首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contents of 11 most prevalent polycyclic aromatic hydrocarbons (PAHs) in snow and soils of arable, fallow, and forest areas significantly remote from impact technogenic sources of polyarenes have been examined in the Torzhok district of Tver oblast. From the analysis of snow samples, the volumes and composition of PAHs coming from the atmosphere onto the areas of different land use have been determined. Light hydrocarbons prevail in PAHs. They make up 65–70% of total PAHs; their share in soils reaches almost 95%. An increase in the content of PAHs is revealed in fallow soils compared to arable and afforested areas. A direct relationship is revealed between the lateral distribution of total PAHs and the content of organic carbon. The distribution of total PAHs is surface-accumulative in forest soils, mainly uniform in arable soils, and deepaccumulative in fallow soils. PAH groups characterized by similar radial distributions and ratios between their reserves in snow and soils are distinguished: (1) fluorene and phenanthrene, (2) biphenyl and naphthalene, (3) benzo(a)anthracene, chrysene, perylene, and benzo[a]pyrene, and (4) anthracene and benzo[ghi]pyrene.  相似文献   

2.
The composition and distribution features of the main components of soil hydrocarbon complex― organic (noncarbonate) carbon, hexane bitumoids, and individual polycyclic aromatic hydrocarbons (PAHs)―in the area of depleted Bakhilovo asphalt deposit (Samara oblast) have been studied. According to their proportions, three genetic types of soil hydrocarbon status are distinguished: (a) emanation–injection type prevailing within the limits of the former production field and characterized by anomalous contents of heavy resinous bitumoids (5000–7000 mg/kg on the average) throughout the soil profile and a high content of PAHs (4–9 mg/kg on the average, 29 mg/kg as the maximum, with the dominance of naphthalene homologues); (b) emanation–biogeochemical type confined to mechanogenically undisturbed soils within and beyond the deposit area, where the emanation component is manifested in soils with heavy texture and higher concentrations and very light composition of bitumoids in the lower parts of the soil profile; and (c) atmosedimentation–biogeochemical type characteristic of conventionally background soils with light texture; benzo[a]pyrene traces are detected among PAHs in the upper soil horizon, which indicates the input of this hydrocarbon with aerosols from the atmosphere; the concentrations of bitumoids and PAHs in parent rocks are lower than in the soils.  相似文献   

3.
The composition and accumulation patterns of priority polycyclic aromatic hydrocarbons (PAHs) in soils of Vasilievsky Island in Saint Petersburg were studied. Concentrations of benzo[a]pyrene were found to exceed maximum permissible concentrations in all the samples, and the maximum recorded concentration exceeded the MPC by 50 times. Concentrations of other PAHs also exceeded the background values. The main soil pollutants were found to be fluoranthene, pyrene, benzo[b]fluoranthene, benzo[a]pyrene, and benzo[g, h, i] perylene, the part of which in the total content of PAHs was 65–80%.  相似文献   

4.
Polycyclic Aromatic Hydrocarbons in Soils from European High Mountain Areas   总被引:1,自引:0,他引:1  
Polycyclic aromatic hydrocarbons (PAHs) were analyzed in 70 soils distributed in mountain areas such as Montseny (300?C1,700 m), Pyrenees (1,500?C2,900 m), Alps (1,100?C2,500 m), and Tatras (1,400?C1,960 m). Average total PAH concentrations, excluding retene and perylene, were about 400 ng/g in the Pyrenees and 1,300?C1,600 ng/g in the other mountain ranges. No correlations between PAH concentrations and total organic carbon were observed. Retene was the major PAH in the Pyrenean soils of lower altitude. No altitudinal dependence was found between soil PAH concentrations and elevation for the whole dataset. However, in the Tatra soils a statistically significant correlation with altitude was observed involving higher concentrations at higher altitude. This correlation was due to the statistically significant altitudinal dependence of the more volatile PAHs. Another observed altitudinal trend concerned the benz[a]anthracene/(benz[a]anthracene + chrysene + triphenylene) and the benzo[a]pyrene/(benzo[a]pyrene + benzo[e]pyrene) ratios that exhibited a decrease in the more chemically labile compounds, benz[a]anthracene and benzo[a]pyrene, respectively, in the soils located at higher altitude. This observation is consistent with the expected higher photooxidation at higher mountain altitude.  相似文献   

