an identifiable wave-V in the deaf ear BAER at 80 dBnHL intensity stimulus. At 100 dBnHL intensity stimulus, all but 1 dog had a discernible wave-V in the deaf ear BAER. The deaf ear BAER waveforms were abolished by white masking noise at 80 dBnHL in the nontest ear in all dogs. CONCLUSIONS AND CLINICAL IMPORTANCE: Abolition of BAER wave-V in the deaf ear by white masking noise in the nontest ear suggests that this wave is caused by the crossover effect. beta distribution indicates 95% confidence that white masking noise, at 20 dB below click stimulus intensity, would abolish this crossover effect in over 90% of the dogs. This supports using masking noise in the nontest ear during canine BAER.  相似文献   

5.
This study evaluates the effects of a high-frequency hearing loss simulated by the high-pass-noise masking method, on the click-evoked brain stem-evoked potentials (BAEP) characteristics in dogs. BAEP were obtained in response to rarefaction and condensation click stimuli from 60 dB normal hearing level (NHL, corresponding to 89 dB sound pressure level) to wave V threshold, using steps of 5 dB in eleven 58 to 80-day-old Beagle puppies. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation potential (RCDP). The procedure was repeated while constant level, high-pass filtered (HPF) noise was superposed to the click. Cut-off frequencies of the successively used filters were 8, 4, 2 and 1 kHz. For each condition, wave V and RCDP thresholds, and slope of the wave V latency-intensity curve (LIC) were collected. The intensity range at which RCDP could not be recorded (pre-RCDP range) was calculated. Compared with the no noise condition, the pre-RCDP range significantly diminished and the wave V threshold significantly increased when the superposed HPF noise reached the 4 kHz area. Wave V LIC slope became significantly steeper with the 2 kHz HPF noise. In this non-invasive model of high-frequency hearing loss, impaired hearing of frequencies from 8 kHz and above escaped detection through click BAEP study in dogs. Frequencies above 13 kHz were however not specifically addressed in this study.  相似文献   

6.
We describe a previously un-reported vertex-negative potential evoked by high intensity click auditory stimuli in some dogs and cats with suspected cochleo-saccular deafness. Brainstem auditory evoked potential tracings from 24 unilaterally or bilaterally deaf animals, 22 dogs and 2 cats, among which 21 belonged to breeds with high prevalence of suspected or histologically confirmed cochleo-saccular deafness, were studied retrospectively. Values for latency, amplitude and threshold of this potential in dogs were 2.15+/-0.23 ms, 0.49+/-0.25 microV, and 91.9+/-4.7 dB NHL, respectively (mean+/-SD). Latency and threshold values in cats were in the mean+/-2 SD range of the dog values. Sensitivity to click stimulus polarity and to click stimulus delivery rate pointed towards a neural potential instead of a receptor potential. The vertex-negative wave observed in these animals shares all characteristics with the N3 potential described in some deaf humans with cochlear deafness, where it is presumed to arise from saccular stimulation. The combined degeneration of cochlea and sacculus usually reported in deaf white dogs and cats suggest that N3 may have a different origin in these species.  相似文献   

7.
The brainstem auditory evoked response (BAER) was recorded from 7 unanesthetized and 27 methoxyflurane anesthetized dogs. A 0.1 msec, 70 dB stimulus delivered at 10 Hz evoked the expected seven wave BAER. Mean peak wave latencies and standard deviations were calculated. Differences were not found between neither right and left ears, nor male and female dogs. The anesthetized dogs had a significantly longer latency for all waves, except wave I, than the unanesthetized dogs. Use of the BAER as a diagnostic technique for brainstem lesions is recommended.  相似文献   

8.
The effects of electrode configuration and click polarity on brainstem auditory evoked potentials (BAEP) in dogs were investigated to clarify the inconsistent nomenclature for each peak. Four positive peaks (waves 1, 2, 3 and 4) before a deep negative trough and a fifth positive peak (wave 5) following the trough were the basic components of BAEP in dogs, which were easily identified regardless of recording conditions such as electrode configuration and click polarity. Additional peaks tended to be present when a noncephalic reference electrode and/or single-polarity (rarefaction or condensation) click stimuli were used. The Roman nomenclature for the individual positive peaks of BAEP in dogs is confused owing to variations in the observed waveforms among researchers, but click polarity and/or reference electrode position can explain all the previously reported variations in BAEP waveforms in dogs. When the criteria concerning wave V in the guidelines of BAEP in human beings are applied to avoid further confusion of Roman nomenclature in dogs, it is recommended that the basic five positive peaks (waves 1, 2, 3, 4 and 5 as identified easily with Ai-Vertex configuration and alternating clicks) are designated as waves I, II, III, V and VI, respectively. Wave IV (wave 3b) occurs occasionally before wave V in dogs.Abbreviations BAEP brainstem auditory evoked potentials - dBHL dB hearing level - IPL interpeak latency - Ai the caudodorsal end of the zygomatic arch ipsilateral to the stimulated ear - Nape the neck over the spinous process of the fourth cervical vertebra  相似文献   

