首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The exchange of CO2 between the atmosphere and a beech forest near Sorø, Denmark, was measured continuously over 14 years (1996-2009). The simultaneous measurement of many parameters that influence CO2 uptake makes it possible to relate the CO2 exchange to recent changes in e.g. temperature and atmospheric CO2 concentration. The net CO2 exchange (NEE) was measured by the eddy covariance method. Ecosystem respiration (RE) was estimated from nighttime values and gross ecosystem exchange (GEE) was calculated as the sum of RE and NEE. Over the years the beech forest acted as a sink of on average of 157 g C m−2 yr−1. In one of the years only, the forest acted as a small source. During 1996-2009 a significant increase in annual NEE was observed. A significant increase in GEE and a smaller and not significant increase in RE was also found. Thus the increased NEE was mainly attributed to an increase in GEE. The overall trend in NEE was significant with an average increase in uptake of 23 g C m−2 yr−2. The carbon uptake period (i.e. the period with daily net CO2 gain) increased by 1.9 days per year, whereas there was a non significant tendency of increase of the leafed period. This means that the leaves stayed active longer. The analysis of CO2 uptake by the forest by use of light response curves, revealed that the maximum rate of photosynthetic assimilation increased by 15% during the 14-year period. We conclude that the increase in the overall CO2 uptake of the forest is due to a combination of increased growing season length and increased uptake capacity. We also conclude that long time series of flux measurements are necessary to reveal trends in the data because of the substantial inter-annual variation in the flux.  相似文献   

2.
The controls on uptake and release of CO2 by tropical rainforests, and the responses to a changing climate, are major uncertainties in global climate change models. Eddy-covariance measurements potentially provide detailed data on CO2 exchange and responses to the environment in these forests, but accurate estimates of the net ecosystem exchange of CO2 (NEE) and ecosystem respiration (Reco) require careful analysis of data representativity, treatment of data gaps, and correction for systematic errors. This study uses the comprehensive data from our study site in an old-growth tropical rainforest near Santarem, Brazil, to examine the biases in NEE and Reco potentially associated with the two most important sources of systematic error in Eddy-covariance data: lost nighttime flux and missing canopy storage measurements. We present multiple estimates for the net carbon balance and Reco at our site, including the conventional “u* filter”, a detailed bottom-up budget for respiration, estimates by similarity with 222Rn, and an independent estimate of respiration by extrapolation of daytime Eddy flux data to zero light. Eddy-covariance measurements between 2002 and 2006 showed a mean net ecosystem carbon loss of 0.25 ± 0.04 μmol m−2 s−1, with a mean respiration rate of 8.60 ± 0.11 μmol m−2 s−1 at our site. We found that lost nocturnal flux can potentially introduce significant bias into these results. We develop robust approaches to correct for these biases, showing that, where appropriate, a site-specific u* threshold can be used to avoid systematic bias in estimates of carbon exchange. Because of the presence of gaps in the data and the day–night asymmetry between storage and turbulence, inclusion of canopy storage is essential to accurate assessments of NEE. We found that short-term measurements of storage may be adequate to accurately model storage for use in obtaining ecosystem carbon balance, at sites where storage is not routinely measured. The analytical framework utilized in this study can be applied to other Eddy-covariance sites to help correct and validate measurements of the carbon cycle and its components.  相似文献   

