首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The importance of various soil components on copper (Cu) retention by Spodosois was investigated. Copper sorption and extraction were conducted on samples from the B horizon from six Danish Spodosois. The investigation was conducted on untreated samples, on hydrogen peroxide‐treated samples (to remove organic matter), on oxalate‐treated samples [to remove amorphous to poorly crystalline aluminum (Al) and iron (Fe) oxides], on hydroxylamine‐treated samples [to remove manganese (Mn) oxides]. Subfractions treated with hydrogen peroxide (H2O2) were further treated with oxalate and citrate‐bicarbonate‐dithionite (CBD). Sorption of Cu from an initial 10‐6 M solution after 48 hours was determined in the pH range 3 to 7 using 0.1M sodium nitrate (NaNO3) as the background electrolyte. The pH‐dependent sorption curve (sorption edge) was shifted to a higher pH with decreasing Al oxide content in the soils, and for the treated sample after removal of organic matter and Al and Fe oxides. A negligible effect was seen after removal of the Mn oxides because of their low abundance. Extraction of sorbed Cu at pH 4 to 6 with 0.1M nitric acid (HNO3) for 24 hours confirmed the sorption results, in inasmuch as removal of the Al (and Fe) oxides increased Cu extractability. Therefore, it was concluded that in the soils investigated, Cu retention is mainly determined by the oxalate‐extractable Al fraction with a minor contribution due to crystalline Fe oxides.  相似文献   

2.
Zhu  Meng  Hu  Xuefeng  Tu  Chen  Luo  Yongming  Yang  Ruyi  Zhou  Shoubiao  Cheng  Nannan  Rylott  Elizabeth L. 《Journal of Soils and Sediments》2020,20(2):763-774
Purpose

The mobility of arsenic (As) in soils is fundamentally affected by the clay mineral fraction and its composition. Diphenylarsinic acid (DPAA) is an organoarsenic contaminant derived from chemical warfare agents. Understanding how DPAA interacts with soil clay mineral fractions will enhance understanding of the mobility and transformation of DPAA in the soil-water environment. The objective of this study was to investigate the speciation and sorption structure of DPAA in the clay mineral fractions.

Materials and methods

Twelve soils were collected from nine Chinese cities which known as chemical weapons burial sites and artificially contaminated with DPAA. A sequential extraction procedure (SEP) was employed to elucidate the speciation of DPAA in the clay mineral fractions of soils. Pearson’s correlation analysis was used to derive the relationship between DPAA sorption and the selected physicochemical properties of the clay mineral fractions. Extended X-ray absorption fine structure (EXAFS) LIII-edge As was measured using the beamline BL14W1 at Shanghai Synchrotron Radiation Facility (SSRF) to identify the coordination environment of DPAA in clay mineral fractions.

Results and discussion

The SEP results showed that DPAA predominantly existed as specifically fraction (18.3–52.8%). A considerable amount of DPAA was also released from non-specifically fraction (8.2–46.7%) and the dissolution of amorphous, poorly crystalline, and well-crystallized Fe/Al (hydr)oxides (20.1–46.2%). A combination of Pearson’s correlation analysis and SEP study demonstrated that amorphous and poorly crystalline Fe (hydr)oxides contributed most to DPAA sorption in the clay mineral fractions of soils. The EXAFS results further demonstrated that DPAA formed inner-sphere complexes on Fe (hydr)oxides, with As-Fe distances of 3.18–3.25 Å. It is likely that the steric hindrance caused by phenyl substitution and hence the instability of DPAA/Fe complexes explain why a substantial amount of DPAA presented as weakly bound forms.

Conclusions

DPAA in clay mineral fractions predominantly existed as specifically, amorphous, poorly crystalline, and crystallized Fe/Al (hydr)oxides associated fractions. Amorphous/poorly crystalline Fe rather than total Fe contributed more to DPAA sorption and DPAA formed inner-sphere complexes on Fe (hydr)oxides.

