首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The VP28 gene of white spot syndrome virus (WSSV) was cloned into pRSET B expression vector. The VP28 protein was expressed as a protein with a 6-histidine taq in Escherichia coli GJ1158 with NaCl induction. Antiserum was raised against this recombinant-VP28 protein in rabbits and it recognized VP28 protein in naturally and experimentally WSSV-infected shrimp, marine crabs, freshwater prawns and freshwater crabs. The antiserum did not recognize any of the other known WSSV structural proteins. Various organs such as eyestalks, head muscle, gill tissue, heart tissue, haemolymph, tail tissue and appendages were found to be good materials for detection of WSSV using the antiserum and detection of WSSV was successful in experimentally infected Penaeus monodon and P. indicus at 12 and 24 h post-infection (p.i.), respectively. The antiserum was capable of detecting WSSV in 5 ng of total haemolymph protein from WSSV-infected shrimp.  相似文献   

2.
对虾WSSV病是亚洲对虾养殖业中的一个棘手问题。本研究采用Kimura引物 ,用PCR技术对不同生长期的中国对虾 (Penaeuschinensis)进行了WSSV的检测 ,同时也检测了对虾发病时养殖池中多见的野生厚蟹 (Helicesp .)和矛尾刺虎鱼 (Acanthogobiushasta)。检测结果表明 :分别在检测的 5尾亲虾中的 1尾 ,6尾仔虾中的 1尾 ,5尾稚虾中的 3尾及所检测的 5尾病虾和 2只厚蟹中获得到 982bp的PCR扩增产物 ,说明为WSSV感染阳性。在检测的 2尾矛尾刺虎鱼中均未获得PCR扩增产物 ,说明为WSSV感染阴性。在亲虾、虾苗以及虾池内的野生厚蟹中检测到WSSV感染的阳性结果表明 :WSSV感染的亲虾有可能是病毒的储主 ,WSSV感染的野生厚蟹有可能是病毒中间宿主或病毒的携带者 ,它们在对虾WSSV病的感染、传播中起了重要的作用  相似文献   

3.
Quantitative real time PCR, recently developed in molecular biology, is applied in this paper to quantify the white spot syndrome virus (WSSV) in infected shrimp tissue. The WSSV content in moribund shrimp of all species tested ( Penaeus stylirostris, P. monodon, P. vannamei ) ranged from 2.0 × 104 to 9.0 × 1010 WSSV copies μg–1 of total DNA ( n =26). In whole moribund post-larvae, 4.3 × 109 WSSV copies μg–1 of DNA were detected which is equivalent to 5.7 × 1010 WSSV copies g–1 of post-larvae. The comparison of WSSV content between different tissues showed that muscle and hepatopancreas tissues contained 10 times less virus than gills, pleopods and haemolymph. With inocula of known virus content, bioassays by immersion challenge showed that a minimum of five logs of WSSV copies was necessary to establish disease in the challenged shrimp. In contrast, five logs of WSSV copies injected into shrimp muscle produced a LT-50 of 52 h. This real time polymerase chain reaction (PCR) technique is sensitive (four copies), specific (negative with DNA from shrimp baculoviruses and parvoviruses), dynamic (seven logs) and easy to perform (96 tests in <4 h).  相似文献   

4.
White spot syndrome virus (WSSV) isolated from Penaeus monodon was found to be highly infective for the western Mediterranean shrimp, Palaemon sp. Using polymerase chain reaction (PCR), it was demonstrated that such shrimp are not naturally carriers of WSSV. Following challenge with virus, mortality reached 100% 3.5-4 days after injection at 22 degrees C. Incubation of infected shrimp at 10 degrees C totally suppressed the mortality which rapidly developed when shrimp were returned to 18 or 22 degrees C. Preincubation of WSSV with mature synthetic mytilin significantly reduced shrimp mortality with a 50% efficient dose of about 5 microM. Survival of shrimp was not due to the development of an active mechanism of defence as re-injection of WSSV produced the same mortality pattern. Mortality was probably due to WSSV replication as dot blot failed to detect viral DNA in the injection sample but was positive 1 day post-injection. Protection by mytilin was by interaction at the virus level, preventing replication as no WSSV nucleic acid was detected by PCR even after 7 days in shrimp injected with WSSV preincubated with 10 or 50 microM mytilin.  相似文献   

