首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two consecutive experiments were carried out to determine efficacy of Megasphaera elsdenii inoculation in alleviation of subacute ruminal acidosis (SARA). In the first experiment, SARA was induced by feeding corn‐ and wheat‐based diets (20%, 40%, 60% and 80% of TMR, DM basis) in six ruminally cannulated heifers. Continuous pH was obtained using data loggers embedded in rumen. In corn (80%)‐ and wheat (60%)‐based diets ruminal pH ranged from 5.2 to 5.6 for 7.77 and 5.93 hr. In the second experiment (5 day), M. elsdenii (200 ml; 2.4 x 1010 cfu/ml) was inoculated during the first two days. During the SARA induction period, M. elsdenii and S. bovis in rumen liquor were more abundant in wheat‐based feeding (7.97 and 8.77) than in corn‐based feeding (7.06 and 7.95 per ml, log basis; p < 0.0001 for both). M. elsdenii inoculation increased total volatile fatty acids (VFA) concentration when corn‐based diet was fed, whereas it decreased total VFA concentration when wheat‐based diet was fed (p < 0.004). There was a decrease in the propionic acid proportion (24.04%–19.08%; p < 0.002), whereas no alteration in lactate and ammonia concentrations was observed. M. elsdenii inoculation increased protozoa count (from 5.39 to 5.55 per ml, log basis; p < 0.009) and decreased S. bovis count (from 9.18 to 7.95 per ml, log basis; p < 0.0001). The results suggest that M. elsdenii inoculation may help prevent SARA depending on dietary grain through altering rumen flora as reflected by a decrease in S. bovis count and an increase in protozoa count.  相似文献   

2.
Mycobacterial infections are rare in equines. Mycobacterium bovis (Mbovis) is an important zoonotic bacterial pathogen causing disease in a wide range of animal species and sporadically causes severe disseminated disease in horses. This report describes the clinical, gross post‐mortem examination and histopathological findings in a case of disseminated M. bovis infection in a donkey which to the authors’ knowledge has not been previously documented in the scientific literature.  相似文献   

3.
Mycobacterium tuberculosis (Mtb) and Mycobacterium bovis (M. bovis) are the etiological agents of human and bovine tuberculosis (TB, bTB) respectively, and share genetic identity over 99% at the whole genome level. Progress has been made towards explaining how mycobacteria and their infected hosts remain in balance without producing clinical symptoms of disease, a phenomenon referred to as latency or persistence, which can be mimicked by certain in vitro conditions. Latency/persistence has mainly been studied using Mtb, where the two-component signalling system, dosRS, has been assigned an instrumental role, and even constitutes the current basis for development of new diagnostic methods and treatment addressing this particular stage of TB. M. bovis conserves homolog genes that in Mtb play a role in human latent TB infection and that, by analogy, would allow it to enter a persistent state in infected cattle; nevertheless, little attention has been paid to this stage in bovine hosts. We suggest that many of the advances acquired through the study of Mtb can and should be taken into consideration by research groups and veterinary professionals dealing with bTB. The study of the infection in bovines, paying particular attention to defining the molecular and cellular markers of a M. bovis persistent infection in cattle, presents great opportunities for the development and trial of new diagnostic tests and vaccines, tools that will surely help in promoting eradication of bTB in high-burden settings.  相似文献   