  相似文献   

3.
徐晋玲  赵爱霞  杨雅楠  王凤 《土壤》2023,55(5):943-953
铝同晶替代现象在铁(氢)氧化物中普遍存在,可改变铁(氢)氧化物的结构、表面特性和反应活性,影响土壤中元素的行为、形态和归趋。运用文献计量法分析了铝同晶替代铁(氢)氧化物的国内外研究现状,分别综述了铝同晶替代对铁(氢)氧化物晶体结构、表面电荷和界面过程的影响,从静电作用、比表面积、位点组成与密度、Fe/Al位点亲和性以及空位缺陷等方面阐明了铝同晶替代对铁(氢)氧化物表面活性和吸附行为的影响机制。在此基础上,提出了未来研究应着眼于构建铝替代量–结构–反应活性定量关系、深入探究铝同晶替代铁(氢)氧化物不同晶面上的界面机制,以及将研究对象与体系过渡到实际土壤等。  相似文献   

4.
Water-stable aggregates isolated from three subtropical and one tropical soil (Western Georgia and China) were studied for their organic carbon, cation exchange capacity (CEC), specific surface area, magnetic susceptibility, and total chemical elements. The soils were also studied for their particle-size distribution, mineralogy, and nonsilicate Fe and Al oxides. Describe the water stability, three indices have been used: the content of water-stable macroaggregates (>0.25 mm), the mean weighted diameter of the aggregates, and the numerical aggregation index. The yellow-cinnamonic soil (China) was neutral, and the three other soils were acid. The soils were degraded with a low content of organic matter. The yellow-cinnamonic soil was characterized by the lowest water stability due to the predominantly vermiculite composition of the clay. The high water stability of the Oxisol structure was determined by the kaolinites and high content of oxides. In three out of the four soils studied, the hierarchical levels of the soil structure organization were defined; they were identified by the content of organic matter and the Ca + Mg (in Oxisols). Iron oxides mainly participated in the formation of micro-aggregates; Al and Mn contributed to the formation of macroaggregates. The water-stable aggregates acted as sorption geochemical barriers and accumulated Pb, Zn, Cd, Cs, and other trace elements up to concentrations exceeding their levels in the soil by 5 times and more. The highest correlations were obtained with CEC, Mn, and P rather than with organic carbon and Fe.  相似文献   

5.
Abstract

Iron (Fe)‐enriched concretions, a complex natural matrix with high chemical heterogeneity and phosphate‐sorption capacity, is widespread in soils with restrictive drainage in Greece. However, the phosphorus (P) status and related characteristics of Fe‐enriched concretions in agricultural soils in areas where P fertilization is mainly inorganic are relatively unknown. Active noncrystalline Fe and aluminum (Al) oxides (Feox, Alox), oxalate extractable P (Pox), P sorption capacity (PSC), and the degree of P saturation (DPS) of Fe‐enriched concretions from agricultural imperfectly drained soils in central Greece were determined using the acid ammonium oxalate method. The concretions contain 13 times as much Feox, twice as much Alox, and almost 15 times as much Pox than the surrounding soil matrix. Pox accounted for 50–80% of total P of the soil concretions, indicating strong accumulation of noncrystalline P components (Al‐ and Fe‐P). The PSC, expressed as a 0.5 (Alox+Feox), ranged from 184.7 to 314 mmol kg?1, demonstrating the strong affinity of the Fe‐enriched concretions for P. The DPS, which represents the fraction of concretion sorbent surface coverage by P, was computed as 100 (Pox/PSC) with values ranging from 6 to 13% (mean=8%). The results of this study indicate that the Fe‐enriched concretions, due to their high noncrystalline Fe and Al oxides content, act as major sink of phosphate, controlling the location, mobility, and dynamics of P in agricultural soils with restrictive drainage.  相似文献   

6.
The hydrous oxides of Mn, Fe, and Al avidly sorbed Sb from μM Sb(OH), solutions, with uptake levelling off as initial Sb concentration increased. Capacity values decreased along the sequence MnOOH > Al(OH)3 > FeOOH. The amount sorbed by each substrate decreased gradually at pH values > 6. Addition of 0.4M CH3COONa to the aqueous phase (to minimise retention of weakly bound Sb) had little effect on MnOOH uptake capacity (~160 mmol, kg?1 at pH < 7) but retention dropped rapidly at higher pH. With the other two substrates (pH 6–7) the calculated capacity values for specific Sb sorption were ~ 45 mmol kg?1 FeOOH and ~ 33 mmol kg? Al(OH)3; about a third of the total capacity values. On these substrates specific Sb sorption tended to peak in the pH 7 to 8 region. The pH response pattern was modified using Sb tartrate sorbate solutions. Factors influencing Sb sorption included substrate surface charge, chemical form of Sb and surface interactions. Formation of a sparingly soluble metal coating was indicated by the uptake plateaus observed when increasing amounts of solid were added to Sb solutions containing acetate.  相似文献   