9.
The brainstem auditory evoked response (BAER) was recorded from 7 unanesthetized and 27 methoxyflurane anesthetized dogs. A 0.1 msec, 70 dB stimulus delivered at 10 Hz evoked the expected seven wave BAER. Mean peak wave latencies and standard deviations were calculated. Differences were not found between neither right and left ears, nor male and female dogs. The anesthetized dogs had a significantly longer latency for all waves, except wave I, than the unanesthetized dogs. Use of the BAER as a diagnostic technique for brainstem lesions is recommended.Publication No. 1702, School of Veterinary Medicine, Auburn University, AL 36849, USA  相似文献   

10.
Auditory function of llamas and alpacas was assessed objectively by means of brainstem auditory-evoked response audiometry (BAER) to establish the normal hearing range and to test the hypothesis of a correlation between blue eyes, white coat, and deafness. Sixty-three camelids were available for the study. Thirteen animals had blue irides; 1 animal had 1 blue and 1 pigmented iris. Wave latencies, amplitudes, and interpeak latencies were measured under general anesthetic. Click stimuli (dB [HL]) were delivered by an insert earphone. Four to five positive peaks could be detected; waves I, II, and V were reproducible; wave II appeared infrequently; and wave IV generally merged with wave V to form a complex. Peak latencies decreased and peak amplitudes increased as stimulus intensity increased. A hearing threshold level of 10-20 dB (HL) was proposed as the normal range in llamas and alpacas. None of the animals with pigmentation of coat and iris showed any degree of hearing impairment. Seven of the 10 blue-eyed, pure-white animals were bilaterally deaf and one of them was unilaterally deaf. However, 2 blue-eyed, white animals exhibited normal hearing ability. Three blue-eyed animals with pigmented coat did not show any hearing impairment. All white animals with normal iris pigmentation had normal auditory function; so did the 1 animal with 1 normal and 1 blue iris. The high frequency (78%) of bilaterally deaf animals with pure white coat and blue iris pigmentation supports the hypothesis of a correlation between pigmentation anomalies and congenital deafness in llamas and alpacas.  相似文献   

11.
Summary

Cranium and brainstem dimensions were measured in 32 postmortem dog heads. Positive correlations were found between cranium length (CL) and brainstem length (BL) (r=0.87), between cranium width (CW) and brainstem width (BW) (r=0.83), and between cranium distance (CD = CL CW/2) and brainstem distance (BD = BL+BW/2) (r=0.91). Positive correlation coefficients were also found between CL and CW (r=0.90), and between BL and BW (r=0.85). It was concluded that head size accurately reflected brainstem size. A least squares estimation of the brainstem distance (BD) from CL and CW values was BD = 10.9 + 0.16 (CL CW/2) (BD, CL and CW in mm).

Brainstem auditory evoked potentials (BAEPs) and cranium dimensions were measured in 43 dogs (86 ears) with different head size, body size, sex and age. Wave form, absolute and interpeak latencies and correlation coefficients, relating latencies to cranium dimensions and body weight, were analysed CL, CW, and CD were positively correlated with body weight (r=0.93, 0.70 and 0.93, respectively), and CL, CW, and CD were correlated with age (r=0.33, 0.52 and 0.40, respectively). BAEPs consisted of five distinct positive peaks (I to V). Secondary positive peaks following peaks I and II were seen in 60% (I') and 90% (II') of the recordings. Late waves were recorded in 90% (VI), 50% (VII), and 25% (VIII) of the recordings. Latencies increased with decreasing stimulus intensity level (from 90 dB to 10 dB hearing level, HL),especially for peaks I, II, V, and the I‐V interpeak interval Absolute and interpeak latencies were positively correlated with cranium distance and body weight. Correlation coefficients increased as wave latencies increased At 90 dB HL, the highest correlation coefficients, relating cranium distance to peak V and the I‐V interpeak latency, were 0.55 and 0.53 (P < 0.00001), respectively. Regression analysis showed that each 1 cm increase in cranium distance was accompanied by an increase of 0.006 ms in the latency of wave I, 0.03 ms for wave III, 0.05 ms for wave V, and 0.05 ms for the I‐V interpeak interval Regression analysis showed that an increase of 1 kg in body weight was accompanied by an increase of 0.001 ms in the latency of wave I, 0.005 ms for wave III, 0.011 ms for wave V, and 0.01 ms for the I‐V interpeak interval. It is concluded that head size, which accurately reflects brain size, is a relevant source (25%) of intersubject variance of BAEP latencies in the dog.  相似文献   