4.
Bovine tuberculosis (bTB) is a continuing problem in British herds. Micro-nutrients are important for the maintenance of well-functioning immune system. The aim of this study was to determine whether the selenium, copper and vitamin B12 status of cattle was associated with Mycobacterium bovis (M. bovis) infection. Between 2002 and 2005, 200 cattle (43% dairy, mean age 4.6 years), reactors according to the standard interpretation of the tuberculin test, and 200 in-contacts (41% dairy, mean age 4.4 years) non-reactors, which had been in contact with cattle with bTB, were selected from herds in England and Wales. Levels of the seleno enzyme glutathione peroxidase (GSHPx), copper and vitamin B12 were measured in blood. Confirmation of bTB infection was made by bacteriological culture and histopathology following a detailed postmortem. Levels of selenium and copper were also measured in a random sample of 63 livers. bTB was confirmed by culture/histology in 23/200 (11.5%) of in-contacts and 110/200 (55%) of reactors. In blood drawn at recruitment, GSHPx was lower in cattle with confirmed bTB compared to other cattle (geometric means 59.7 u/mL versus 78.9 u/mL red blood cells (RBC), p < 0.01). Vitamin B12 was similar (geometric means 161.5 pmol/L versus 165.5 pmol/L, p = 0.62) and copper was similar (geometric means 14.4 μmol/L versus 14.1 μmol/L, p = 0.55). In logistic regression models including all micro-nutrients simultaneously and controlling for age, sex, animal production class, herd size, number of reactors, postmortem laboratory and seasonal trends, lower levels of GSHPx (adjusted OR 0.42, 95% CI 0.21–0.81 per 100 u/mL RBC, p = 0.01) and higher levels of copper (adjusted OR 1.69, 95% CI 1.21–2.36 per 5 μmol/L, p < 0.01) were associated with an increased risk of confirmed bTB but there was no association with vitamin B12. There was evidence for a stronger association between confirmed bTB and GSHPx in in-contacts (adjusted OR 0.21, 95% CI 0.06–0.79 per 100 u/mL RBC) compared to reactors (adjusted OR 0.50, 95% CI 0.21–1.23 per 100 u/mL RBC) (p = 0.08 for interaction). Lower liver copper was associated with a higher risk of confirmed bTB (adjusted OR 0.15, 95% CI 0.02–1.0 per 5000 μmol/kg dry mass, p = 0.05) but there was no association between liver selenium and bTB. Trace micro-nutrient status may affect susceptibility to M. bovis infection in cattle. Further studies are needed.  相似文献   

5.
Bovine tuberculosis (bTB) is a (re-)emerging disease in European countries, including Switzerland. This study assesses the seroprevalence of infection with Mycobacterium bovis and closely related agents in wild boar (Sus scrofa) in Switzerland, because wild boar are potential maintenance hosts of these pathogens. The study employs harmonised laboratory methods to facilitate comparison with the situation in other countries. Eighteen out of 743 blood samples tested seropositive (2.4%, CI: 1.5–3.9%) by ELISA, and the results for 61 animals previously assessed using culture and PCR indicated that this serological test was not 100% specific for M. bovis, cross-reacting with M. microti. Nevertheless, serology appears to be an appropriate test methodology in the harmonisation of wild boar testing throughout Europe. In accordance with previous findings, the low seroprevalence found in wild boar suggests wildlife is an unlikely source of the M. bovis infections recently detected in cattle in Switzerland. This finding contrasts with the epidemiological situation pertaining in southern Spain.  相似文献   

6.
7.
8.
BackgroundBovine tuberculosis (TB) is caused by Mycobacterium bovis, a well-known cause of zoonotic tuberculosis in cattle and deer, and has been investigated in many physiological and molecular studies. However, detailed genome-level studies of M. bovis have not been performed in Korea.ObjectivesTo survey whole genome-wide single-nucleotide polymorphism (SNP) variants in Korean M. bovis field isolates and to define M. bovis groups in Korea by comparing SNP typing with spoligotyping and variable number tandem repeat typing.MethodsA total of 46 M. bovis field isolates, isolated from laryngopharyngeal lymph nodes and lungs of Korean cattle, wild boar, and Korean water deer, were used to identify SNPs by performing whole-genome sequencing. SNP sites were confirmed via polymerase chain reaction using 87 primer pairs.ResultsWe identified 34 SNP sites with different frequencies across M. bovis isolates, and performed SNP typing and epidemiological analysis, which divided the 46 field isolates into 16 subtypes.ConclusionsThrough SNP analysis, detailed differences in samples with identical spoligotypes could be detected. SNP analysis is, therefore, a useful epidemiological tracing tool that could enable better management of bovine TB, thus preventing further outbreaks and reducing the impact of this disease.  相似文献   