7.
Abstract

Three extracting reagents were evaluated by correlation analyses to provide the best index of Zn, Cu, Mn and Fe availability to wheat (Triticum aestivum L.) plants growing under open field conditions. Twenty one soils were selected to obtain the widest range in properties of soils of the land wheat cultivated. The magnitude of the extractive power varied in the following order: 6NHCl ? EDTA + NH4OAC, pH4.65 > DTPA‐TEA, pH 7.3. The mild extractants, EDTA and DTPA, gave the same order of removal of micronutrients being Zn < Cu < Fe < Mn. The acid extractant was on the contrast more effective on Cu and Fe with respect to Zn and Mn, respectively. Wheat concentrations of Zn, Mn and Fe were significantly correlated to soil micronutrients. Highly significant relationships were found for Zn extracted by DTPA solution (r = 0.737***) and for Mn and Fe extracted by EDTA solution (r = 0.710*** and r = 0.564**). Plant Zn and Mn were also well predicted by the acid extraction. The absence of correlation for plant Cu vs. soil Cu occurred probably because of wheat concentrations almost constant, ranging from 5.0 to 8.0 mg/kg.  相似文献   

8.
Abstract

Selenite adsorption by a variety of oxides consisting of iron (Fe), aluminum (Al), titanium (Ti), manganes (Mn), and silicon (Si), and by two humic acids were investigated in order to grasp selenite behavior and fixation mechanisms in soil. It was found that selenite was apparently adsorbed even by the Mn oxides on which surface negative charge was dominant in normal pH range (pH <4). No selenite adsorption was observed in the silicon dioxide (SiO2) and the two humic acids. A sequential extraction of adsorbed selenite with competitive anions showed the differences of binding force or stability of adsorbed selenite among the minerals. While the goethite fixed selenite strongly, selenite adsorbed on the Mn oxide was easily released to the liquid phase with other anions, such as phosphate. Each mineral had its inherent characteristic in ligand exchange reactions accompanied with selenite sorption. Selenite sorption by the Mn and the Ti oxides resulted in large increase of surface negative charge, while only a little increase in the Fe and Al oxides. Proton consumption with selenite sorption was extremely smaller for the Mn oxide than for the others.  相似文献   

9.
Thin film A.S.V. was used to study the specific sorption of Cd, Pb and Cu by hydrous oxides (Mn, Fe, and Al) or clay mineral suspensions from acetate buffer solutions containing 10 to 100 μg L?1 of each metal ion. The amount sorbed varied with system pH (range 3 to 9), substrate crystal form, the ratio of adsorbent to absorbate present, and the metal ion involved. Uptake by hydrous Mn(IV) oxide was near total over the whole pH range. With other particulates the pH required for onset of sorption varied with solid phase composition, with uptake subsequently increasing steadily with increasing pH. In general, affinity and relative uptake values followed the sequences Pb > Cu > Cd and Mn(IV) oxides > Fe(III) oxides > A1(OH)3 > clays > iron ores. The solid phases loaded with sorbed metal were equilibrated with a range of extractant solutions used in soil/sediment studies, and the results confirmed that chemi-sorption was the main retention process. Significant release was achieved using extractants that attacked the substrate or formed stable complexes with the metal ion.  相似文献   

10.

Purpose

The primary purpose of this study was to determine how flooding and draining cycles affect the redox chemistry of metal (hydr)oxides and organic matter in paddy soils and how the pH influences these processes. Our secondary purpose was to determine to what extent a geochemical thermodynamic equilibrium model can be used to predict the solubility of Mn and Fe during flooding and draining cycles in paddy soils.

Material and methods

We performed a carefully designed column experiment with two paddy soils with similar soil properties but contrasting pH. We monitored the redox potential (Eh) continuously and took soil solution samples regularly at four depths along the soil profile during two successive flooding and drainage cycles. To determine dominant mineral phases of Mn and Fe under equilibrium conditions, stability diagrams of Mn and Fe were constructed as a function of Eh and pH. Geochemical equilibrium model calculations were performed to identify Mn and Fe solubility-controlling minerals and to compare predicted total dissolved concentrations with their measured values.