3.
Eddy-covariance measurements of net ecosystem exchange of CO2 (NEE) and estimates of gross ecosystem productivity (GEP) and ecosystem respiration (RE) were obtained in a 2-4 year old Eucalyptus plantation during two years with very different winter rainfall. In the first (drier) year the annual NEE, GEP and RE were lower than the sums in the second (normal) year, and conversely the total respiratory costs of assimilated carbon were higher in the dry year than in the normal year.Although the net primary production (NPP) in the first year was 23% lower than that of the second year, the decrease in the carbon use efficiency (CUE = NPP/GEP) was 11% and autotrophic respiration utilized more resources in the first, dry year than in the second, normal year. The time variations in NEE were followed by NPP, because in these young Eucalyptus plantations NEE is very largely dominated by NPP, and heterotrophic respiration plays only a relatively minor role.During the dry season a pronounced hysteresis was observed in the relationship between NEE and photosynthetically active radiation, and NEE fluxes were inversely proportional to humidity saturation deficit values greater than 0.8 kPa. Nighttime fluxes of CO2 during calm conditions when the friction velocity (u*) was below the threshold (0.25 m s−1) were estimated based on a Q10 temperature-dependence relationship adjusted separately for different classes of soil moisture content, which regulated the temperature sensitivity of ecosystem respiration.  相似文献   

4.
The seasonal fluxes of heat, moisture and CO2 were investigated under two different rice environments: flooded and aerobic soil conditions, using the eddy covariance technique during 2008 dry season. The fluxes were correlated with the microclimate prevalent in each location. This study was intended to monitor the environmental impact, in terms of C budget and heat exchange, of shifting from lowland rice production to aerobic rice cultivation as an alternative to maintain crop productivity under water scarcity.The aerobic rice fields had higher sensible heat flux (H) and lower latent heat flux (LE) compared to flooded fields. On seasonal average, aerobic rice fields had 48% more sensible heat flux while flooded rice fields had 20% more latent heat flux. Consequently, the aerobic rice fields had significantly higher Bowen ratio (0.25) than flooded fields (0.14), indicating that a larger proportion of the available net radiation was used for sensible heat transfer or for warming the surrounding air.The total C budget integrated over the cropping period showed that the net ecosystem exchange (NEE) in flooded rice fields was about three times higher than in aerobic fields while gross primary production (GPP) and ecosystem respiration (Re) were 1.5 and 1.2 times higher, respectively. The high GPP of flooded rice ecosystem was evident because the photosynthetic capacity of lowland rice is naturally large. The Re of flooded rice fields was also relatively high because it was enhanced by the high photosynthetic activities of lowland rice as manifested by larger above-ground plant biomass. The NEE, GPP, and Re values for flooded rice fields were −258, 778, and 521 g C m−2, respectively. For aerobic rice fields, values were −85, 515, and 430 g C m−2 for NEE, GPP, and Re, respectively. The ratio of Re/GPP in flooded fields was 0.67 while it was 0.83 for aerobic rice fields.This short-term data showed significant differences in C budget and heat exchange between flooded and aerobic rice ecosystems. Further investigation is needed to clarify seasonal and inter-annual variations in microclimate, carbon and water budget of different rice production systems.  相似文献   

5.
Peatlands cover about 21% of the landscape and contain about 80% of the soil carbon stock in western Canada. However, the current rates of carbon accumulation and the environmental controls on ecosystem photosynthesis and respiration in peatland ecosystems are poorly understood. As part of Fluxnet-Canada, we continuously measured net ecosystem carbon dioxide exchange (NEE) using the eddy covariance technique in a treed fen dominated by stunted Picea mariana and Larix laricina trees during August 2003–December 2004. The total carbon stock in the ecosystem was approximately 51,000 g C m−2, with only 540 g C m−2 contributed by live above ground vegetation. The NEE measurements were used to parameterize simple physiological models to assess temporal variation in maximum ecosystem photosynthesis (Amax) and ecosystem respiration rate at 10 °C (R10). During mid-summer the ecosystem had a relatively high Amax (approx. 30 μmol m−2 s−1) with relatively low R10 (approx. 4 μmol m−2 s−1). The peak mid-day NEE uptake rate during July and August was 10 μmol m−2 s−1. The ecosystem showed large seasonal variation in photosynthetic and respiratory activity that was correlated with shifts in temperature, with both spring increases and fall decreases in Amax well predicted by the mean daily air temperature averaged over the preceding 21 days. Leaf-level gas exchange and spectral reflectance measurements also suggested that seasonal changes in photosynthetic activity were primarily controlled by shifts in temperature. Ecosystem respiration was strongly correlated with changes in ecosystem photosynthesis during the growing season, suggesting important links between plant activity and mycorrhizae and microbial activity in the shallow layers of the peat. Only very low rates of respiration were observed during the winter months. During 2004, the peatland recorded a net annual gain of 144 g C m−2 year−1, the result of a difference between gross photosynthesis of 713 and total ecosystem respiration of 569 g C m−2 year−1.  相似文献   

