首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compared to conventional planting material, micropropagated plantlets are highly susceptible to Fusarium wilt because they are free from beneficial root inhabitants. We aimed to introduce mixtures of beneficial microbes in the plantlets in the rooting medium under in vitro conditions rather than by field applications. Endophytes and rhizobacteria from different banana cultivars and plantation areas were screened and characterized. Under in vitro conditions, banana tissue culture plantlets were bacterized with the prospective endophytes, Bacillus subtilis strain EPB56 and EPB10 and the rhizobacteria, Pseudomonas fluorescens strain Pf1 and effects of in vitro bacterization were investigated against Fusarium oxysporum f. sp. cubense race 1 under glasshouse and field conditions. Inoculation of bananas during micropropagation allowed for the omission of minerals and salts as well as vitamins from the growing media while resulting in plantlets close to double size compared to the controls with full strength media. All endophyte and rhizobacteria strains tested resulted in significant reductions in Fusarium infection in the glasshouse and field and in significantly better plant growth. The three-way combination of bacteria resulted in 78% disease reduction and more than doubled the yields compared to the untreated controls across two field experiments. Three-way inoculation led to yields of 23 and 24 kg/ bunch compared to chemical disease control (13; 15 kg/bunch) and untreated controls (10; 13 kg/bunch) in the two field experiments. Under glasshouse conditions, activity of defence enzymes was significantly increased by all inoculation treatments. Inoculation in vitro led to the establishment of the microorganisms in the plant system before delivering to the farming community. Micropropagation combined with the establishment of a beneficial microbial consortium should complement the micropropagated plants for easier adaptation under field conditions.  相似文献   

2.
PGPR strain Pseudomonas fluorescens PS1 was evaluated to formulate carrier based bioformulations. The viability of P. fluorescens PS1 was monitored at different time intervals during the period of storage at room temperature in different carriers such as soil, charcoal, sawdust and sawdust-soil. Sawdust-soil was found to be the most efficient carrier material for P. fluorescens PS1 followed by other carriers. After 1 year of storage, P. fluorescens PS1 was re-isolated and assayed for its antifungal activity against Sclerotinia sclerotiorum a phytopathogenic fungus causing stem blight in Indian mustard, Brassica campestris. Results of scanning electron microscopy exhibited that P. fluorescens PS1 caused morphological alteration in mycelia of S. sclerotiorum as evident by hyphal perforation, and fragmented lysis. Seed bacterization of B. campestris with P. fluorescens PS1 induced enhanced seed germination, increased overall plant growth as well as reduced stem blight in mustard with improved yield. These findings demonstrate that P. fluorescens PS1 has significant potential to raise disease-free crops due to the presence of a wide array of PGP characteristics.  相似文献   

3.
The infection of above-ground tissues of Brassica napus by Leptosphaeria maculans is well understood. However, root infection (root rot) under field conditions, the development of root rot over time and its relationship to other disease symptoms caused by L. maculans has not been described. A survey of B. napus crops was conducted in Australia to investigate the incidence and severity of root rot. Additionally, the pathway of root infection was examined in field experiments. Root rot was present in 95% of the 127 crops surveyed. The severity and incidence of root rot was significantly correlated with that of crown canker; however, the strength of this relationship was dependent on the season. Root rot symptoms appeared before flowering and increased in severity during flowering and at maturity, a pattern similar to crown canker suggesting that the infection of the root is an extension of the crown canker phase of the L. maculans lifecycle. All isolates of L. maculans tested in glasshouse experiments caused root rot and crown canker in B. napus and Brassica juncea. In the field, the main pathway of root infection is via invasion of cotyledons or leaves by airborne ascospores, rather than from inoculum in the soil. Root rot was present in crops in fields that had never been sown to B. napus previously, in plants grown in fumigated fields, and in glasshouse-grown plants inoculated in the hypocotyl with L. maculans.  相似文献   