Results and discussion

Flooding led to strong Eh gradients in the columns of both soils. In the acidic soil, pH increased with decreasing Eh and vice versa, whereas pH in the alkaline soil was buffered by CaCO3. In the acidic soil, Mn and Fe solubility increased during flooding due to reductive dissolution of their (hydr)oxides and decreased during drainage because of re-oxidation. In the alkaline soil, Mn and Fe solubility did not increase during flooding due to Mn(II) and Fe(II) precipitation as MnCO3, FeCO3, and FeS. The predicted levels of soluble Mn and Fe in the acidic soil were much higher than their measured values, but predictions and measurements were rather similar in the alkaline soil. This difference is likely due to kinetically limited reductive dissolution of Mn and Fe (hydr)oxides in the acidic soil. During flooding, the solubility of dissolved organic matter increased in both soils, probably because of reductive dissolution of Fe (hydr)oxides and the observed increase in pH.

Conclusions

Under alternating flooding and draining conditions, the pH greatly affected Mn and Fe solubility via influencing either reductive dissolution or carbonate formation. Comparison between measurements and geochemical equilibrium model predictions revealed that reductive dissolution of Mn and Fe (hydr)oxides was kinetically limited in the acidic soil. Therefore, when applying such models to systems with changing redox conditions, such rate-limiting reactions should be parameterized and implemented to enable more accurate predictions of Mn and Fe solubility.  相似文献   

11.
As a consequence of intensive mining of the western Erzgebirge since medieval times, floodplain soils of the Mulde river contain large concentrations of arsenic (As) (>50 mg kg−1). Arsenic in soil is often bound to poorly crystalline Fe and Mn (hydr)oxides, which may dissolve under reducing conditions. Part of the As may also exist in primary minerals, predominately sulphides, or in secondary minerals formed upon weathering. In order to better understand the impact of seasonal flooding, we surveyed As‐bearing mineral phases, especially of iron (Fe) (hydr)oxides. Because Fe (hydr)oxides are clay‐sized, soil samples were fractionated into six particle‐size fractions. The fractions were digested with aqua regia for determination of total element concentrations, extracted with hydroxylammonium chloride (NH3OHCl; selective for Mn (hydr)oxides and NH4 oxalate), and analysed by X‐ray diffraction and scanning electron microscopy. The largely similar distribution of As and lead (Pb) suggested the potential co‐existence of the two elements in primary or secondary mineral phases. However, neither As–Pb minerals nor any other As mineral were detected. Association with Mn oxides was negligible. The predominant As‐bearing phases were poorly crystalline Fe (hydr)oxides, which also incorporated large amounts of Pb and were affected by redox dynamics.  相似文献   

12.
Abstract

Soil extraction techniques to measure the status of available micronutrients for plants are important in the diagnosis of deficiency or toxicity. Mehlich 3 (M3), EDTA (pH=8.2), DTPA‐TEA, and Soltanpour and Schwab (SS) solutions were confronted for their ability to extract simultaneously copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe). Argentinean soils from different taxonomic orders with widely varying properties were investigated. The values obtained showed that DTPA‐TEA and SS solutions extracted similar amounts of Zn, Fe, and Mn, while EDTA dissolved comparatively higher amounts of Fe and Mn. Mehlich 3 yielded the highest extractions for the four micronutrients. Soil pH not only affected the extraction of Mn by DTPA‐TEA, SS, and EDTA extractions, but also the extraction of Fe by EDTA. The organic carbon affected the determination of Fe and Zn in all cases. The correlations of the different tests for Cu, Zn, Mn, and Fe were significant. The results suggest that for the determination of the bioavailable status of micronutrients, any of the studied tests could be applied using the soil edaphic properties as factors to improve the correlations between them and standardize the methods.  相似文献   