9.
In order to demonstrate the potential to distinguish paratuberculosis (PTB) from bovine tuberculosis infection (TB), ELISAs with M. bovis-specific MPB70 or MPB83 as capture antigens were developed and tested on two groups of cattle: Group A comprised 23 animals positive for Mycobacterium avium paratuberculosis (Map) and TB free. Group B comprised 48 animals from a Map free herd during the previous 5 years, but confirmed as tuberculous by positive results on PPD testing and M. bovis culture. Results demonstrated a significant difference (p < 0.01) between reactivity of sera from these groups, encouraging the study of purified proteins to differentiate between both diseases.  相似文献   

10.
Summary

The epidemiology, therapy, and prevention of M. bovis infections are briefly reviewed In a survey begun in 1982 M. bovis was found frequently in the respiratory of veal calves and beef cattle with respiratory problems. In replacement calves infected with respiratory disease in dairy herds, however, the organism has only been detected since 1986. Respiratory tract specimens collected from calves with respiratory disease were submitted for examination for M. bovis from 1986 to 1991 and originated from 83 herds. Mycoplasma bovis was detected in specimens from 59 of the herds, 20% of which were dairy herds and 80% fattening herds. Arthritis caused by M. bovis was observed in 12 herds until July 1991. Since 1976 when the first mastitis outbreak caused by M. bovis was diagnosed M. bovis has caused 14 more outbreaks. The number of diseased cattle varied from 1 tot 16 per farm, and clinical signs of mastitis varied from mild to severe. In all instances the infection has been eradicated from the herds. Because M. bovis can cause great losses in intensively reared cattle herds, it is advisable to separate purchased veal calves and beef cattle from dairy cattle to prevent further spread of M. bovis.  相似文献   

11.

Cattle are the domestic animal reservoir for Mycobacterium bovis (M. bovis) which also affects other domestic animals, several wildlife species and humans leading to tuberculosis. The study area is in a resource-poor community that is surrounded by several game parks, where M. bovis infection has been previously diagnosed in wildlife. A cross-sectional study was carried out to determine the prevalence of M. bovis infection in 659 cattle from a total of 192 traditionally managed herds using the BOVIGAM® interferon gamma assay (IFN-γ). Infection was confirmed by post mortem examination and M. bovis isolation from three test-positive cattle. Genotyping of the M. bovis isolates was done using spoligotyping and VNTR (variable number of tandem repeats typing). The apparent M. bovis prevalence rate in cattle at animal level was 12% with a true population prevalence of 6% (95% Confidence interval (C.I) 3.8 to 8.1) and a herd prevalence of 28%. Spoligotyping analysis revealed that the M. bovis isolates belonged to spoligotype SB0130 and were shared with wildlife. Three VNTR profiles were identified among the SB0130 isolates from cattle, two of which had previously been detected in buffalo in a game reserve adjacent to the study area. The apparent widespread presence of M. bovis in the cattle population raises a serious public health concern and justifies further investigation into the risk factors for M. bovis transmission to cattle and humans. Moreover, there is an urgent need for effective bTB control measures to reduce infection in the communal cattle and prevent its spread to uninfected herds.

  相似文献   

12.
An epidemiological study was carried out to determine the Mycobacterium bovis strains causing bovine tuberculosis (TB) in cattle in North West Cameroon. Suspected TB lesions from slaughtered cattle were cultured on Lowenstein–Jensen and Middlebrook 7 H9 media to isolate mycobacteria agents for molecular genotyping using deletion analysis and spoligotyping. PCR-based genomic deletion typing showed that 54 of 103 tubercle bacilli isolated from cattle tissue were M. bovis strains and the African 1 clonal complex was widespread in affected cattle. Spoligotyping analysis revealed a closely related group of five M. bovis strains. SB0953, the dominant spoligotype pattern, and four new patterns identified as SB2161, SB2162, SB2663 and SB2664 according to the www.Mbovis.org international spoligotype database were identified. These spoligotypes were similar to other M. bovis strains recovered from bordering regions and other parts of Africa. The findings provided useful facts on the zoonotic risks of bovine TB and overwhelming evidence of the significance of M. bovis infection to human TB in the North West Region of Cameroon. The study revealed that bovine TB was widespread in cattle destined for human consumption and also has important implications for the control of TB in animals and humans in Cameroon.  相似文献   