4.
A blood disease pathogenic strain, Ralstonia syzygii subspecies celebesensis was used to study the possible association of biofilm-forming bacteria with the development and severity of blood disease in banana plants. Therefore, the objective of this study was to determine the effects of mono-culture and co-culture inoculation of isolated biofilm-forming bacteria with the blood disease pathogen in banana pseudostems in glasshouse conditions. Putative biofilm-forming bacteria were isolated from an infected banana plant and were further identified using 16SrRNA sequencing. Four isolates, identified as Enterobacter hormaechei, Enterobacter cloacae, Kosakonia radicincitans and Klebsiella pneumoniae, were inoculated as a mono- and co-culture with R. syzygii subsp. celebesensis into 2 months old banana plants. The observation after the 8 weeks of post inoculation showed that plants which were co-inoculated with the pathogen and K. radicincitans, a biofilm-forming bacterium, were the most susceptible towards the infection. In contrast, plants under two treatments (which were co-inoculated with the pathogen and E. cloacae and the pathogen with E. hormaechei) were less susceptible towards the infection. This study revealed the antagonistic effects of two biofilm-forming strains which reduced the severity of infection caused by the pathogenic agent. Scanning electron micrographs of the cross section of plant rhizomes indicated the dissimilarity of adhesion and host colonization conditions of the pathogen in each infected plant from different treatments.  相似文献   

5.
In this work, a bioformulation containing Trichoderma harzianum strain ITEM 3636, an effective biocontrol agent against the peanut pathogen Fusarium solani, was evaluated for control of peanut smut, an emergent disease caused by Thecaphora frezii. The performance of the bioformulation was evaluated during seasons 2014/2015 and 2015/2016 in experimental fields with history of peanut smut. Inoculation with T. harzianum ITEM 3636 significantly reduced the severity of peanut smut during both seasons by 17% and 25%, respectively. This is the first report where a consistent decrease of peanut smut symptoms is achieved in field experiments using a potential biological control agent. The identity of the causal agent of peanut smut was confirmed by sequencing the D1/D2 DNA region. T. harzianum ITEM 3636 caused significant increases in grain weight/plant in both years. Peanut smut and brown root rot are diseases that cause severe economic losses. Both causal agents may be present in the soil and, depending on environmental factors, cause disease. The T. harzianun ITEM 3636 bioformulation has high potential for controlling both diseases. Thus, the application of a single bioformulation could protect the health of peanut plants against two high impact pathogens.  相似文献   

6.
Severe rot of leaves, peduncles and flowers caused by Gibberella zeae (anamorph: Fusarium graminearum) was found on potted plants of hyacinth (Hyacinthus orientalis), a liliaceous ornamental, in greenhouses in Kagawa Prefecture, Japan, in January 2001. This disease was named “Fusarium rot of hyacinth” as a new disease because only the anamorph, F. graminearum, was identified on the diseased host plant. The authors contributed equally to this work. The fungal isolate and its nucleotide sequence data obtained in this study were deposited in the Genebank, National Institute of Agrobiological Sciences and the DDBJ/EMBL/GenBank databases under the accession numbers MAFF239499 and AB366161, respectively.  相似文献   

7.
Attempts to conserve and utilise autochthonous grapevine germplasm in modern breeding programmes, are sometimes faced with the challenge that virus-free plants of old grapevine varieties and clones are hard to find. From 50 year-old vineyards in Frankonia the Vitis vinifera cv. Domina was selected showing particularly interesting loose-bunch architecture with fewer berries. However this valuable germplasm was carrying an Arabis mosaic virus (ArMV) infection requiring a reliable and effective method to produce healthy mother plants for clonal selection. Somatic embryogenesis was established from anthers as the most promising technical approach. The absence of ArMV in 46 regenerated plant lines was confirmed by ELISA and IC-RT PCR, repeated after different time intervals in vitro and in vivo after acclimatisation, and after one dormancy period under glasshouse conditions. Morphologically, all grapevines appeared true-to-type, and a screening of 20 plants by flow cytometry to determine the ploidy level and to exclude the risk of undesired genetic variability confirmed that all tested plants were diploid. Field evaluations of the initially selected bunch traits are currently underway.  相似文献   