13.
Abstract

The study aims at determining the cobalt retention properties of various soil components. Therefore, cobalt (Co) sorptions and extractions were carried out using an Oxisol sample before (untreated) and after successive removal of organic matter and active manganese (Mn) oxides (H2O2‐treated) and iron (Fe) oxides (H2O2+CBD‐treated). A synthetic goethite was included for comparison. Sorption of the four sorbents was determined over a range of Co concentrations (initially 10‐8 M to 10‐4 M), pH values (3 to 8) and reaction times (2 hours to 504 hours). The Co species sorbed was Co(ll), since oxygen exclusion during sorption had no effect on the amount sorbed. The pH‐dependent sorption curve (sorption edge) was shifted to lower pH at decreasing initial Co concentration and increasing reaction time. The displacements, in particular of the sorption edges corresponding to the lowest initial Co concentrations, to successively higher pH following removal of Mn oxides, organic matter and Fe oxides could be attributed to sorption onto sites of decreasing Co affinity [Mn oxides (and organic matter) > Fe oxides > kaolinite]. Extractions of sorbed Co at pH 5.5–7.5 with 2 M HCI showed that the extractability decreased with increasing sorption time and decreasing initial Co concentration. The untreated and H2O2‐treated soil samples retained sorbed Co at least as firmly as the synthetic goethite, whereas the H2O2+CBD‐treated sample (kaolinite) was clearly less effective. The results emphasized the importance of the soil Mn and Fe oxides for Co retention in soils but also the necessity of taken interior sorption sites into consideration.  相似文献   

14.
This study represents an assessment of some of the key factors influencing the mobility of Al(III) and its displacement in acid soils. This assessment is based on the effect of pH and other solution variables on the solubility of Al(III) and its complex formation with OH?, F? and organic ligands (fulvates and humates). Above all, the adsorption behavior of Al(III) on iron(III) (hydr)oxides and on SiO2 on one hand, and the adsorption of organic acids and of humic substances on mineral surfaces on the other hand was investigated. Adsorption is interpreted in terms of surface complex formation equilibria; the mass law constants derived permit the modeling of adsorption as a function of solution variables. It is illustrated that the distribution of oxides and hydroxides in the soil profile affects the pH buffering, determines the mobility of the organic acids while the mobility of Al(III) is primarily governed by the formation and dissolution of Al(III) (hydr)oxides.  相似文献   

15.
In the present study, a laboratory experiment was designed to compare the 0.01 M calcium chloride (CaCl2) and diethylenetriaminepentaacetic acid (DTPA) extraction methods for their ability to predict cadmium (Cd), copper (Cu), iron (Fe), Manganese (Mn), nickel (Ni), and zinc (Zn) availability and mobility in five calcareous soils. The soils were spiked with different amounts of metals (0, 50, 100, 200, and 400 mg kg?1) both in binary (Cu and Zn; Ni and Cd; Fe and Mn) and in multi-systems (Cd, Cu, Fe, Mn, Ni, and Zn) and incubated for 1 months at field capacity. In metal-spiked soils, both extraction methods showed a linear relationship of extractable to total metals for all soils. The fraction of total metals extracted by DTPA was much higher than the fraction extracted by CaCl2, which was attributed to the formation of soluble metal-complexes in the complexing extracts calculated by the Visual Minteq program. DTPA extraction method showed higher selectivity for Cu over other metals both in binary and in multi-systems. Different order of metals extractability was found in binary and multi-systems for both extraction methods. Solid/solution distribution coefficient (Kd) was calculated by the ratio of the solid phase to soil solution concentration of metals extracted by CaCl2 or DTPA extraction methods. Both in binary and in multi-systems, the average Kd (l kg?1) of metals by soils were in the order of Mn (5398) > Fe (4413) > Zn (3376) > Cu (2520) > Ni (969) > Cd (350) in the CaCl2-extractable metals and Fe (35) ≥ Ni (34) > Zn (18) > Mn (11.2) > Cu (6.3) > Cd (4) in the DTPA-extractable metals. Results showed that among the six studied metals, Cd had the lowest Kd, implying a relative higher mobility in these calcareous soils. The Visual Minteq indicated that in the CaCl2-extraction method and in both binary and multi-systems the dominant species for Cu, Mn, Ni, and Zn were Cu2+, Mn2+, Ni2+ and Zn2+, respectively, while for Cd and Fe, the dominant species were CdCl+ and Fe(OH)2+, respectively.  相似文献   