12.
We have analysed the systematic influences, phenotypic colour markers and the additive genetic variation for congenital sensorineural deafness (CSD) in German Dalmatian dogs in order to help elucidate the importance of phenotypic breed characteristics for genetic differences of CSD. Linear animal models using restricted maximum likelihood methods were employed to estimate variance components. Data were obtained from all three German Dalmatian kennel clubs associated with the German Association for Dog Breeding and Husbandry (VDH). CSD was recorded by standardized protocols for brainstem auditory-evoked response (BAER). The material included 1899 German Dalmatian dogs from 354 litters in 169 different kennels. BAER testing results were from the years 1986 to 1999. Pedigree information was available for up to seven generations. The animal model regarded the fixed effects of sex, coat colour, eye colour, presence of patches, litter size, percentage of examined puppies per litter, kennel club, and inbreeding coefficient. The common environment of the litter and kennel as well as the additive genetic effect of the animal were taken into account as randomly distributed effects. The fixed effects of eye colour, percentage of puppies examined per litter and kennel club were significant in the mixed model analysis. A significant proportion of additive genetic variation could be shown despite corrections for phenotypic colour variants. The heritability estimate for CSD in German Dalmatian dogs was h(2)=0.27+/-0.07. The additive genetic correlation of CSD with presence of blue eyes was r(g)=0.53+/-0.41 and with presence of patches r(g)=-0.36+/-0.24. We concluded that additional genes other than those associated with phenotypic colour markers in German Dalmatian dogs significantly contribute to the occurrence of CSD.  相似文献   

13.
Background: Age‐related hearing loss (ARHL), or presbycusis, is the most common form of acquired hearing loss in dogs. Middle ear implants have been used successfully in people with ARHL who cannot benefit from conventional hearing aids. Hypothesis: Audibility improves in dogs with ARHL after implantation of the Vibrant Soundbridge (VSB) middle ear implant. Animals: Three Beagle dogs with ARHL, mean age 11.1 years. Methods: The dogs were assessed pre‐ and postoperatively by brainstem‐evoked response audiometry (BERA), otoscopy, and computed tomography scans of the ears. A VSB middle ear implant was implanted unilaterally. Three months later the functionality of the implants was assessed by auditory steady‐state responses (ASSRs), after which the dogs were euthanized for histopathological examination. Results: The VSB was implanted successfully in all dogs. Recovery from surgery was uneventful, except for transient facial nerve paralysis in 2 dogs. ASSRs showed that hearing improved after activation of the implants with a mean of 20.7, 13, and 16.3 dB at 1, 2, and 4 kHz, respectively. The implantation procedure did not affect residual hearing (with inactive implants) as measured by BERA. Conclusions and Clinical Importance: Implantation of the VSB resulted in lower ASSR thresholds, but only at the higher gain settings of the audioprocessor. As in humans, a more powerful audioprocessor is required to treat sensorineural hearing loss exceeding 20 dB in dogs. A substantial improvement in patient‐owner communication will have to be demonstrated in future studies before the procedure can be recommended in clinical practice.  相似文献   

14.
Objective To use the brainstem auditory evoked response (BAER) to test the hypothesis that auditory function could be worse in older horses than in younger horses. Procedure BAER waveforms in response to click stimuli were measured in five younger horses (5–8 years) and four older horses (17–22 years). Results Compared with the younger horses, the older horses showed significantly (P < 0.02) worse BAER thresholds and significantly (P < 0.02) worse BAER wave V amplitudes to the 90 decibels above normal hearing level stimulus. These results were consistent with partial deafness in the older horse group. Conclusion BAER assessment can be used to identify partial deafness in older horses. Such horses should be managed appropriately, with particular care taken in noisy environments where hearing loss could put the horse and/or its owner at risk of harm.  相似文献   