6.
Eddy covariance measurements and estimates of biomass net primary production (NPP) in combination with soil carbon turnover modelled by the Roth-C model were used to assess the ecosystem carbon balance of an agricultural ecosystem in Thuringia, Germany, growing winter wheat in 2001. The eddy CO2 flux measurements indicate an annual net ecosystem exchange (NEE) uptake in the range from −185 to −245 g C m−2 per year. Main data analysis uncertainty in the annual NEE arises from night-time u1 screening, other effects (e.g. coordinate rotation scheme) have only a small influence on the annual NEE estimate. In agricultural ecosystems the fate of the carbon removed during harvest plays a role in the net biome production (NBP) of the ecosystem, where NBP is given by net ecosystem production (NEP=−NEE) minus non-respiratory losses of the ecosystem (e.g. harvest). Taking account of the carbon removed by the wheat harvest (290 g C m−2), the agricultural field becomes a source of carbon with a NBP in the order of −45 to −105 g C m−2 per year. Annual carbon balance modelled with the Roth-C model also indicated that the ecosystem was a source for carbon (NBP −25 to −55 g C m−2 per year). Based on the modelling most of carbon respired resulted from changes in the litter and fast soil organic matter pool. Also, the crop and management history, particularly the C input to soil in the previous year, significantly affect next year’s CO2 exchange.  相似文献   

7.
Pasture and afforestation are land-use types of major importance in the tropics, yet, most flux tower studies have been conducted in mature tropical forests. As deforestation in the tropics is expected to continue, it is critical to improve our understanding of alternative land-use types, and the impact of interactions between land use and climate on ecosystem carbon dynamics. Thus, we measured net ecosystem CO2 fluxes of a pasture and an adjacent tropical afforestation (native tree species plantation) in Sardinilla, Panama from 2007 to 2009. The objectives of our paired site study were: (1) to assess seasonal and inter-annual variations in net ecosystem CO2 exchange (NEE) of pasture and afforestation, (2) to identify the environmental controls of net ecosystem CO2 fluxes, and (3) to constrain eddy covariance derived total ecosystem respiration (TER) with chamber-based soil respiration (RSoil) measurements. We observed distinct seasonal variations in NEE that were more pronounced in the pasture compared to the afforestation, reflecting changes in plant and microbial activities. The land conversion from pasture to afforestation increased the potential for carbon uptake by trees vs. grasses throughout most of the year. RSoil contributed about 50% to TER, with only small differences between ecosystems or seasons. Radiation and soil moisture were the main environmental controls of CO2 fluxes while temperature had no effect on NEE. The pasture ecosystem was more strongly affected by soil water limitations during the dry season, probably due to the shallower root system of grasses compared to trees. Thus, it seems likely that predicted increases in precipitation variability will impact seasonal variations of CO2 fluxes in Central Panama, in particular of pasture ecosystems.  相似文献   