8.
Tomato root rot caused by Rhizoctonia solani is a major soilborne disease resulting in significant yield loss. The culture filtrates of six isolates of Trichoderma/Hypocrea species were evaluated for in vitro production of hydrolytic enzymes. Results demonstrated that all the six isolates were able to produce chitinase, β-1, 3 glucanase and protease in the range of 76–235 μmol GlcNAc min-1 mg-1 protein, 31.90–37.72 nmol glucose min-1 mg-1 proteins and 63.05–86.22 μmol min-1 mg-1 proteins, respectively. Trichoderma/Hypocrea-based formulation(s) were prepared with chitin (1% v:v) and CMC (0.5% w:v) for root rot management in a greenhouse. Root dip application with bioformulation(s) resulted in a significant reduction of the root rot index. In addition, bioformulations increased plant growth attributing traits significantly relative to untreated control. Accumulation of total phenols, peroxidase, polyphenoloxidase and phenylalanine ammonia lyase increased in chitin-supplemented Trichoderma/Hypocrea formulation-treated plants challenged with R. solani. The results suggest that chitin-fortified bioformulation(s) could be an effective system to control root rot of tomato in an eco-compatible manner.  相似文献   

9.
Mixtures of wet vegetable wastes (Brassica, carrot or onion) and dry onion waste were composted at 50 °C for 7 days. The incorporation of the raw or composted vegetable waste mixtures into sandy loam, silt and peat soils reduced the viability of sclerotia of S. cepivorum in glasshouse pot bioassays. The reduction in viability was dependent on waste type, rate of incorporation, duration of exposure and soil type. Onion waste was the most effective waste type in reducing sclerotia viability in all three soils. The Brassica and carrot wastes were as effective as the onion waste in silt soil but less effective in sandy loam and peat soil. A 50% w/w incorporation rate of the wastes gave the largest reduction in viability, with an increase in reduction over time. Composted onion waste reduced sclerotia viability under glasshouse and field conditions although the effect was smaller in the field. Composted onion waste incorporated into soil at 50% w/w reduced the incidence of Allium white rot on onion seedlings in glasshouse pot tests. Incidence and control of the disease differed with soil type. The most consistent control was achieved in peat soil whereas no control was observed in silt soil. Incorporation of the waste 2 months prior to sowing or transplanting reduced seedling emergence in sandy loam soil and growth in all three soil types. The potential for field application of composted vegetable wastes as a sustainable method for control of Allium white rot and waste disposal is discussed.  相似文献   

10.
Organic management of soils is generally considered to reduce the incidence and severity of plant diseases caused by soil-borne pathogens. In this study, take-all severity on roots of barley and wheat, caused by Gaeumannomyces graminis var. tritici, was significantly lower in organically-managed than in conventionally-managed soils. This effect was more pronounced on roots of barley and wheat plants grown in a sandy soil compared to a loamy organically-managed soil. Fluorescent Pseudomonas spp. and in particular phlD+ pseudomonads, key factors in the take-all decline phenomenon, were represented at lower population densities in organically-managed soils compared to conventionally-managed soils. Furthermore, organic management adversely affected the initial establishment of introduced phlD+ P. fluorescens strain Pf32-gfp, but not its survival. In spite of its equal survival rate in organically- and conventionally-managed soils, the efficacy of biocontrol of take-all disease by introduced strain Pf32-gfp was significantly stronger in conventionally-managed soils than in organically-managed soils. Collectively, these results suggest that phlD+ Pseudomonas spp. do not play a critical role in the take-all suppressiveness of the soils included in this study. Consequently, the role of more general mechanisms involved in take-all suppressiveness in the organically-managed soils was investigated. The higher microbial activity found in the organically-managed sandy soil combined with the significantly lower take-all severity suggest that microbial activity plays, at least in part, a role in the take-all suppressiveness in the organically-managed sandy soil. The significantly different bacterial composition, determined by DGGE analysis, in organically-managed sandy soils compared to the conventionally-managed sandy soils, point to a possible additional role of specific bacterial genera that limit the growth or activity of the take-all pathogen.  相似文献   