5.
The contents and profile distributions of Cr, Ni, Cu, Zn, Cd, Hg, Pb, and benzo[a]pyrene in oligotrophic peat soils, oligotrophic peat gley soils (Dystric Fibric Histosols), humus-impregnated peat gleyzems (Dystric Histic Gleysols), and mucky gleyzems (Dystric Gleysols) have been analyzed with consideration for their degree of oligotrophicity and anthropogenic loads. Horizons with the accumulation (O, Tpyr, TT) and removal (Ghi,e) of heavy metals have been revealed. The increase in the content of heavy metals and benzo[a]pyrene in the upper layer of oligotrophic peat soils under technogenic fallouts in the impact zone of flare and motor transport has been considered. Statistical parameters of the spatial variation of parameters in organic and gley horizons have been calculated. The variation coefficients of pollutant elements (Pb and Zn) in the surface horizons of soils increase to 100–125%. Positive correlations revealed between the content of some heavy metals in litter indicate their bioaccumulation and possible joint input with aerotechnogenic fallouts. No correlations are found between the contents of benzo[a]pyrene and heavy metals, but a reliable negative correlation with the ash content is noted in the peat horizon.  相似文献   

6.
An integrated study of the qualitative and quantitative composition of polycyclic aromatic hydrocarbons (PAHs) in the atmospheric precipitation-soil-lysimetric water system was performed using high performance liquid chromatography. It was shown that the accumulation of low-molecular PAHs (phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, and chrysene) in soils is due to the transformation of organic matter and the regional transport and deposition of PAHs with atmospheric precipitation on the underlying surface. High-molecular polyarenes (benz[b]fluoranthene, benz[k]fluoranthene, benz[a]pyrene, dibenz[a,h]anthracene, benzo[ghi]perylene, and indeno[1,2,3-cd]pyrene) mainly result from the decomposition of soil organic matter.  相似文献   

7.
The research comprised of studying the effect composting sewage sludge with sawdust and vermicomposting with earthworm Eisenia fetida has on the degradation of 16 polycyclic aromatic hydrocarbons (PAHs). Raw rural sewage sludge prior composting was more contaminated with PAHs than urban sewage sludge, in both cases exceeding EU cutoff limits of 6 mg/kg established for land application. Dibenzo[a,h]anthracene (DBahAnt), acenaphtylene (Acy) and indeno[1,2,3-c,d]pyrene (IPyr) were predominant in rural sewage sludge, whilst the urban sewage sludge contained the highest concentrations of benzo[b]fluoranthene (BbFl), benzo[k]fluoranthene (BkFl) and indeno[1,2,3-c,d]pyrene (IPyr). Thirty days of composting with sawdust has caused a significant reduction of 16 PAHs on average from 26.07 to 4.01 mg/kg (84.6%). During vermicomposting, total PAH concentration decreased on average from 15.5 to 2.37 mg/kg (84.7%). Vermicomposting caused full degradation of hydrocarbons containing 2 and 6 rings and significant reduction of PAHs with 3 aromatic rings (94.4%) as well as with 5 aromatic rings (83.2%). The lowest rate of degradation (64.4%) was observed for hydrocarbons with 4 aromatic rings such as fluoranthene, benzo(a)anthracene, chrysene and pyrene. On the other hand, the highest level of degradation was determined for PAHs with 2 rings (100%), 3 rings (88%) and 6 aromatic rings in the molecule (86.9%) after composting with sawdust. Acenaphthene and pyrene were found to be the most resistant to biodegradation during both composting methods.  相似文献   

8.

Purpose

Combined pollution by polycyclic aromatic hydrocarbons (PAHs) and heavy metals are commonly found in industrial soils. This study aims to investigate the effect of the coexistence of heavy metals on the sorption of PAHs to soils. We focused specifically on the relationship of the sorption capacity with the estimation of the binding energy between PAHs and heavy metals.

Materials and methods

The sorption of typical PAHs (naphthalene, phenanthrene, and pyrene) to soils coexisting with heavy metals (Cu(II), Pb(II), and Cr(III)) was characterized in batch sorption experiments. The binding energy between PAHs and heavy metals in aqueous solution was estimated by quantum mechanical (QM) method using density functional theory (DFT) at the M06-2x/def2svp level of theory.