8.
In order to assess the capacity of the boreal forest ecosystem to intercept atmospheric carbon over a period of years, a climate-driven growth model (FinnFor, process-based) was applied to calculate the seasonal and inter-annual variability of net ecosystem CO2 exchange (NEE) and component carbon fluxes (gross primary production - GPP and total ecosystem respiration - TER) against a 10-year (1999-2008) period of eddy covariance (EC) measurements in a Scots pine (Pinus sylvestris L.) stand in Eastern Finland. Furthermore, the role of climatic factors, leaf area index (LAI) and physiological responses of trees regarding the ecosystem carbon fixation processes were evaluated. An hourly time-step was used to simulate the carbon exchange based on measured tree/stand characteristics and meteorological input for the experimental site, and the dynamic LAI was used throughout the 10-year simulations. The model predicted well the annual course of NEE compared to the measured values for most of the years, with the development of LAI (2.4-3.3 m2 m−2, as simulated). The simulated NEE over the study period shows that, on average, 62% of the variation refers to daily and 88% to monthly measured NEE. Both modeled and measured daily NEE showed similar responses to the temperature, photosynthetically active radiation and vapor pressure deficit during the growing seasons. In the simulation, the annual amount of GPP varied from 720.8 to 910.4 g C m−2 with a mean value of 825.3 g C m−2, and the annual mean TER/GPP ratio was 0.79, close to the measured value. Carbon efflux from the forest floor was the dominant contributor to the forest ecosystem respiration. The inter-annual variation of GPP mostly corresponded to the development of LAI, temperature sum and total incoming radiation over the 10-year simulation period. It was suggested that the process-based model could be applied to study the carbon processes for natural and management-induced dynamics of Scots pine forest ecosystem over longer periods across a wider climate gradient in the boreal zone.  相似文献   

9.
The ecosystem fluxes of mass and energy were quantified for a riparian cottonwood (Populus fremontii S. Watson) stand, and the daily and seasonal courses of evapotranspiration, CO2 flux, and canopy conductance were described, using eddy covariance. The ecosystem-level evapotranspiration results are consistent with those of other riparian studies; high vapor pressure deficit and increased groundwater depth resulted in reduced canopy conductance, and the annual cumulative evapotranspiration of 1095 mm was more than double the magnitude of precipitation. In addition, the cottonwood forest was a strong sink of CO2, absorbing 310 g C m−2 from the atmosphere in the first 365 days of the study. On weekly to annual time scales, hydrology was strongly linked with the net atmosphere-ecosystem exchange of CO2, with ecosystem productivity greatest when groundwater depth was ∼2 m below the ground surface. Increases in groundwater depth beyond the depth of 2 m corresponded with decreased CO2 uptake and evapotranspiration. Saturated soils caused by flooding and shallow groundwater depths also resulted in reduced ecosystem fluxes of CO2 and water.  相似文献   

10.
Peatlands play an important role in emissions of the greenhouse gases CO2, CH4 and N2O, which are produced during mineralization of the peat organic matter. To examine the influence of soil type (fen, bog soil) and environmental factors (temperature, groundwater level), emission of CO2, CH4 and N2O and soil temperature and groundwater level were measured weekly or biweekly in loco over a one-year period at four sites located in Ljubljana Marsh, Slovenia using the static chamber technique. The study involved two fen and two bog soils differing in organic carbon and nitrogen content, pH, bulk density, water holding capacity and groundwater level. The lowest CO2 fluxes occurred during the winter, fluxes of N2O were highest during summer and early spring (February, March) and fluxes of CH4 were highest during autumn. The temporal variation in CO2 fluxes could be explained by seasonal temperature variations, whereas CH4 and N2O fluxes could be correlated to groundwater level and soil carbon content. The experimental sites were net sources of measured greenhouse gases except for the drained bog site, which was a net sink of CH4. The mean fluxes of CO2 ranged between 139 mg m−2 h−1 in the undrained bog and 206 mg m−2 h−1 in the drained fen; mean fluxes of CH4 were between −0.04 mg m−2 h−1 in the drained bog and 0.05 mg m−2 h−1 in the drained fen; and mean fluxes of N2O were between 0.43 mg m−2 h−1 in the drained fen and 1.03 mg m−2 h−1 in the drained bog. These results indicate that the examined peatlands emit similar amounts of CO2 and CH4 to peatlands in Central and Northern Europe and significantly higher amounts of N2O.  相似文献   