13.
Food animals are considered reservoirs of methicillin‐resistant Staphylococcus aureus (MRSA) and are implicated in their zoonotic transmission in the farm‐to‐plate continuum. LA‐MRSA has been reported as a zoonotic agent that has the potential to spread to humans and may cause infections in at‐risk groups. In this study, whole genome sequencing was used to describe the genetic environment (resistance mechanisms, virulence factors and mobile genetic elements) and investigate the genetic lineages of MRSA isolates from pigs in Cameroonian and South African abattoirs. During March–October 2016, 288 nasal and rectal pooled samples from 432 pigs as well as nasal and hand swabs from 82 humans were collected. Genomic DNA was sequenced using an Illumina MiSeq platform. Generated reads were de novo‐assembled using the Qiagen CLC Genomics Workbench and SPAdes. The assembled contigs were annotated, and antibiotic resistance genes, virulence factors, plasmids, SCCmec and phage elements were identified with ResFinder, Virulence Finder, PlasmidFinder, SCCmec Finder and PHAST, respectively. Core genome single nucleotide analysis was undertaken to assess clonal relatedness among isolates. A lower MRSA prevalence was observed in pigs in Cameroon (n = 1/13; 0.07%) compared with South Africa (n = 4/22; 18.18%), and none of the workers were colonized by MRSA. Genome analysis identified various antibiotic resistance genes along with six virulence factors in all isolates. All MRSA isolates belonged to the clonal lineage ST398 (spa‐type t011) and harboured the type Vc SCCmec and several plasmids. Our study shows that the livestock‐associated MRSA clonal lineage ST398 is already present in both Cameroon and South Africa and is probably underestimated in the absence of molecular epidemiological studies. It reveals the serious food safety and public health threat associated with this animal strain and underscores the need for interventions to contain this resistant clone.  相似文献   

14.
Bovine tuberculosis is caused by Mycobacterium bovis, a mycobacterium highly similar to M. tuberculosis that belongs to the M. tuberculosis complex. The main host of M. bovis is cattle but it also affects many other mammalians including humans. Tuberculosis in humans caused by either M. bovis or M. tuberculosis is clinically hard to distinguish. During 2004–2005, samples from 448 patients with diagnosis of TB were collected from different regions of Argentina. The PRA technique identified 400 isolates with representative patterns of mycobacterium. The predominant ones were the M. tuberculosis complex, the M. aviumM. intracellulare complex and M. gordonae. Samples with M. tuberculosis complex PRA restriction profiles were analyzed with a multiplex PCR to differentiate between M. tuberculosis and M. bovis. Multiplex PCR identified nine M. bovis. The results allowed the possibility to establish that 2% of pulmonary tuberculosis was due to M. bovis. Isolates of M. bovis from humans were examined using spoligotyping. These isolates presented five different spoligotypes. The main spoligotype was also the most frequently one found in cattle. The remaining human spoligotypes (grouped in clusters) are occasionally found in cattle. Variable number tandem repeat (VNTR) analysis identified five different patterns. By combining the results of spoligotyping and VNTR analysis, we were able to differentiate seven M. bovis isolates. The remaining two M. bovis samples showed the same spoligotype and VNTR profile and belonged to household contacts. An MDR‐M. bovis was isolated from the samples of these household contacts. The identification of two epidemiologically linked cases of human M. bovis infection suggests person‐to‐person transmission of an MDR‐M. bovis.  相似文献   

15.
In this study we have characterized M. bovis isolates from a herd of cattle in Uvalde, Texas in which 52 of the 193 animals selected at random in 1994 from a herd of 331 were caudal fold skin-test positive. Thirty-two of 52 skin-test positive cattle had gross lesions at slaughter, and isolations of M. bovis were made from 29 animals. The herd was comprised of Red Devon cattle purchased between 1978 and 1980 (n = 26) and breeding bulls (n = 3) introduced at later times, and all were tuberculosis test negative at the time of purchase. Other animals were natural additions (offspring) of these cattle. One additional animal, a Holstein present on the ranch at the time of purchase in 1976, was retained to nurse orphaned and weak calves. Using several molecular fingerprinting techniques we have verified a clonal relationship among the M. bovis isolates consistent with infection originating with a single strain. The molecular fingerprint patterns demonstrate the stability of the profiles despite persistence and spread of the organism within the herd for two decades and confirms their use in epidemiological tracing.  相似文献   