5.
Abstract. Yellow head baculo-like virus infection and disease were demonstrated experimentally in the two main species of penaeid shrimp cultured in Hawaii and the Western hemisphere. Viral infection was induced by intramuscular inoculation of a 10% suspension of cephalothorax tissue filtrate prepared from two tiger shrimp, Penaeus monodon Fabricius, infected with yellow head disease, into sub-adult (3–10g) P. stylirostris (Stimpson) and P. vannamei (Boone). Signs of disease appeared as early as 2 days post infection (p.i.), and in most cases mortality reached 100% within 5–7 days p.i. Histopathological examination of the infected animals revealed extensive cellular necrosis in ectodermal and some mesenchymal tissues. Electron microscopical examination of thin sections of the gill and hepatopancreas from the infected shrimp revealed non-occluded rod-shaped baculo-like virus particles measuring 130–197 & 45–58 nm which were primarily localized within the cytoplasm of infected cells. The virus particles were contained within cytoplasmic vacuoles, and occurred singly or in small groups of two or more particles.  相似文献   

6.
7.
White spot syndrome virus (WSSV) is a serious pathogen of aquatic crustaceans. Little is known about its transmission in vivo and the immune reaction of its hosts. In this study, the circulating haemocytes of crayfish, Procambarus clarkii, infected by WSSV, and primary haemocyte cultures inoculated with WSSV, were collected and observed by transmission electron microscopy and light microscopy following in situ hybridization. In ultra-thin sections of infected haemocytes, the enveloped virions were seen to be phagocytosed in the cytoplasm and no viral particles were observed in the nuclei. In situ hybridization with WSSV-specific probes also demonstrated that there were no specific positive signals present in the haemocytes. Conversely, strong specific positive signals showed that WSSV replicated in the nuclei of gill cells. As a control, the lymphoid organ of shrimp, Penaeus monodon, infected by WSSV was examined by in situ hybridization which showed that WSSV did not replicate within the tubules of the lymphoid organ. In contrast to previous studies, it is concluded that neither shrimp nor crayfish haemocytes support WSSV replication.  相似文献   

8.
Eight European marine and freshwater crustaceans were experimentally infected with diluted shrimp haemolymph infected with white spot syndrome virus (WSSV). Clinical signs of infection and mortalities of the animals were routinely recorded. Diagnosis was by direct transmission electron microscopy (TEM), DNA hybridization (dot-blot and in situ hybridization) using WSSV probes and by PCR using WSSV specific primers. High mortality rates were noted between 7 to 21 days post-infection for Liocarcinus depurator , Liocarcinus puber , Cancer pagurus , Astacus leptodactylus , Orconectes limosus , Palaemon adspersus and Scyllarus arctus . Mortality reached 100%, 1 week post-infection in P. adspersus . When infection was successful, direct TEM observation of haemolymph revealed characteristic viral particles of WSSV, some observed as complete virions (enveloped), others as nucleocapsids associated with envelope debris. WSSV probes showed strong positive reactions in dot-blots and by in situ hybridization in sections and specific virus DNA fragments were amplified successfully with WSSV primers. White spot syndrome virus was pathogenic for the majority of the crustaceans tested. This underlines the epizootic potential of this virus in European crustaceans.  相似文献   

9.
An attempt was made to determine the replication efficiency of white spot syndrome virus (WSSV) of shrimp in different organs of freshwater rice‐field crab, Paratelphusa hydrodomous (Herbst), using bioassay, PCR, RT‐PCR, ELISA, Western blot and real‐time PCR analyses, and also to use this crab instead of penaeid shrimp for the large‐scale production of WSSV. This crab was found to be highly susceptible to WSSV by intramuscular injection. PCR and Western blot analyses confirmed the systemic WSSV infection in freshwater crab. The RT‐PCR analysis revealed the expression of VP28 gene in different organs of infected crab. The indirect ELISA was used to quantify the VP28 protein in different organs of crab. It was found that there was a high concentration of VP28 protein in gill tissue, muscle, haemolymph and heart tissue. The copy number of WSSV in different organs of infected crab was quantified by real‐time PCR, and the results revealed a steady increase in copy number in different organs of infected crab during the course of infection. The viral inoculum prepared from different organs of infected crab caused significant mortality in tiger prawn, Penaeus monodon (Fabricius). The results revealed that this crab can be used as an alternate host for WSSV replication and production.  相似文献   