11.
We investigated spatial structures of N2O, CO2, and CH4 fluxes during a relatively dry season in an Acacia mangium plantation stand in Sumatra, Indonesia. The fluxes and soil properties were measured at 1-m intervals in a 1 × 30-m plot (62 grid points) and at 10-m intervals in a 40 × 100-m plot (55 grid points) at different topographical positions of the upper plateau, slope, and valley bottom in the plantation. Spatial structures of each gas flux and soil property were identified using geostatistical analysis. The means (±SD) of N2O, CO2, and CH4 fluxes in the 10-m grids were 0.54 (±0.33) mg N m−2 d−1, 2.81 (±0.71) g C m−2 d−1, and −0.84 (±0.33) mg C m−2 d−1, respectively. This suggests that A. mangium soils function as a larger source of N2O than natural forest soils in the adjacent province on Sumatra during the relatively dry season, while CO2 and CH4 emissions from the A. mangium soils were less than or consistent with those in the natural forest soils. Multiple spatial dependence of N2O fluxes within 3.2 m (1-m grids) and 35.0 m (10-m grids), and CO2 fluxes within 1.8 m (1-m grids) and over 65 m (10-m grids) was detected. From the relationship among N2O and CO2 gas fluxes, soil properties, and topographic elements, we suggest that the multiple spatial structures of N2O and CO2 fluxes are mainly associated with soil resources such as readily mineralizable carbon and nitrogen in a relatively dry season. The soil resource distributions were probably controlled by the meso- and microtopography. Meanwhile, CH4 fluxes were spatially independent in the A. mangium soils, and the water-filled pore space appeared to mainly control the spatial distribution of these fluxes.  相似文献   

12.
Climate change is expected to affect the Alps by increasing the frequency and intensity of summer drought events with negative impacts on ecosystem water resources. The response of CO2 and H2O exchange of a mountain grassland to natural fluctuations of soil water content was evaluated during 2001-2009. In addition, the physiological performance of individual mountain forb and graminoid plant species under progressive soil water shortage was explored in a laboratory drought experiment. During the 9-year study period the natural occurrence of moderately to extremely dry periods did not lead to substantial reductions in net ecosystem CO2 exchange and evapotranspiration. Laboratory drought experiments confirmed that all the surveyed grassland plant species were insensitive to progressive soil drying until very low soil water contents (<0.01 m3 m−3) were reached after several days of drought. In field conditions, such a low threshold was never reached. Re-watering after a short-term drought event (5 ± 1 days) resulted in a fast and complete recovery of the leaf CO2 and H2O gas exchange of the investigated plant species. We conclude that the present-day frequency and intensity of dry periods does not substantially affect the functioning of the investigated grassland ecosystem. During dry periods the observed “water spending” strategy employed by the investigated mountain grassland species is expected to provide a cooling feedback on climate warming, but may have negative consequences for down-stream water users.  相似文献   

13.
14.
In temperate regions, climate change is predicted to increase annual mean temperature and intensify the duration and frequency of summer droughts, which together with elevated atmospheric carbon dioxide (CO2) concentrations, may affect the exchange of nitrous oxide (N2O) and methane (CH4) between terrestrial ecosystems and the atmosphere. We report results from the CLIMAITE experiment, where the effects of these three climate change parameters were investigated solely and in all combinations in a temperate heathland. Field measurements of N2O and CH4 fluxes took place 1-2 years after the climate change manipulations were initiated. The soil was generally a net sink for atmospheric CH4. Elevated temperature (T) increased the CH4 uptake by on average 10 μg C m−2 h−1, corresponding to a rise in the uptake rate of about 20%. However, during winter elevated CO2 (CO2) reduced the CH4 uptake, which outweighed the positive effect of warming when analyzed across the study period. Emissions of N2O were generally low (<10 μg N m−2 h−1). As single experimental factors, elevated CO2, temperature and summer drought (D) had no major effect on the N2O fluxes, but the combination of CO2 and warming (TCO2) stimulated N2O emission, whereas the N2O emission ceased when CO2 was combined with drought (DCO2). We suggest that these N2O responses are related to increased rhizodeposition under elevated CO2 combined with increased and reduced nitrogen turnover rates caused by warming and drought, respectively. The N2O flux in the multifactor treatment TDCO2 was not different from the ambient control treatment. Overall, our study suggests that in the future, CH4 uptake may increase slightly, while N2O emission will remain unchanged in temperate ecosystems on well-aerated soils. However, we propose that continued exposure to altered climate could potentially change the greenhouse gas flux pattern in the investigated heathland.  相似文献   