Results and discussion

Sorption capacity and nonlinearity of the PAHs to the soils were enhanced by the coexisting heavy metals. The extent of increment was positively associated with the hydrophobicity of the PAHs and the electronegativity and radius of the metal cations: Cr(III)?>?Pb(II)?>?Cu(II). The cation-π interaction was revealed as an important noncovalent binding force. There was a high correlation between the binding energies of the PAHs and K f (K f adjusted after normalizing the equilibrium concentration (C e) by the aqueous solubility (C s)) (R 2?>?0.906), indicating the significant role of the cation-π interactions to the improved PAH sorption to soils.

Conclusions

In the presence of heavy metals, the sorption capacities of naphthalene, phenanthrene, and pyrene to soils were enhanced by 21.1–107 %. The improved sorption capacity was largely contributed from the potent interactions between PAHs and heavy metals.
  相似文献   

9.
Thirteen polycyclic aromatic hydrocarbon (PAH) compounds were identified in organic horizons of tundra surface-gleyed soils ( Histic Stagnosols (Gelistagnic) and plants. The total content of PAHs in contaminated soils exceeded the background values by three times. Concentrations of low-molecular weight hydrocarbons in soils at different distances from the coalmines were relatively stable. Concentrations of highmolecular weight hydrocarbons had a distinct maximum at a distance of about 0.5 km from the source of emission. The increased values of correlation coefficients were found between PAH concentrations in organic soil horizons, plants, and coal of the Vorkutinskaya mine. Mostly low-molecular weight structures predominated in the organic soil horizons and in the studied plant species. The maximum capacity for the biological accumulation of PAHs was displayed by Pleurozium schreberi and the minimum capacity was displayed by Vaccinium myrtillus. Mosses and lichens actively absorbed polyarenes from the surface; most of the PAHs were transported into the plants. This phenomenon was not observed for Vaccinium myrtillus Concentrations of PAHs on the surface and in plant tissues decreased with an increase in the distance from the mine. Distribution of polyarenes in plant organs was nonuniform. Insignificant excess of concentration of polyarenes was found in dead part of Pleurozium schreberi in comparison with its living part. The accumulation of polyarenes in the leaves of Vaccinium myrtillus was higher than that in its stems and roots.  相似文献   

10.
A number of polycyclic aromatic hydrocarbon (PAH) structures have been identified in organic horizons of surface-gley tundra soils (Stagnic Cambisols) and the moss Pleurozium schreberi. The total content of polyarenes in soils and P. schreberi exceeds the background values in 3.5–5 times. A tendency of increasing content of polyarenes with the distance from the source to 1 km has been revealed. High coefficients of variation have been found between the contents of PAHs in snow cover, organic soil horizons, and mosses. Light hydrocarbons dominate in the composition of PAHs from the snow and ground covers and mosses. Naphthalene dominates on the surface of mosses in all of the studied plots, which is largely related to its intensive uptake by mosses under pollution conditions. It has been found that when the input of polyarenes onto the surface of tundra phytocenoses increases, the bioaccumulation of PAHs by P. schreberi is intensified, and PAHs begin to penetrate into moss. The increase in the concentration of high-molecularweight polyarenes in the environment plays the key role in the activation of PAH bioaccumulation by moss. It has been shown that P. schreberi can be used as an indicator species for monitoring the contamination of tundra phytocenoses by polyarenes. Both living and dead parts of P. schreberi are suitable for the environmental monitoring of PAH contamination.  相似文献   