10.
Mud crab, Scylla serrata (Forskal), is the most commercially important marine crab species in China. In recent years, serious diseases have occurred in major mud crab culture regions in SE China. PCR detection of white spot syndrome virus (WSSV) in diseased mud crabs collected from Zhejiang Province during 2006–2008 showed a prevalence of 34.82%. To study the pathogenicity of WSSV to mud crab, healthy mud crabs were injected intramuscularly with serial 10‐fold dilutions of a WSSV inoculum. The cumulative mortalities in groups challenged with 10?1, 10?2, 10?3 and 10?4 dilutions were 100%, 100%, 66.7% and 38.9% at 10 days post‐injection, respectively. All moribund and dead mud crabs except the control group were positive for WSSV by PCR. Based on the viral load of the WSSV inoculum by quantitative real‐time PCR, the median lethal dose (LD50) of WSSV in S. serrata was calculated as 1.10 × 106 virus copies/crab, or 7.34 × 103 virus copies g?1 crab weight. The phenoloxidase, peroxidase and superoxide dismutase activities in haemolymph of WSSV‐infected moribund crabs, were significantly lower than the control group, whereas alkaline phosphatase, glutamate‐pyruvate transaminase and glutamic‐oxaloacetic transaminase were higher than in the control group. WSSV was mainly distributed in gills, subcuticular epithelia, heart, intestine and stomach as shown by immunohistochemical analysis with Mabs against WSSV. The epithelial cells of infected gill showed hypertrophied nuclei with basophilic inclusions. Numerous bacilliform virus particles were observed in nuclei of infected gill cells by transmission electron microscopy. It is concluded that WSSV is a major pathogen of mud crab with high pathogenicity.  相似文献   

11.
White spot syndrome virus (WSSV) has been a major pathogen of cultured Penaeus monodon Fabricius in Malaysia since 1994. As quantitative study on the replication of WSSV is in its infancy, competitive polymerase chain reaction (PCR) was used for quantitative study of an experimental WSSV infection per os in growout P. monodon . Gills, abdominal integument and abdominal muscle were selected for viral quantification. Infection was detectable as early as 14 h postinfection (h p.i.) in both gills and integument, but the infection in muscle was only detected at 24 h p.i. Gill tissue had the highest viral load, followed by integument and muscle. Typical viral growth curves were obtained for all organs with distinct phases of eclipse (0–24 h p.i.), logarithmic (24–48 h p.i.) and the plateau (48–120 h p.i.). Cumulative mortality rapidly increased from 48 h p.i. and reached 100% at the end of the plateau phase at 120 h p.i. Gross signs of white spots and reddish discoloration were also obvious in moribund individuals from the plateau phase. Based on the three phases of viral growth, WSSV infection was classified into light, moderate and heavy infection stages.  相似文献   

12.
Studies were conducted by injecting/feeding white spot syndrome virus (WSSV) derived from infected shrimp, Penaeus monodon (Fabricius), to different life-stages, namely post-larvae, juveniles, sub-adults and adults of Macrobrachium rosenbergii (de Man). The disease was also induced in brood stock, and the eggs and larvae derived from these animals were subsequently tested for WSSV infection. All the stages except egg used for the experiment were found WSSV positive in histopathology, cross infection bioassay and polymerase chain reaction (PCR) analysis. Experimentally infected post-larvae and juveniles showed a high percentage of mortality and an increased rate of cannibalism. The cumulative mortality in post-larvae was up to 28%; with 28–40% cannibalism resulting in a maximum loss of up to 68%. In juveniles, observed mortality and cannibalism were 10–20% and 6.7–30.0%, respectively, and the maximum loss recorded was 50%. In sub-adults, mortality ranged from 2.8 to 6.7%, cannibalism was up to 20% and the total loss was up to 26.7%. Sub-adults and adults were found to be more tolerant to the infection as evidenced by the mortality pattern. A nested (two-step) PCR resulted in a 570-bp product specific to WSSV in all stages, except the eggs.  相似文献   