16.
Tuberculosis (TB) represents a barrier for free trade of livestock between Mexico and the United States of America (US). In spite of efforts from Mexico to export TB-free animals, some of those found with TB lesions in slaughterhouses in the US are traced back to that country. Therefore, the purpose of this study was to determine, through molecular epidemiology, the most probable source of infection for cattle found with TB lesions in the US. Ninety M. bovis isolates, 50 from Mexico obtained from cattle in 8 different states, and 40 from the US from cattle, deer, elk and feral pigs from 7 different states were included in the study. All samples were analyzed in both laboratories, Mexico and the US, following the same protocol for molecular analysis by spoligotyping. Twenty-seven clusters, ranging from 1 to 18 genetically similar strains were found. Some clustering by country was observed, strains from cattle and deer in Michigan in the US fell into the same cluster, suggesting transmission between species. These results, combined with epidemiological information suggest that despite of the possibility that some animals with lesions in the US come from Mexico as false negatives, the US has its own source of infection, must probably in dairy cattle and wildlife. Genetic diversity of isolates from Mexico was larger than that in the US, which could be a consequence of the endemic status of the disease and the indiscriminate movement of animals between regions.  相似文献   

17.
Increase in the number of small‐scale backyard poultry flocks in the USA has substantially increased human‐to‐live poultry contact, leading to increased public health risks of the transmission of multi‐drug resistant (MDR) zoonotic and food‐borne bacteria. The objective of this study was to detect the occurrence of Salmonella and MDR Gram‐negative bacteria (GNB) in the backyard poultry flock environment. A total of 34 backyard poultry flocks in Washington State (WA) were sampled. From each flock, one composite coop sample and three drag swabs from nest floor, waterer‐feeder, and a random site with visible faecal smearing, respectively, were collected. The samples were processed for isolation of Salmonella and other fermenting and non‐fermenting GNB under ceftiofur selection. Each isolate was identified to species level using MALDI‐TOFF and tested for resistance against 16 antibiotics belonging to eight antibiotic classes. Salmonella serovar 1,4,[5],12:i:‐ was isolated from one (3%) out of 34 flocks. Additionally, a total of 133 ceftiofur resistant (CefR) GNB including Escherichia coli (53), Acinetobacter spp. (45), Pseudomonas spp. (22), Achromobacter spp. (8), Bordetella trematum (1), Hafnia alvei (1), Ochrobactrum intermedium (1), Raoultella ornithinolytica (1), and Stenotrophomonas maltophilia (1) were isolated. Of these, 110 (82%) isolates displayed MDR. Each flock was found positive for the presence of one or more CefR GNB. Several MDR E. coli (n = 15) were identified as extended‐spectrum β‐lactamase (ESBL) positive. Carbapenem resistance was detected in non‐fermenting GNB including Acinetobacter spp. (n = 20), Pseudomonas spp. (n = 11) and Stenotrophomonas maltophila (n = 1). ESBL positive E. coli and carbapenem resistant non‐fermenting GNB are widespread in the backyard poultry flock environment in WA State. These GNB are known to cause opportunistic infections, especially in immunocompromised hosts. Better understanding of the ecology and epidemiology of these GNB in the backyard poultry flock settings is needed to identify potential risks of transmission to people in proximity.  相似文献   