11.
The purpose of this study was to determine the degree of PAH contamination and the association of PAHs with metals in urban soil samples from Sevilla (Spain). Fifteen polycyclic aromatic hydrocarbons-PAHs (naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i]perylene, indeno[1,2,3-c,d]pyrene) and seven metals (Cd, Cr, Cu, Mn, Ni, Pb, Zn) have been evaluated in representative urban soil samples. Forty-one top soils (0–10 cm) under different land use (garden, roadside, riverbank and agricultural allotment) were selected. PAHs from soil samples were extracted by sonication using dichloromethane. The simultaneous quantification of 15 different PAH compounds were carried out by HPLC using multiple wavelength shift in the fluorescence detector. For qualitative analysis a photo diode-array detector was used. Metal (pseudo-total) analysis was carried out by digestion of the soils with aqua regia in microwave oven. The mean concentration of each PAH in urban soils of Sevilla showed a wide range, they are not considered highly contaminated. The results of the sum of 15 PAHs in Sevilla soils are in the range 89.5–4004.2 μg kg?1, but there seems not to be a correlation between the concentration of PAHs and the land use. Of the 15 PAHs examined, phenanthrene, fluoranthene and pyrene were present at the highest concentrations, being the sum of these PAHs about 40% of the total content. Although metal content were not especially high in most soils, there are significant hints of moderate pollution in some particular spots. Such spots are mainly related with some gardens within the historic quarters of the city. The associations among metals and PAHs content in the soil samples was checked by principal components analysis (PCA). The largest values both for ‘urban’ metals (Pb, Cu and Zn) and for PAHs were mainly found in sites close to the historic quarters of the city in which a heavy traffic of motor vehicles is suffered from years.  相似文献   

12.
Airborne concentrations of 8 polycyclic aromatic hydrocarbons (PAHs): fluoranthene, Flt, Pyrene, Pyr, benzo(a)anthracene, BaA, chrysene, Chr, benzo(b)fluoranthene + benzo(k)fluoranthene,B(b + k)F, benzo(a)pyrene, BaP and benzo(g,h,i)perylene, B(ghi)P,were measured in Jinámar, a small town on the island of Gran Canaria (Spain) during a 12 month period (January 1995–December 1995). Concentrations ranged between 0.613 ng m-3 for B(ghi)P and 0.040 and 0.046 ng m-3 for pyrene and chrysene. Except for BaA all PAHs occurred at lower concentrations at temperatures below 20 °C. Relative humidity seems to influence concentrations of pyrene, chrysene, benzo(b + k)fluoranthene and benzo(a)pyrene, also affecting the latter ina different way to the other three hydrocarbons cited.  相似文献   

13.
The seasonal changes in the contents and compositions of n-alkanes and n-methyl ketones have been studied in typical soddy-podzolic soils (Albic Retisols (Ochric)) under lime forests in the Losiny Ostrov National Park, Moscow. In the humus horizons, the reserves (about 370 mg/m2) of odd n-alkanes with the chain length of C25–C35—the biomarkers of terrestrial vegetation—are 4–5 times below their amount entering with the leaf falloff in autumn. A noticeable contribution of microbial biomass hydrocarbons to the lipid fraction in the AY and AYel horizons manifests itself in the increased fraction of odd and medium-chain (<C25) homologues (OEP = 4–6, LSR = 5–7) in the spectrum of n-alkanes. The lowest content of methyl ketones and odd n-alkanes was observed immediately after the winter period (OEP = 22, A/K = 21–170). In the EL and BT horizons, the n-alkane fraction of organic matter and the relative content of high molecularweight n-alkanes more resistant to microbial destruction (C33, C35) increases by 3–4 times in comparison with that in the abovelying horizons, and the type of distribution of n-alkanes by the carbon chain length changes: the dominance of odd homologues is absent; in the EL horizon, OEP = 1.  相似文献   

14.
A simple, rapid, easily automated method is described for the determination of polycyclic aromatic hydrocarbons (PAHs) in shellfish such as American lobster (Homarus americanus) and blue mussel (Mytilus edulis). PAHs are extracted from small amounts (1-8 g) of tissue by saponification in 1N ethanolic potassium hydroxide followed by partitioning into 2,2,4-trimethylpentane. This solution is evaporated just to dryness by rotary evaporation and the residue is dissolved in cyclohexane-dichloromethane (1 + 1) for gel permeation chromatography (GPC) on Bio-Beads SX-3. The GPC procedure is ideal as a screening method in the range 25-18 000 ng PAHs/g tissue. If individual PAH measurements are required, the appropriate GPC fraction is collected and PAHs are separated by reverse phase liquid chromatography (LC) with fluorometric detection. Individual PAHs at concentrations as low as 0.25-10 ng/g can be determined. Recoveries of added fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[ghi]perylene, and indeno[1,2,3-cd]pyrene were quantitative, with relative standard deviations ranging from 0.0 to 16.9%.  相似文献   

15.