13.
To understand the pathological effects of passaging WSSV through different animals, we passaged WSSV through crabs (Portunus sanguinolentus and P. pelagicus), prawn (Macrobrachium rosenbergii) and artemia (Artemia sp.). Among the three geographically distinct WSSV isolates (A166, G9 and G27) that caused over 95% mortalities in experimental infections in P. monodon, only two isolates (A166 and G9) caused mortality (5%) in M. rosenbergii. On subsequent infection of P. monodon with the passage one virus (P1V) from M. rosenbergii, only P1V of A166 caused 5% mortality while P1V of G9 failed to cause any mortality, though the infected shrimp were positive for WSSV by nested PCR. Crabs showed differential susceptibility to WSSV isolates. While passaging WSSV (G9) through P. sanguinolentus retained pathogenicity, passaging through P. pelagicus completely attenuated the two strains (A117 and G27). Passaging through M. rosenbergii changed pathogenicity of isolates (A166 and G9) from 95% to 5% cumulative mortality in experimental infections. WSSV was unable to infect Artemia and could not transmit the disease to P. monodon. WSSV (A117) passaged through P. monodon retained its virulence. An examination of tandem repeats (TR) in ORF 94 of the WSSV genome revealed variations upon passaging through different hosts. One isolate (A117), with 12 TR yielded 8 TR when passaged through P. pelagicus and 18 TR when passaged through P. monodon. Two other isolates (G9 and G27) with 9 TR, retained them when passaged through P. monodon and P. sanguinolentus but yielded 8 and 12 TR when passaged through P. pelagicus and M. rosenbergii, respectively. Thus, differences in TR number appeared to result from host selection rather than geographical isolation.  相似文献   

14.
Shih  Wang  Tan  & Chen 《Journal of fish diseases》2001,24(3):143-150
Three hybridoma clones secreting monoclonal antibodies (MAbs) were produced from mouse myeloma and spleen cells immunized with white spot syndrome virus (WSSV) isolated and purified from Penaeus monodon (Fabricius), collected from north-eastern Taiwan. By sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), the protein profile of this isolate contained four major proteins with sizes of approximately 35 (VP35), 28 (VP28), 24 (VP24), and 19 kDa (VP19). Western blot analysis revealed that two MAbs (1D7 and 6E1) recognized epitopes on VP28 and one MAb (3E8) recognized an epitope on VP19. The MAb 6E1 isotyped to the IgG1 class was used in both an indirect immunofluorescence assay (IFA) and in an immunochemical staining protocol for successful identification and localization of WSSV in infected shrimp tissues. Antigenic similarity of isolates from Indonesia and Malaysia to the Taiwan isolate was illustrated by IFA with MAb 6E1. A MAb (2F6) which bound specifically to two shrimp proteins, 75 and 72 kDa, and reacted to the healthy and non-target tissues of WSSV in infected shrimp, such as hepatopancreas, is also described here and shows the necessity for specific identification of antibodies.  相似文献   

15.

Shrimp farming industries are subjected to severe economic loss due to a disease called white spot syndrome, a viral disease caused by white spot syndrome virus (WSSV) in penaeid shrimp. Numerous active compounds in the market possess anti-viral activity against the white spot syndrome virus, yet the issue remains unsolved. The present study was carried out to determine the anti-viral activity of methyl 1-chloro-7-methyl-2-propyl-1h-benzo[d] imidazole-5-carboxylate (C13H15N2O2Cl) against WSSV. The anti-viral activity of the synthetic compound was determined in freshwater crabs. Crabs were divided into three different experimental groups: healthy control groups (N.C.) received NTE buffer, positive control group (P.C.) crabs received WSSV, and treatment group crabs received WSSV along with synthetic weight compound. Experimental groups were observed for 30 days post-infection. Three different organs (gills, muscles, and head soft tissue (HST)) were dissected from all three groups and analyzed using molecular-based techniques, including polymerase chain reaction (PCR), Western blot, and histopathology. Clinical signs of WSSV were observed in the positive and N.C. groups; however, the treatment group showed a 100% survival rate. Confirmation was done using PCR, Western blot, and histopathology. These results demonstrated that the given synthetic compound has significant anti-viral activity against WSSV.

  相似文献   

16.
白斑综合征病毒(WSSV)在拟穴青蟹体内增殖的研究   总被引:1,自引:0,他引:1  
拟穴青蟹(Scylla paramamosain)因肉质鲜美、生长快速而成为我国主要的海水养殖经济蟹类,但是随着养殖规模的不断扩大,病害问题也越发严重。本研究通过流行病学调查和定量PCR跟踪检测的方法,研究了拟穴青蟹对白斑综合征病毒(WSSV)的易感性和WSSV在拟穴青蟹体内的增殖情况。结果表明,拟穴青蟹是WSSV的自然宿主,自然携带率为8.47%。WSSV可通过口服途径感染拟穴青蟹,并在拟穴青蟹体内快速增殖,注射感染5 d后,病毒量达到感染1d时的1.1×109倍,当病毒累积到一定量后即可致死拟穴青蟹。研究表明,拟穴青蟹是WSSV的天然宿主,在虾蟹混养过程中可以通过摄食WSSV感染虾而带毒或发病,并因此成为WSSV传播媒介,从而对虾蟹混养条件下WSSV的防治效果产生重要影响。  相似文献   