11.
Leaf spot of tomato, incited by Pseudomonas syringae pv. syringae, has been reported recently in Italy on grafted and non-grafted tomato plants (scion Cuore di Bue, rootstock Solanum lycopersicum x Solanum hirsutum cv. Beaufort). In some greenhouses, more than 80% of plants were affected, with a marked reduction in yield. This work was undertaken in order to understand the effect of the number of hours of incubation at high relative humidity (r.h.) and temperature as well as the effect of the presence of wounds at infection time on the development of leaf spot. A difference in sensitivity to leaf spot was observed in the various cultivars tested, in terms of severity of P. syringae pv. syringae, with “Cuore di Bue” being the most susceptible of these cultivars. The development of leaf spot is mostly favored by the presence of wounds, at temperatures between 15 and 20°C. The severity of the disease is lower at 10 and 25°C and very low at 30°C. Under the most favorable temperature conditions, the presence of wounds is sufficient to allow the development of the pathogen immediately upon incubation at high r.h. The effect of wounds and the relatively low requirement of hours of incubation at high r.h. suggest the need for careful management and handling of plants when temperatures range between 15 and 25°C, and particularly within 15 and 20°C. All operations carried out, particularly at transplant and immediately after, should avoid the creation of wounds.  相似文献   

12.
13.
Tomato is challenged by several pathogens which cause loss of production. One such pathogen is the oomycete Phytophthora infestans which is able to attack all the aerial parts of the plant. Although a wide range of resistance sources are available, genetic control of this disease is not yet successful. Pyramiding R-genes through genetic transformation could be a straightforward way to produce tomato and potato lines carrying durable resistance to P. infestans. In this work the R1 potato gene was transferred into tomato lines. The tomato transgenic lines were analyzed by using q-RT-PCR and progeny segregation to determine the gene copy number. To test the hypothesis that R1 represents a specifically regulated R-gene, transgenic tomato plants were inoculated with P. infestans isolate 88133 and IPO. All the plants containing the R1 gene were resistant to the late blight isolate IPO-0 and susceptible to isolate 88133. These results provide evidence for specific activation of the R1 gene during pathogen challenge. Furthermore, evidence for enhancement of PR-1 gene expression during P. infestans resistance response was obtained.  相似文献   

14.
In order to accelerate breeding and selection for disease resistance to Fusarium wilt, it is important to develop bioassays which can differentiate between resistant and susceptible cultivars efficiently. Currently, the most commonly used early bioassay for screening Musa genotypes against Fusarium oxysporum f. sp. cubense (Foc) is a pot system, followed by a hydroponic system. This paper investigated the utility of in vitro inoculation of rooted banana plantlets grown on modified medium as a reliable and rapid bioassay for resistance to Foc. Using a scale of 0 to 6 for disease severity measurement, the mean final disease severities of cultivars expressing different levels of disease reaction were significantly different (P ≤ 0.05). Twenty-four days after inoculation with Foc tropical race 4 at 106 conidia ml−1, the plantlets of two susceptible cultivars had higher final disease severities than that of four resistant cultivars. Compared with ‘Guangfen No.1’, ‘Brazil Xiangjiao’ is highly susceptible to tropical race 4 and its mean final disease severity was the highest (5.27). The plantlets of moderately resistant cultivar ‘Formosana’ had a mean final disease severity (3.53) lower than that of ‘Guangfen No.1’ (4.33) but higher than that of resistant cultivars: ‘Nongke No.1’, GCTCV-119, and ‘Dongguan Dajiao’ (1.87, 1.73, and1.53, respectively). Promising resistant clones acquired through non-conventional breeding techniques such as in vitro selection, genetic transformation, and protoplast fusion could be screened by the in vitro bioassay directly. Since there is no acclimatization stage for plantlets used in the bioassay, it helps to improve banana breeding efficiency.  相似文献   