15.
We examined net greenhouse gas exchange at the soil surface in deciduous forests on soils with high organic contents. Fluxes of CO2, CH4 and N2O were measured using dark static chambers for two consecutive years in three different forest types; (i) a drained and medium productivity site dominated by birch, (ii) a drained and highly productive site dominated by alder and (iii) an undrained and highly productive site dominated by alder. Although the drained sites had shallow mean groundwater tables (15 and 18 cm, respectively) their average annual rates of forest floor CO2 release were almost twice as high compared to the undrained site (1.9±0.4 and 1.7±0.3, compared to 1.0±0.2 kg CO2 m−2 yr−1). The average annual CH4 emission was almost 10 times larger at the undrained site (7.6±3.1 compared to 0.9±0.5 g CH4 m−2 yr−1 for the two drained sites). The average annual N2O emissions at the undrained site (0.1±0.05 g N2O m−2 yr−1) were lower than at the drained sites, and the emissions were almost five times higher at the drained alder site than at the drained birch site (0.9±0.35 compared to 0.2±0.11 g N2O m−2 yr−1). The temporal variation in forest floor CO2 release could be explained to a large extent by differences in groundwater table and air temperature, but little of the variation in the CH4 and N2O fluxes could be explained by these variables. The measured soil variables were only significant to explain for the within-site spatial variation in CH4 and N2O fluxes at the undrained swamp, and dark forest floor CO2 release was not explained by these variables at any site. The between-site spatial variation was attributed to variations in drainage, groundwater level position, productivity and tree species for all three gases. The results indicate that N2O emissions are of greater importance for the net greenhouse gas exchange at deciduous drained forest sites than at coniferous drained forest sites.  相似文献   

16.
Most soil respiration measurements are conducted during the growing season. In tundra and boreal forest ecosystems, cumulative winter soil CO2 fluxes are reported to be a significant component of their annual carbon budgets. However, little information on winter soil CO2 efflux is known from mid-latitude ecosystems. Therefore, comparing measurements of soil respiration taken annually versus during the growing season will improve the accuracy of ecosystem carbon budgets and the response of soil CO2 efflux to climate changes. In this study we measured winter soil CO2 efflux and its contribution to annual soil respiration for seven ecosystems (three forests: Pinus sylvestris var. mongolica plantation, Larix principis-rupprechtii plantation and Betula platyphylla forest; two shrubs: Rosa bella and Malus baccata; and two meadow grasslands) in a forest-steppe ecotone, north China. Overall mean winter and growing season soil CO2 effluxes were 0.15-0.26 μmol m−2 s−1 and 2.65-4.61 μmol m−2 s−1, respectively, with significant differences in the growing season among the different ecosystems. Annual Q10 (increased soil respiration rate per 10 °C increase in temperature) was generally higher than the growing season Q10. Soil water content accounted for 84% of the variations in growing season Q10 and soil temperature range explained 88% of the variation in annual Q10. Soil organic carbon density to 30 cm depth was a good surrogate for SR10 (basal soil respiration at a reference temperature of 10 °C). Annual soil CO2 efflux ranged from 394.76 g C m−2 to 973.18 g C m−2 using observed ecosystem-specific response equations between soil respiration and soil temperature. Estimates ranged from 424.90 g C m−2 to 784.73 g C m−2 by interpolating measured soil respiration between sampling dates for every day of the year and then computing the sum to obtain the annual value. The contributions of winter soil CO2 efflux to annual soil respiration were 3.48-7.30% and 4.92-7.83% using interpolated and modeled methods, respectively. Our results indicate that in mid-latitude ecosystems, soil CO2 efflux continues throughout the winter and winter soil respiration is an important component of annual CO2 efflux.  相似文献   