Purpose

Stimulating microbial degradation is a promising strategy for the remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). To better understand the functional microbial populations and processes involved in pyrene biodegradation in situ, the dynamics of pyrene degradation and functional microbial abundance were monitored during pyrene incubation in soils. We hope our findings will provide new insights into in situ pyrene biodegradation in soils and help to identify functional microbes from soils.

Materials and methods

Pyrene (60 mg kg?1) was incubated with two different soils, one is lower PAH-containing agricultural soil (LS), and the other is higher PAH-containing industrial soil (HS). During incubation, triplicate samples were collected on days 0, 3, 7, 14, and 35. Pyrene in soil samples was analyzed using an Agilent gas chromatograph (7890A) equipped with a mass-selective detector (model 5897). DNA in soils was extracted with a FastDNA Spin kit for soil (Bio101, USA). The abundance of functional microbes and genes was monitored by a Taqman or SYBR Green based real-time PCR quantification using an iCycler iQ5 themocycler (Bio-Rad, USA). The diversity of PAH-RHDα GP genes was evaluated by constructing clone libraries and sequencing.

Results and discussion

In both soils, more than 80 % of the added pyrene was degraded within 35 days. After 35-day incubation, there was a significant enrichment of Gram-positive bacteria harboring PAH-ring hydroxylation dioxygenase (PAH-RHDα GP) genes, and the abundance of Mycobacterium increased significantly. In PAH-RHDα GP clone libraries from two soils, Mycobacterium was detected, while most sequences were closely related to uncultured Gram-positive bacteria. In addition, two pyrene catabolic pathways might be involved in pyrene degradation, as pyrene dioxygenase genes, nidA and nidA3, were dramatically enriched during incubation. Moreover, the abundance and diversity of potential degraders in two soils showed significantly difference in responding to pyrene stress. This result indicates that soil condition can significantly affect functional microbial populations and biological process for pyrene biodegradation.

Conclusions

These results revealed that Mycobacterium as well as uncultured Gram-positive PAH-RHDα genotypes may be the important group of pyrene degraders in soils, and two pyrene catabolic pathways, targeted by nidA and nidA3, might potentially contribute to in situ biodegradation of pyrene. This study characterized the response pattern of potential pyrene degraders to pyrene stress in two different soils, which would increase our understanding of the indigenous processes of pyrene biodegradation in soil environment.
  相似文献   

16.
The structure and properties of oligotrophic peat, oligotrophic peat gley, and pyrogenic oligotrophic peat soils identified on a plot 0.5 km2 in area in the northeast of Sakhalin Island have been studied. The vertical distributions of physicochemical, chemical, and ecotoxicological parameters in the profiles of some bog soil groups have been considered. An increase in ash content, a less acid reaction, and a deficit of available nitrogen and potassium have been revealed in the upper horizons of pyrogenic soils. No accumulation of mobile heavy metals is manifested in the pyrogenic horizons of peat soils. Statistical parameters of the spatial variation in pHKCl and total acidity, as well as the contents of ash, available phosphorus, exchangeable potassium, ammonium and nitrate nitrogen, mobile heavy metals (Cr, Ni, Cu, Zn, Cd, Pb), and benzo[a]pyrene, have been calculated for the moss and sublitter horizons. The variation coefficients are 30–100% for most of the studied parameters and reach 100–200% for available phosphorus; ammonium nitrogen; and mobile Ni, Cu, Zn, and Cd. An increase in the content of benzo[a]pyrene, although without MPC exceedance, is noted in the moss of pyrogenic soils and the peat horizons untouched by fires.  相似文献   

17.
In this study, magnetic multiwalled carbon nanotubes were fabricated by a simple method and applied to magnetic solid-phase extraction (MSPE) of eight heavy molecular weight polycyclic aromatic hydrocarbons (PAHs) including chrysene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene and benzo[g,h,i]perylene from edible oil samples. Several parameters affecting the extraction efficiency were investigated, including the type and volume of desorption solvent, extraction and desorption time, washing solution and the amount of sorbent. Under the optimized conditions, a simple and effective method for the determination of PAHs in edible oils was developed by coupling with gas chromatography-mass spectrometry (GC-MS). The whole pretreatment process was rapid, and it can be accomplished within 10 min. The limits of quantitation for the target PAHs were found to be 0.34-2.9 ng/g. The recoveries in oil sample were in the range 87.8-122.3% with the RSDs less than 6.8% (intraday) and 9.6% (interday). This method was successfully applied to the analysis of PAHs in seven kinds of edible oils from local markets.  相似文献   