16.
Desilication and leaching are processes that accompany plinthilization, leading to nutrient depletion. Soils from 12 profiles in a plinthitic landscape were analyzed for extractable micronutrients [iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu)]. Soils of the landscape from crestal to lower‐slope position contain plinthite in the profile, whereas those of the valley floor are devoid of plinthite. The micronutrients were extracted using diethylenetriaminepentaacetic acid (DTPA) and 0.1 M hydrochloric acid (HCl). The results showed that 0.1 M HCl extracted more of the micronutrients than DTPA. The DTPA‐extractable Fe, Zn, Mn, and Cu in all the soils ranged from 1.15 to 12.44 (mean, 3.69); 0.71 to 2.75 (mean, 1.86); trace 12.44 (mean, 3.35), and trace 3.76 (mean, 0.63) mg kg?1, respectively. The DTPA‐extractable micronutrient contents were generally greater than the critical available level (4.5 mg kg?1 for Fe, 0.8 mg kg?1 for Zn, 1.0 mg kg?1 for Mn, and 0.2 mg kg?1 for Cu). The 0.1 M HCl‐extractable micronutrients in the landscape ranged from 8.00 to 30.40 (mean, 15.19); 0.30 to 6.49 (mean, 1.35); 1.00 to 27.20 (mean, 7.74); and 0.26 to 15.0 (mean, 2.77) mg kg?1 for Fe, Zn, Mn, and Cu, respectively. Both DTPA‐ and 0.1 M HCl‐extractable micronutrients were generally lower in the plinthitic horizons than in the nonplinthitic horizons and higher in the Ap than the subsoil horizons. Correlation analysis showed a significant relationship between DTPA‐Fe and DTPA‐Mn, Cu, and organic carbon (r = 0.913**, 0.411**, and 0.385**). There was a significant and positive relationship between 0.1 M HCl‐extractable Mn and organic carbon (C), total nitrogen (N), and available phosphorus (P) (r = 0.413**, 0.337**, and 0.350**, respectively).  相似文献   

17.
Abstract

Fifteen acid soils of Mizoram representing Ultisols and Inceptisols, and Madhya Pradesh, representing Alfisols, were studied to characterize the nature of acidity in relation to different forms of iron (Fe) and aluminum (Al). The mean contents of Fe and Al were extracted by various extracting reagents and were found to be in descending order as followed: dithionite>oxalate>pyrophosphate>ammonium acetate>KCl. The electrostatically bonded EB‐H+ and EB‐Al3+ acidity comprised 28.3 and 71.7% of exchangeable acidity whereas EB‐H+, EB‐Al3+, exchangeable, and pH‐dependent acidities comprised 9.8, 30.7, 40.5, and 59.5% of total potential acidity. All forms, of acidity showed significant correlation with pHk and organic carbon. Among the different forms, Fe and Al caused most of the variations in different forms of soil acidity but the effect of different forms of Al are more active and directly participate in the formation of EB‐H+, EB‐Al3+, and exchangeable acidity.  相似文献   

18.
Two adjacent soils with contrasting sulfate sorption were examined in terms of (i) water-soluble and ion-exchangeable Al, Fe, Ca, Mg, K, Mn and Zn, (ii), water- and bicarbonate-extractable sulfate, (iii) Truog-extractable P, (iv) dithionite-extractable Al, Mn and Fe and (v) treatment response to irrigation with simulated acid precipitation. The biomass of 8 year old black spruce saplings growing on the soils, and the distributions of Al, Fe, Ca, Mg, K, Mn, P and Zn within these plants, were also examined. The soils were well to moderately-well drained, with the mineral soil exposed by site preparation prior to planting. The exposed soil underneath individual saplings was treated with acid sulfate solutions (75 mm containing 2 to 50 mg L?1 H2SO4) applied during each of three consecutive growing seasons. The results indicate that Al, much like Fe, Ca, Mn and Zn, accumulated with time in the foliage, but K, Mg and P were highest in young plant tissues. Much of Al and Fe taken up remained in the fine roots. Aluminum uptake increased with the amount of dithionite-extractable Al (free Al oxide) in the soil. Growth of the black spruce saplings was not visibly affected by readily accessed Al in each soil, or by acid irrigation.Instead, growth was restricted by factors other than soil Al and acid irrigation in spite of (i) low soil pH, (ii) high levels of exchangeable Al, and (iii) high levels of Al in fine roots. Sulfate retention across and within the two soils was positively correlated with free Al oxide. The two soils responded to acid irrigation by accelerated silicate weathering and enhanced ion leaching. Sulfate sorption reduced these effects.  相似文献   