18.
The emergence and spread of antimicrobial‐resistant (AMR) bacteria in natural environments is a major concern with serious implications for human and animal health. The aim of this study was to determine the prevalence of AMR Escherichia coli (E. coli) in wild birds and mammalian species. Thirty faecal samples were collected from each of the following wildlife species: herring gulls (Larus argentatus), black‐headed gulls (Larus ridibundus), lesser black‐back gulls (Larus fuscus), hybrid deer species (Cervus elaphus x Cervus nippon) and twenty‐six from starlings (Sturnus vulgaris). A total of 115 E. coli isolates were isolated from 81 of 146 samples. Confirmed E. coli isolates were tested for their susceptibility to seven antimicrobial agents by disc diffusion. In total, 5.4% (8/146) of samples exhibited multidrug‐resistant phenotypes. The phylogenetic group and AMR‐encoding genes of all multidrug resistance isolates were determined by PCR. Tetracycline‐, ampicillin‐ and streptomycin‐resistant isolates were the most common resistant phenotypes. The following genes were identified in E. coli: blaTEM, strA, tet(A) and tet(B). Plasmids were identified in all samples that exhibited multidrug‐resistant phenotypes. This study indicates that wild birds and mammals may function as important host reservoirs and potential vectors for the spread of resistant bacteria and genetic determinants of AMR.  相似文献   

19.
Bacillus species are commonly used as probiotics in the poultry feed industry for preventing infectious diseases and improving productivity by altering gastrointestinal microbiota. The growth parameters of Bacillus subtilis for surfactin production in fermentation and the benefits of surfactin on broiler chickens remain unclear. In this study, we examined the growth parameters of B. subtilis in fermentation and evaluated the effects of surfactin from B. subtilis‐fermented products on Clostridium perfringens‐induced necrotic enteritis and growth performance in broilers. Results showed that the highest viable biomass of B. subtilis was observed at 10% molasses and 2% yeast supplementation during fermentation. The 4‐ and 6‐day fermented B. subtilis products were heat‐, acid‐ and bile‐resistant. Furthermore, the 4‐day fermented B. subtilis products with the highest surfactin concentration showed the maximal antimicrobial activity against pathogens, including Escherichia coli, Staphylococcus aureus, Salmonella typhimurium and C. perfringens. Dietary B. subtilis‐fermented product supplementation in broilers significantly improved intestinal morphology and necrotic lesions under C. perfringens challenge. Bacillus subtilis treatments could enhance broiler productivity, as well as promote bone quality and intestinal morphology. These results together indicate that B. subtilis‐fermented products containing surfactin have potential for the development as feed additives and use as possible substitutes for antibiotics to treat C. perfringens in the poultry industry.  相似文献   

20.
Antimicrobial resistance is a worldwide public health threat; hence, current trends tend to reduce antimicrobial use in food‐producing animals and to monitor resistance in primary production. This study aimed at evaluating the impact of antimicrobial use and production system on swine farms in the antimicrobial resistance of Campylobacter, Salmonella and Staphylococcus, the main zoonotic pathogens in pig herds, in order to assess their potential value as sentinel microorganisms in antimicrobial resistance surveillance schemes. A total of 37 Spanish swine farms, 18 intensive and 19 organic/extensive farms, were included in the study. The antimicrobial resistance of 104 Campylobacter, 84 Staphylococcus and 17 Salmonella isolates was evaluated using Sensititre plates following the EUCAST guidelines. Mixed‐effects logistic regression was used to evaluate the influence of production system and antimicrobial use in resistant and multidrug‐resistant (MDR) phenotypes to the antimicrobials tested. The results showed that antimicrobial use was higher (p < .001) on intensive farms than on organic/extensive farms. MDR in Campylobacter and Staphylococcus was lower on organic/extensive farms (OR < .01p < .001). Antimicrobial resistance in Campylobacter and Staphylococcus isolates was, also for most of the antimicrobials studied, significantly higher in intensive than organic/extensive pig herds. Tetracycline resistance was associated with total antimicrobial consumption in both microbial species (p < .05), and some cross‐associations between distinct antimicrobial substances were established, for instance resistance to erythromycin was associated with macrolide and phenicol consumption. No significant associations could be established for Salmonella isolates. The results demonstrate the link between antimicrobial consumption and resistance in zoonotic bacteria and evidence the potential value of using Campylobacter and Staphylococcus species in monitoring activities aimed at determining the impact of antimicrobials use/reduction on the occurrence and spread of antimicrobial resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号