18.
The presence of polycyclic aromatic hydrocarbons (PAHs) in five commercial liquid smoke flavorings, used in the European food industry, was studied. The samples were subjected to an alkaline treatment, extracted with cyclohexane, cleaned up by means of solid-phase extraction tubes, and analyzed by gas chromatography-mass spectrometry. Three different procedures for the cleanup were tested. The results revealed the presence of 34 PAHs, some of them with methyl substituents. In all cases, the concentrations of compounds of low molecular weight were much higher than those of high molecular weight. Relationships between smoke flavoring compositions and PAH levels were also studied. Three of the samples contained high levels of both total and carcinogenic PAHs. Benzo[a]pyrene was also detected in these three samples, but its concentration did not exceed the 10 microg/kg level fixed by the FAO/WHO. Finally, a relation was found, first between the concentrations of total carcinogenic PAHs and benzo[a]pyrene and also between the concentrations of pyrene and benzo[a]pyrene. The latter ratio reveals that pyrene concentration could be very useful in predicting the level of benzo[a]pyrene and, consequently, in estimating the carcinogenicity arising from the presence of benzo[a]pyrene and other carcinogenic PAHs.  相似文献   

19.
It is now acknowledged that aromatic hydrocarbons present in contaminated soils occur in mixtures. The effect of single, binary and quinary mixtures of phenanthrene and selected nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) were investigated on the survival, growth and behavioural index of earthworms (Eisenia fetida) over a 21-day incubation in soil. The results showed that the LC50 values ranged from (not detected) ND–329.3 mg kg?1 (single mixture), ND–219.8 mg kg?1 (binary mixtures) to 148.4 mg kg?1 (quinary mixture), while the EC50 values (based on weight loss) ranged from 13.3–148.4 mg kg?1 (single mixture), 63.8–148.4 mg kg?1 (binary mixture) to 24.2 mg kg?1 (quinary mixture). Greater impacts were recorded where N-PAHs are present with phenanthrene. Further, behavioural index of E. fetida was affected after 24-h exposure to N-PAH-amended soils. Among the N-PAHs however, benzo[h]quinoline recorded the greatest impact on the survival, growth and behavioural index of E. fetida in soil. Findings from this study showed that three ring-N-PAHs are more toxic than phenanthrene as expected from their physico-chemical properties. The binary and quinary mixtures of phenanthrene and N-PAHs in soil intensified toxicity, suggesting that PAHs-N-PAHs mixtures represent greater risk to soil biota.  相似文献   

20.
A method is described for the determination of polycyclic aromatic hydrocarbons (PAHs) with 3-7 rings in (I) meat, poultry, fish, and yeast; and (II) oils and fats. The extraction of PAHs from group I is incomplete, and, therefore, group I samples must be dissolved homogeneously by saponification in 2N methanolic potassium hydroxide. The PAHs are concentrated by liquid-liquid extraction (methanol-water-cyclohexane, N,N - dimethylformamide - water-cyclohexane) and by column chromatography on Sephadex LH 20. The PAHs are separated by high-performance gas-liquid chromatography (GLC) with columns containing 5% OV-101 on Gas-Chrom Q and estimated by integration of the flame ionization detector signals in relation to an internal standard (3,6-dimethylphenanthrene and/or benzo(b)chrysene). The sensitivity is significantly higher than that obtained with ultraviolet spectroscopic methods. The reproducibility and margin of error were tested with meat samples fortified with 11 PAHs and with samples of sunflower oil. The method was further applied to meat, smoked fish, yeast, and unrefined sunflower oil. All samples investigated contained more than 100 PAHs (characterized by mass spectrometry) of which only the main components were determined: phenanthrene, anthracene, fluorene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene + benzo (j)fluoranthene + benzo(k) fluoranthene, benzo(e)pyrene, benzo(a)pyrene, perylene, dibenz(a,j)anthracene, dibenz(a,h)anthracene + indeno(1,2,3,-cd)pyrene, benzo(ghi)perylene, anthanthrene, and coronene. In contrast to other methods, the GLC profile analysis allows the recording of known and unknown PAH peaks simultaneously and also allows a compilation of all PAHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号