19.
Waterlogging results in high shoot concentrations of iron (Fe), aluminum (Al), and manganese (Mn) in wheat grown in acidic soil. The verification of this observation in several acidic soils, development of screening techniques, and identification of genotypes differing in tolerance made it possible to test whether tolerance of ion toxicities improves performance of wheat in waterlogged acid soils. Six wheat varieties selected for tolerance/intolerance of Al, Mn, and Fe were grown in three acidic soils (pHCaCl2 4.1–4.3) with or without waterlogging for 40 d. In terms of relative shoot dry weight, Al‐, Mn‐, and Fe‐tolerant genotypes tolerated waterlogging better, outperforming intolerant genotypes by 35%, 53%, and 32%, respectively, across the soils. The Al‐tolerant genotype had up to 1.8‐fold better root growth than the intolerant genotype under waterlogging. Waterlogging increased DTPA‐extractable soil Mn (71%) and Fe (89%), and increased shoot Fe (up to 7.6‐fold) and Al (up to 5.9‐fold) for different genotypes and soils. The Al‐tolerant genotype maintained lower tissue concentrations of Al as compared to intolerant genotypes during waterlogging. Waterlogging delayed crop development but distinctly less so in the tolerant than in the intolerant genotypes, thus jeopardizing the capacity of intolerant genotypes to produce yield in Mediterranean climates with dry finish of the season. Pyramiding multiple ion tolerances into current wheat varieties with desirable agronomic and quality characteristics to enhance their performance under waterlogged acid soils should be considered.  相似文献   

20.
LIU Yuan  LI Zhongyi  XU Renkou 《土壤圈》2019,29(5):656-664
Distribution of chemical forms of manganese(Ⅱ)(Mn(Ⅱ))on plant roots may affect Mn(Ⅱ)absorption by plants and toxicity of Mn(Ⅱ)to plants at its high level.The chemical forms of Mn(Ⅱ)on soybean roots were investigated to determine the main factors that affect their distribution and relationship with Mn(Ⅱ)plant toxicity.Fresh soybean roots were reacted with Mn(Ⅱ)in solutions,and Mn(Ⅱ)adsorbed on the roots was differentiated into exchangeable,complexed,and precipitated forms through sequential extraction with KNO_3,EDTA,and HCl.The exchangeable Mn(Ⅱ)content on the roots was the highest,followed by the complexed and precipitated Mn(Ⅱ)contents.Mn(Ⅱ)toxicity to the roots was greater at pH 5.5 than at pH 4.2 due to the larger amount of exchangeable Mn(Ⅱ)at higher pH.The cations Al~(3+),La~(3+),Ca~(2+),Mg~(2+),and NH_4~+competed with Mn(Ⅱ)for cation exchange sites on the root surfaces and thus reduced exchangeable Mn(Ⅱ)on the roots,in the order Al~(3+),La~(3+)Ca~(2+),Mg~(2+)NH_4~+.Al~(3+) and La~(3+) at 100μmol L~(-1) decreased exchangeable Mn(Ⅱ)by 80%and 79%,respectively,and Ca~(2+) and Mg2+at 1 mmol L~(-1) decreased exchangeable Mn(Ⅱ)by 51%and 73%,respectively.Organic anions oxalate,citrate,and malate reduced free Mn(Ⅱ)concentration in solution through formation of complexes with Mn(Ⅱ),efficiently decreasing exchangeable Mn(Ⅱ)on the roots;the decreases in exchangeable Mn(Ⅱ)on the roots were 30.9%,19.7%,and 10.9%,respectively,which was consistent with the complexing ability of these organic anions with Mn(Ⅱ).Thus,exchangeable Mn(Ⅱ)was the dominant form of Mn(Ⅱ)on the roots and responsible for Mn(Ⅱ)toxicity to plants.The coexisting cations and organic anions reduced the exchangeable Mn(Ⅱ)content,and thus they could alleviate Mn(Ⅱ)toxicity to plants on acid soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号