15.
Cranium and brainstem dimensions were measured in 32 postmortem dog heads. Positive correlations were found between cranium length (CL) and brainstem length (BL) (r = 0.87), between cranium width (CW) and brainstem width (BW) (r = 0.83), and between cranium distance (CD = CL+CW/2) and brainstem distance (BD = BL+BW/2) (r = 0.91). Positive correlation coefficients were also found between CL and CW (r = 0.90), and between BL and BW (r = 0.85). It was concluded that head size accurately reflected brainstem size. A least squares estimation of the brainstem distance (BD) from CL and CW values was BD = 10.9 + 0.16 (CL+CW/2) (BD, CL and CW in mm). Brainstem auditory evoked potentials (BAEPs) and cranium dimensions were measured in 43 dogs (86 ears) with different head size, body size, sex and age. Wave form, absolute and interpeak latencies and correlation coefficients, relating latencies to cranium dimensions and body weight, were analysed. CL, CW, and CD were positively correlated with body weight (r = 0.93, 0.70 and 0.93, respectively), and CL, CW, and CD were correlated with age (r = 0.33, 0.52, and 0.40, respectively). BAEPs consisted of five distinct positive peaks (I to V). Secondary positive peaks following peaks I and II were seen in 60% (I') and 90% (II') of the recordings. Late waves were recorded in 90% (VI), 50% (VII), and 25% (VIII) of the recordings. Latencies increased with decreasing stimulus intensity level (from 90 dB to 10 dB hearing level, HL), especially for peaks I, II, V, and the I-V interpeak interval.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
There Is growing Interest In the application of auditory brainstem response (ABR) audlometry for hearing assessment In dogs. The technique is far from standardised, however, resulting In large discrepancles between studies. This study aimed to obtain normative data, under clearly defined conditions, for two breeds of significantly different size; head size being a potential factor determining ABR latency values. The subjects, 20 daimatians and 20 Jack Russell terriers, were sedated prior to ABR testing, and subcutaneous scalp electrodes used to detect the evoked potential ellclted by a click stimulus presented via Insert earphones. The mean ABR thresholds for the two breeds, 0 and -5 decibels re normal hearing level (dB nHL), respectively, were very simllar to those for humans. The latency values of the main ABR waves and the Interval between them were statistically significantly smaller for the smaller breed, but there was no correlation with head size within either breed. The results provide a baseline to assist with confirmation of hearing Impalrment and neuro-otological diagnosis In the dog.  相似文献   

17.
The Brainstem Auditory Evoked Potential (BAEP) is a recording of the electrical activity of the brainstem following an acoustic stimulation. Up to seven peaks may be identified within 10 ms, and are labelled I to VII. The first five of these peaks are of most clinical importance, and in normal horses, peaks I, III and V are always present at stimulus intensities of 70-100 dB. Repeated sampling of clinically normal subjects at different stimulus intensities has enabled mean latency values to be determined for the ipsilateral and contralateral peaks I, III and V, and also for the interpeak latencies (IPLs) at each intensity. The maximum, normal, absolute latency for ipsilateral peak I was 1.86 ms, for peak III, 3.53 ms and for peak V, 5.52 ms. The equivalent contralateral values were 2.50 ms, 4.44 ms and 5.59 ms. The maximum, normal, contralateral IPL for I-III was 1.78 ms, that for III-V was 2.26 ms and for I-V was 3.76 ms. The maximum, normal, contralateral IPLs were 2.17 ms for I-III, 1.41 ms for III-V and 3.32 ms for I-V. If a peak or peaks are absent or delayed, or the IPL is greater than expected, the patient can be determined to have abnormal brainstem or auditory nerve conduction. The amplitudes of peaks I and V were measured, and the ratio of amplitudes was determined, to find the normal V:I values. At a stimulus intensity of 100 dB, the ipsilateral ratio was 0.49 +/- 0.19, and the contralateral value 1.49 +/- 0.48. Dispersal values were also calculated, by dividing the height of the III-V complex by its duration. For a stimulus intensity of 100 dB, the ipsilateral dispersal value was 0.416 +/- 0.104 microV/ms, and the contralateral value of 0.473 +/- 0.074 microV/ms. A range of normal values for both V:I ratio and dispersal were calculated. Height, weight and inter-aural distance were measured, and the relationship of the various peaks and IPLs to these variables was ascertained by statistical analysis. For the ipsilateral values, the correlation between the latency of wave V, and III-V and I-V IPLs and weight were significant (P less than 0.01). Significant correlations were found between weight and the latency of contralateral waves III (P less than 0.05) and V (P less than 0.05) and the I-III (P less than 0.01) and I-V (P less than 0.001) IPLs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Brain stem auditory-evoked response of the nonanesthetized dog   总被引:1,自引:0,他引:1  
The brain stem auditory evoked-response was measured from a group of 24 healthy dogs under conditions suitable for clinical diagnostic use. The waveforms were identified, and analysis of amplitude ratios, latencies, and interpeak latencies were done. The group was subdivided into subgroups based on tranquilization, nontranquilization, sex, and weight. Differences were not observed among any of these subgroups. All dogs responded to the click stimulus from 30 dB to 90 dB, but only 62.5% of the dogs responded at 5 dB. The total number of peaks averaged 1.6 at 5 dB, increased linearly to 6.5 at 50 dB, and remained at 6.5 to 90 dB. Frequency of recognizability of each wave was tabulated for each stimulus intensity tested; recognizability increased with increased stimulus intensity. Amplitudes of waves increased with increasing stimulus intensity, but were highly variable. The 4th wave had the greatest amplitude at the lower stimulus intensities, and the 1st wave had the greatest amplitude at the higher stimulus intensities. Amplitude ratio of the 1st to 5th wave was greater than 1 at less than or equal to 50 dB stimulus intensity, and was 1 for stimulus intensities greater than 50 dB. Interpeak latencies did not change relative to stimulus intensities. Peak latencies of each wave averaged at 5-dB hearing level for the 1st to 6th waves were 2.03, 2.72, 3.23, 4.14, 4.41, and 6.05 ms, respectively; latencies of these 6 waves at 90 dB were 0.92, 1.79, 2.46, 3.03, 3.47, and 4.86 ms, respectively. Latency decreased between 0.009 to 0.014 ms/dB for the waves.  相似文献   