17.
Elevated CO2 stimulates N2O emissions in permanent grassland   总被引:1,自引:1,他引:0  
To evaluate climate forcing under increasing atmospheric CO2 concentrations, feedback effects on greenhouse gases such as nitrous oxide (N2O) with a high global warming potential should be taken into account. This requires long-term N2O flux measurements because responses to elevated CO2 may vary throughout annual courses. Here, we present an almost 9 year long continuous N2O flux data set from a free air carbon dioxide enrichment (FACE) study on an old, N-limited temperate grassland. Prior to the FACE start, N2O emissions were not different between plots that were later under ambient (A) and elevated (E) CO2 treatments, respectively. However, over the entire experimental period (May 1998–December 2006), N2O emissions more than doubled under elevated CO2 (0.90 vs. 2.07 kg N2O-N ha−1 y−1 under A and E, respectively). The strongest stimulation occurred during vegetative growth periods in the summer when soil mineral N concentrations were low. This was surprising because based on literature we had expected the highest stimulation of N2O emissions due to elevated CO2 when mineral N concentrations were above background values (e.g. shortly after N application in spring). N2O emissions under elevated CO2 were moderately stimulated during late autumn–winter, including freeze–thaw cycles which occurred in the 8th winter of the experiment. Averaged over the entire experiment, the additional N2O emissions caused by elevated CO2 equaled 4738 kg CO2-equivalents ha−1, corresponding to more than half a ton (546 kg) of CO2 ha−1 which has to be sequestered annually to balance the CO2-induced N2O emissions. Without a concomitant increase in C sequestration under rising atmospheric CO2 concentrations, temperate grasslands may be converted into greenhouse gas sources by a positive feedback on N2O emissions. Our results underline the need to include continuous N2O flux measurements in ecosystem-scale CO2 enrichment experiments.  相似文献   

18.
Sporadic rain events that occur during summer play an important role in the initiation of biological activity of semi-arid grasslands.To understand how ecosystem processes of a buffel grass(Cenchrus ciliaris L.)-dominated grassland respond to summer rain events,an LI 6 400 gas exchange system was used to measure the leaf gas exchange and plant canopy chambers were used to measure net ecosystem CO2exchange(NEE) and ecosystem respiration(Reco), which were made sequentially during periods before rain(dry) and after rain(wet). Gross ecosystem photosynthesis(GEP) was estimated from NEE and Reco fluxes, and light use efficiency parameters were estimated using a rectangular hyperbola model. Prior to the monsoon rain, grassland biomass was non-green and dry exhibiting positive NEE(carbon source) and low GEP values during which the soil water became increasingly scarce. An initial rain pulse(60 mm) increased the NEE from pre-monsoon levels to negative NEE(carbon gain) with markedly higher GEP and increased green biomass. The leaf photosynthesis and leaf stomatal conductance were also improved substantially. The maximum net CO2uptake(i.e.,negative NEE) was sustained in the subsequent period due to multiple rain events. As a result, the grassland acted as a net carbon sink for 20 d after first rain. With cessation of rain(drying cycle), net CO2 uptake was reduced to lower values. High sensitivity of this grassland to rain suggests that any decrease in precipitation in summer may likely affect the carbon sequestration of the semiarid ecosystem.  相似文献   