17.
In this study, we evaluated the effects of three factors, total ammonia, temperature and salinity, on the mortality of and viral proliferation in white spot syndrome virus (WSSV)‐infected Chinese shrimp. Shrimp maintained in 30‰ seawater at 25°C with 0.34 mg L?1 total ammonia (control group) were injected with approximately 20 WSSV particles per shrimp and subsequently subjected to the following conditions: 30‰ seawater at 25°C, with 6 mg L?1 (N1 group) or 14 mg L?1 (N2 group) total ammonia; 30‰ seawater at 18°C (T1 group) or 30°C (T2 group), with 0.34 mg L?1 total ammonia and 20‰ (S1 group) or 40‰ (S2 group) seawater at 25°C, with 0.34 mg L?1 total ammonia. An anova analysis revealed that the cumulative mortality of WSSV‐infected Chinese shrimp was significantly lower when reared in the T1 group compared to that of the T2 and control group. Similarly, the mortality of the shrimp in the S1 group was also significantly lower than that of the S2 and control group. No significant differences were detected among the N1, N2 and control groups. Accordingly, the WSSV level in the T1 and S1 groups was significantly lower than those in the control, T2 or S2 groups respectively. No significant differences in viral loads were detected among the control, N1 and N2 groups. The transfer of Chinese shrimp to lower temperature and lower salinity enhanced their resistance to WSSV infection, whereas a change in the concentration of total ammonia had no significant effect on the mortalities and viral loads of WSSV‐infected shrimp.  相似文献   

18.
White spot disease caused by white spot syndrome virus (WSSV) poses major problems that result in huge economic losses each year in shrimp aquaculture throughout the world. In the present study, microsatellite‐based DNA fingerprints have been compared between naturally occurring WSSV disease‐resistant and susceptible populations of giant black tiger shrimp, Penaeus monodon, to find DNA markers. For the first time, we report here a microsatellite locus, which, after amplification by polymerase chain reaction, provides a highly statistically significant DNA fingerprint of 71 bp, only in disease susceptible populations but not in disease‐resistant shrimp populations, whereas a 317 bp band is common in both. The absence of the former DNA marker will be very useful to identify disease‐resistant broodstock of P. monodon for marker‐assisted selection in breeding programs to generate disease‐free shrimps (P. monodon) in the aquaculture industry.  相似文献   

19.
The giant fresh water prawn Macrobrachium rosenbergii is known to be highly tolerant to white spot syndrome virus (WSSV) infections when compared to the widely cultured marine tiger shrimp Penaeus monodon. At present, the exact mechanism of tolerance by M. rosenbergii to WSSV is not known. In this study, we attempt to study the effect of WSSV injections on the hemagglutination activity of the hemolymph serum of both P. monodon and M. rosenbergii and look for changes if any, on their hemolymph serum protein electrophoretic patterns. Our results show that M. rosenbergii had significantly (p < 0.05) higher hemagglutinating activity against mouse erythrocytes when compared to P. monodon. As the infection progressed to 48 h there was a further increase (p < 0.05) in the hemagglutination activity in M. rosenbergii, while it decreased in P. monodon. 12% SDS-PAGE analysis of the hemolymph serum of M. rosenbergii infected with WSSV did not show any new protein bands, whereas few bands with decreased intensity was observed in moribund P. monodon where the hemagglutinating activity was also observed to be decreased. The results indicate that hemolymph hemagglutinin levels are modulated in crustaceans as a response to viral infections.  相似文献   

20.
白斑症病毒在日本对虾体内的感染增殖   总被引:9,自引:0,他引:9  
战文斌 《水产学报》1999,23(3):278-282
用投喂患白斑症病毒病的虾组织人工感染日本对虾稚虾,每日取样,整虾冰冻切片,单克隆抗体的荧光抗体方法,原位观察病毒在虾体内的感染增殖,结果表明:感染后三天内,在感染虾的各组织器官内均未观察到明显的病毒感染的阳性细胞,每四天首先在鳃丝腔内的小量血细胞观察到病毒感染;第五天除血细胞外同时在血窦,鳃上皮组织,皮下组织内观察到,第六天进而在心脏,胃上皮组织内观察到:第七天进一步又在淋巴器官,中肠内观察到,八  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号