首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anatase TiO2 nanoparticles was in-situ formed on the cotton fabric by using tetrabutyl titanate (TBT) as a precursor through the normal pressure hydrothermal method. X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV visible spectra (UV-VIS), ATR-IR were used as the characterization techniques. Photocatalytic performance of TiO2 on the fabric surface was evaluated by methylene blue (MB), 4 kinds of the common living stains and three dyes under ultraviolet and visible light radiation. XRD analysis found that the TiO2 loaded on the fabric was mainly anatase crystalline phase with particle size of 6.4 nm. SEM observed that a large number of nano TiO2 particles are distributed on the fabric surface. UV-VIS test indicated that theTiO2-coated fabric possessed an obvious absorption for ultraviolet. ATR-IR analysis indicated that the nano-TiO2 possesses a strong affinity with the hydroxyl group of the cotton fabric, and the soaping tests showed that the TiO2 was firmly bonded with the fabrics. The treated fabrics have good degradation ability for MB aqueous solution, and could degrade azo, anthraquinone and phthalocyanine dyes. The order of degradation of the common life stains was: pepper oil> tea > coffee > soy sauce.  相似文献   

2.
Facile embedding of TiO2 nanoparticles onto cotton fabric has been successfully attained by ultraviolet light irradiations. The adhesion of nanoparticles with fibre surface, tensile behaviour and physicochemical changes before and after ultraviolet treatment were investigated by scanning electron microscopy, energy dispersive X-ray and inductive couple plasma-atomic emission spectroscopy. Experimental variables i.e. dosage of TiO2 nanoparticles, temperature of the system and time of ultraviolet irradiations were optimised by central composite design and response surface methodology. Moreover, two different mathematical models were developed for incorporated TiO2 onto cotton and tensile strength of cotton after ultraviolet treatment and used further to testify the obtained results. Self-clean fabric through a synergistic combination of cotton with highly photo active TiO2 nanoparticles was produced. Stability against ultraviolet irradiations and self-cleaning properties of the produced fabric were evaluated.  相似文献   

3.
In the present work the natural madder dye (Rubia tinctorum L.) was applied to the simultaneous dyeing and functionalization of polyester (PET) fabric. In the first part of the study the color performance and the durability were revealed for exhaustion dyed fabric. The dyed fabric was then characterized with respect to ultraviolet (UV) protection ability and antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). CIELab color coordinates, namely the positive a* and b* values, confirmed a yellow/orange color of the dyed fabric. From durability tests, the color showed a moderate to good light fastness and good to excellent fastness to washing and rubbing. The madder dye improved both the UV protective performance and the antibacterial activity of the fabric. With 3 % on weight of fiber (owf) the UV protection factor increased up to 106, and the antibacterial activity up to 86 % against both types of bacteria tested.  相似文献   

4.
The high light reflection of multilayer TiO2/SiO2 film was prepared on the fabric by the sol-gel process. The size of titania and silica particles in hydrosol was analyzed by Nanosizer, and the morphology of TiO2/SiO2 multilayer film on the fabric was characterized by SEM. The reflection spectra of the samples were tested accordingly, and it showed that the reflection of the fabric coated by multilayer film was higher than that of the monolayer film. Moreover, the reflection increased with the increase of layer number. For sunlight fastness testing, the fabric color changed less with the increase of layer number, which showed the multilayer film on the fabric can improve the light resistance of the fabric. The mechanical property, the bending property and air permeability testing results showed that there was little change for the coated fabric compared with the original fabric.  相似文献   

5.
Titanium oxide (TiO2) and zinc oxide (ZnO) composite structured nanoparticles were prepared by combining a sol-gel process and a solvothermal method. Titanium (IV) isoproxide (TTIP), used as a TiO2 precursor, was dissolved in a colloidal ZnO nanoparticle solution synthesized by the sol-gel method, and TiO2 was synthesized via solvothermal synthesis onto the ZnO nanoparticles. The effects of reaction conditions such as pH, reaction temperature, and reaction time on the morphology of the composite nanoparticles and the ultraviolet (UV) absorbance of their polymer composite films were investigated. The UV absorption of the poly(vinyl alcohol) (PVA) composite film with TiO2-coated ZnO nanoparticles was higher than that of the TiO2, ZnO, and ZnO-coated TiO2 composite films. The reaction pH was found to have the strongest influence on the UV absorbance of the PVA/(TiO2/ZnO) composite film. A pH of 7.0, reaction temperature of 250 °C, and reaction time of 24 h were the optimum conditions for UV absorption.  相似文献   