19.
Long term flux measurements of different crop species are necessary to improve our understanding of management and climate effects on carbon flux variability as well as cropland potential in terrestrial carbon sequestration. The main objectives of this study were to analyse the seasonal dynamics of CO2 fluxes and to establish the effects of climate and cropland management on the annual carbon balance.CO2 fluxes were measured by means of the eddy correlation (EC) method over two cropland sites, Auradé and Lamasquère, in South West France for a succession of three crops: rapeseed, winter wheat and sunflower at Auradé, and triticale, maize and winter wheat at Lamasquère. The net ecosystem exchange (NEE) was partitioned into gross ecosystem production (GEP) and ecosystem respiration (RE) and was integrated over the year to compute net ecosystem production (NEP). Different methodologies tested for NEP computation are discussed and a methodology for estimating NEP uncertainty is presented.NEP values ranged between −369 ± 33 g C m−2 y−1 for winter wheat at Lamasquère in 2007 and 28 ± 18 g C m−2 y−1 for sunflower at Auradé in 2007. These values were in good agreement with NEP values reported in the literature, except for maize which exhibited a low development compared to the literature. NEP was strongly influenced by the length of the net carbon assimilation period and by interannual climate variability. The warm 2007 winter stimulated early growth of winter wheat, causing large differences in GEP, RE and NEE dynamics for winter wheat when compared to 2006. Management had a strong impact on CO2 flux dynamics and on NEP. Ploughing interrupted net assimilation during voluntary re-growth periods, but it had a negligible short term effect when it occurred on bare soil. Re-growth events after harvest appeared to limit carbon loss: at Lamasquère in 2005 re-growth contributed to store up to 50 g C m−2. Differences in NEE response to climatic variables (VPD, light quality) and vegetation index were addressed and discussed.Net biome production (NBP) was calculated yearly based on NEP and considering carbon input through organic fertilizer and carbon output through harvest. For the three crops, the mean NBP at Auradé indicated a nearly carbon balanced ecosystem, whereas Lamasquère lost about 100 g C m−2 y−1; therefore, the ecosystem behaved as a carbon source despite the fact that carbon was imported through organic fertilizer. Carbon exportation through harvest was the main cause of this difference between the two sites, and it was explained by the farm production type. Lamasquère is a cattle breeding farm, exporting most of the aboveground biomass for cattle bedding and feeding, whereas Auradé is a cereal production farm, exporting only seeds.  相似文献   

20.
CO2 exchange was measured on the forest floor of a coastal temperate Douglas-fir forest located near Campbell River, British Columbia, Canada. Continuous measurements were obtained at six locations using an automated chamber system between April and December, 2000. Fluxes were measured every half hour by circulating chamber headspace air through a sampling manifold assembly and a closed-path infrared gas analyzer. Maximum CO2 fluxes measured varied by a factor of almost 3 between the chamber locations, while the highest daily average fluxes observed at two chamber locations occasionally reached values near 15 μmol C m−2 s−1. Generally, fluxes ranged between 2 and 10 μmol C m−2 s−1 during the measurement period. CO2 flux from the forest floor was strongly related to soil temperature with the highest correlation found with 5 cm depth temperature. A simple temperature dependent exponential model fit to the nighttime fluxes revealed Q10 values in the normal range of 2–3 during the warmer parts of the year, but values of 4–5 during cooler periods. Moss photosynthesis was negligible in four of the six chambers, while at the other locations, it reduced daytime half-hourly net CO2 flux by about 25%. Soil moisture had very little effect on forest floor CO2 flux. Hysteresis in the annual relationship between chamber fluxes and soil temperatures was observed. Net exchange from the six chambers was estimated to be 1920±530 g C m−2 per year, the higher estimates exceeding measurement of ecosystem respiration using year-round eddy correlation above the canopy at this site. This discrepancy is attributed to the inadequate number of chambers to obtain a reliable estimate of the spatial average soil CO2 flux at the site and uncertainty in the eddy covariance respiration measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号