19.
OBJECTIVE: To investigate the feasibility of evoking the nociceptive withdrawal reflex (NWR) from fore and hind limbs in conscious dogs, score stimulus-associated behavioral responses, and assess the canine NWR response to suprathreshold stimulations. ANIMALS: 8 adult Beagles. PROCEDURE: Surface electromyograms evoked by transcutaneous electrical stimulation of ulnaris and digital plantar nerves were recorded from the deltoideus, cleidobrachialis, biceps femoris, and tibialis cranialis muscles. Train-of-five pulses (stimulus(train)) were used; reflex threshold (I(t train)) was determined, and recruitment curves were obtained at 1.2, 1.5, and 2 x I(t train). Additionally, a single pulse (stimulus(single)) was given at 1, 1.2, 1.5, 2, and 3 x I(t train). Latency and amplitude of NWRs were analyzed. Severity of behavioral reactions was subjectively scored. RESULTS: Fore- and hind limb I(t train) values (median; 25% to 75% interquartile range) were 2.5 mA (2.0 to 3.6 mA) and 2.1 mA (1.7 to 2.9 mA), respectively. At I(t train), NWR latencies in the deltoideus, cleidobrachialis, biceps femoris, and cranial tibialis muscles were not significantly different (19.6 milliseconds [17.1 to 20.5 milliseconds], 19.5 milliseconds [18.1 to 20.7 milliseconds], 20.5 milliseconds [14.7 to 26.4 milliseconds], and 24.4 milliseconds [17.1 to 40.5 milliseconds], respectively). Latencies obtained with stimulus(train) and stimulus(single) were similar. With increasing stimulation intensities, NWR amplitude increased and correlated positively with behavioral scores. CONCLUSIONS AND CLINICAL RELEVANCE: In dogs, the NWR can be evoked from limbs and correlates with behavioral reactions. Results suggest that NWR evaluation may enable quantification of nociceptive system excitability and efficacy of analgesics in individual dogs.  相似文献   

20.
This study was carried out to evaluate the features of neurological dysfunction in experimentally-induced bovine spongiform encephalopathy (BSE)-infected cattle using brainstem auditory evoked potentials (BAEP). The progressive prolongation of peak latency of waves III and V was observed right-and-left bilaterally at the onset of neurological symptoms. The peak latency of wave V and the I-V interpeak latency (IPL) in BSE cattle 22 and 24 months after intracerebral inoculation were significantly (P < 0.05) prolonged compared with the control cattle. In addition, the amplitude of the BAEP waves of the BSE cattle were low compared with the control cattle. Hearing loss occurred in the BSE cattle that showed advanced neurological symptoms such as tremor. It is thought that this BAEP data reflects a functional disorder in the central auditory nerve pathways characteristic of experimentally-induced BSE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号