15.
The genomic fragments of two open reading frames (ORFs) 1 and 2 of German and Canadian PAV isolates of Barley yellow dwarf virus (BYDV-PAV) were sequenced. Sequences only slightly differed from previously published sequences of this virus. Two polyclonal antisera against proteins encoded by ORFs 1 and 2 of a German ASL-1 isolate were developed using recombinant antigens expressed in E. coli as a fusion either to His6− or thioredoxin-tags. In Western blot analysis with total protein extracts from BYDV infected plants, antisera efficiently recognized the 99 kDa fusion protein expressed from ORF1 and ORF2 (P1–P2 protein). Later in infection the P1–P2 protein disappeared and two smaller proteins, revealing sizes of 39 and 60 kDa, could be detected.  相似文献   

16.
The understanding of the molecular biology of Polymyxa betae, the protist vector of Beet necrotic yellow vein virus, remains limited because of the obligate nature of this root endoparasite and the limited data on the genome of Beta vulgaris, its most common host plant. The aim of this work was to assess the infection of P. betae in Arabidopsis thaliana in order to learn more about the P. betae genome and its interaction with the host. The susceptibility of a set of ecotypes of various origins to a monosporosorus and aviruliferous isolate of P. betae was analyzed in a series of bioassays conducted under controlled conditions. P. betae was detected in roots of A. thaliana using light microscopy and PCR. The infection severity was relatively low in this species compared with B. vulgaris, but the different stages of the life cycle were present. The phenotype of P. betae in A. thaliana root cells differed from the phenotype in B. vulgaris: the spore-forming phase was more prevalent in comparison with the sporangial phase, and the sporosori contained a lower number of spores. The compatible interaction between P. betae and A. thaliana obtained after the inoculation of zoospores and optimal conditions for the development of P. betae provide a new model system that can be used to improve the knowledge on the P. betae genome and on the mechanisms of the spore-forming phase of P. betae.  相似文献   

17.
Fusarium oxysporum f. sp. cubense (Foc) is the causal pathogen of Fusarium wilt of banana. To understand infection of banana roots by Foc race 4, we developed a green fluorescent protein (GFP)-tagged transformant and studied pathogenesis using fluorescence microscopy and confocal laser scanning microscopy. The transformation was efficient, and GFP expression was stable for at least six subcultures with fluorescence clearly visible in both hyphae and spores. The transformed Foc isolate also retained its pathogenicity and growth pattern, which was similar to that of the wild type. The study showed that: (i) Foc race 4 was capable of invading the epidermal cells of banana roots directly; (ii) potential invasion sites include epidermal cells of root caps and elongation zone, and natural wounds in the lateral root base; (iii) in banana roots, fungal hyphae were able to penetrate cell walls directly to grow inside and outside cells; and (iv) fungal spores were produced in the root system and rhizome. To better understand the interaction between Foc race 4 and bananas, nine banana cultivars were inoculated with the GFP-transformed pathogen. Root exudates from these cultivars were collected and their effect on conidia of the GFP-tagged Foc race 4 was determined. Our results showed that roots of the Foc race 4-susceptible banana plants were well colonized with the pathogen, but not those of the Foc race 4-resistant cultivars. Root exudates from highly resistant cultivars inhibited the germination and growth of the Fusarium wilt pathogen; those of moderately resistant cultivars reduced spore germination and hyphal growth, whereas the susceptible cultivars did not affect fungal germination and growth. The results of this work demonstrated that GFP-tagged Foc race 4 isolates are an effective tool to study plant–fungus interactions that could potentially be used for evaluating resistance in banana to Foc race 4 by means of root colonization studies. Banana root exudates could potentially also be used to identify cultivars in the Chinese Banana Germplasm Collection with resistance to the Fusarium wilt pathogen.  相似文献   

18.
In South Africa during the 2006/2007 potato growing season, outbreaks of blackleg occurred, causing severe economic losses in commercial potato production fields. Symptoms were initially observed on only one stem per plant, on which the top leaves rolled upwards, wilted and became necrotic. As symptoms progressed to the lower leaves with subsequent leaf desiccation, a light to dark brown discolouration of the vascular system at the stem base developed, followed by external darkening. Under prevailing wet and humid conditions stems became slimy and pale. In the stems, the pith became necrotic and hollow. These symptoms were similar to those described in Brazil, where the causal agent was identified as a new subspecies, Pectobacterium carotovorum subsp. brasiliensis (Pbcb). Isolations from plants showing typical blackleg symptoms were made on CVP medium. Sequences and phylogenetic analysis of the partial 16S–23S rDNA intergenic spacer region indicated that the isolates were Pbcb. Comparison of PCR-RFLP patterns of the 16S–23S rDNA of isolates to reference cultures confirmed the identity of the South African blackleg strains as Pbcb, identical to strain 8 isolated in Brazil. This is the first report of Pbcb in South Africa and it appears to be the most important causal agent of blackleg in South Africa. The disease poses a major potential threat to the South African potato industry especially in terms of seed exports, tuber quality and yield.  相似文献   

19.
In the present study, the pathogenicity of 36 isolates of Guignardia species isolated from asymptomatic ‘Tahiti’ acid lime fruit peels and leaves, ‘Pêra-Rio’ sweet orange leaves and fruit peel lesions, and a banana leaf were characterized. For pathogenicity testing, discs of citrus leaves colonized by Phyllosticta citricarpa under controlled laboratory conditions were kept in contact with the peels of fruit that were in susceptible states. In addition, pathogenicity was related to morphological characteristics of colonies on oatmeal (OA) and potato dextrose agar (PDA). This allowed the morphological differentiation between G. citricarpa and G. mangiferae. Polymerase chain reactions (PCRs) were also used to identify non-pathogenic isolates based on primers specific to G. citricarpa. A total of 14 pathogenic isolates were detected during pathogenicity tests. Five of these were obtained from leaf and fruit tissues of the ‘Tahiti’, which until this time had been considered resistant to the pathogen. Given that the G. citricarpa obtained from this host was pathogenic, it would be more appropriate to use the term insensitive rather than resistant to categorize G. citricarpa. A non-pathogenic isolate was obtained from lesions characteristic of citrus black spot (CBS), indicating that isolation of Guignardia spp. under these conditions does not necessarily imply isolation of pathogenic strains. This also applied to Guignardia spp. isolates from asymptomatic citrus tissues. Using fluorescent amplified fragment length polymorphism (fAFLP) markers, typically pathogenic isolates were shown to be more closely related to one another than to the non-pathogenic forms, indicating that the non-pathogenic isolates display higher levels of genetic diversity.  相似文献   

20.
The ability of selected strains of fluorescent Pseudomonas spp. to cause induced systemic resistance (ISR) in Eucalyptus urophylla against bacterial wilt caused by Ralstonia solanacearum was investigated. Four of the five strains used can produce salicylic acid (SA) in vitro and, therefore, chemical SA, that is known to induce resistance in many plant species, was used as a reference treatment. Whereas a soil drench with SA did induce systemic resistance in E. urophylla, infiltration of SA into leaves did not. None of the fluorescent Pseudomonas spp. strains caused ISR against bacterial wilt when applied to the soil, but two strains, P. putida WCS358r and P. fluorescens WCS374r triggered ISR when infiltrated into two lower leaves 3–7 days before challenge inoculation. A mutant of strain WCS358r defective in the biosynthesis of the fluorescent siderophore pseudobactin, did not cause ISR, while the purified siderophore of WCS358r did, suggesting that pseudobactin358 is the ISR determinant of WCS358. A siderophore-minus mutant of WCS374r induced the same level of disease resistance as its parental strain, but the purified siderophore induced resistance as well, indicating that both the siderophore and another, unknown, inducing determinant(s) of WCS374r can trigger ISR in Eucalyptus. A possible role of WCS374r-produced SA remains uncertain. Transformation of a siderophore-minus mutant of WCS358 with the SA biosynthetic gene cluster from WCS374 did not enable this transformant to cause ISR in E. urophylla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号