6.
In order to develop ultraviolet protection and yellowing resistance silk fabric, the silk fabric was treated with dispersive TiO2/La(III) composite solution. The morphology, microstructure, ultraviolet protection and whiteness of the treated silk fabric were characterized by means of transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectra, X-ray diffraction and ultraviolet transmittance. Furthermore, the mechanism of the ultraviolet protection was investigated. The results show that the TiO2/La(III) composite particles disperse uniformly. The TiO2/La(III) particles can not only be treated onto the surface of the silk fabric but also can be treated into the interior of the silk fabric successfully. The result of Fourier transform infrared spectra and X-ray diffraction demonstrates that there are hydrogen bonds between the silk fabric and composite particles, and crystallinity of the treated silk fabric decrease when compares to the untreated silk fabric. The ultraviolet protection factor of the TiO2/La (III) treated silk fabric is significantly higher than that of the untreated silk fabric. The main ultraviolet shielding effect of TiO2 treated silk fabric is absorption. The La(III) treated SF has a bad ultraviolet shielding effect, but it has a certain reflection and absorption.  相似文献   

7.
The Performance of nano TiO2 with citric acid cross-linker was assessed by using pad-dry-cure method on cotton fabric. Significant increase in crease recovery performance was observed which was previously only associated with the lengthy ultraviolet irradiation process. The optimum amount of only 0.1 % nano TiO2 was needed with the citric acid to exhibit significant increase in easy care performance of the fabric. Typically, application of a cross-linker to cellulosics will impart a deleterious effect on the softness of the fabric; however, incorporation of nano-TiO2 with the citric acid cross-linker significantly improved the softness of the fabric which was reflected in the mean deviation of coefficient of friction (MMD) and interyarn friction (2HG5) KES-F values. In addition, there was improvement in tensile strength retention of the fabric as well.  相似文献   

8.
Nylon 6 fabric with self-cleaning properties was prepared by corona discharge pre-treatment and coating with TiO2 nanoparticles (NPs) using pad-dry-cure technique. The self-cleaning property was studied by discoloration of methylene blue (MB), ketchup, tea and coffee stains from the corona+TiO2 treated nylon-6 fabric. Color difference (ΔΕ*), reflectance (R) and K/S of MB stain were investigated by diffuse reflectance spectrophotometry. The MB stain was almost completely removed from the corona+TiO2 treated nylon surface after 24 h under UV light/daylight irradiation. Both of these phenomena (corona and TiO2) led to an increase in the discoloration of stains under UV and daylight irradiations. The EDS analysis showed an increase in the concentration of deposited TiO2 NPs coating after corona treatment. The FE-SEM images revealed that the surface of nylon 6 was coarser after the corona treatment. Also, the FE-SEM micrographs exhibited that a uniform layer of TiO2 NPs was formed on the corona treated nylon fabric. The corona+TiO2 treated nylon illustrated antibacterial activity against E. coli and B. subtillis microorganisms. The EDS and FE-SEM analysis confirmed that after 5 washing cycles, the amount of TiO2 NPs was higher on the surface of corona+TiO2 treated nylon than that of the fabric only treated with TiO2 without corona pretreatment. This result justifies that the corona+TiO2 treated nylon fabric with appropriate self-cleaning property can be applied cost-effectively in the textile industry.  相似文献   

9.
In this study, a new finishing technique is introduced through treatment of wool fabric with graphene/TiO2 nanocomposite. Graphene oxide/titanium dioxide nanocomposite first applied on the wool fabric by hydrolysis of titanium isopropoxide in graphene oxide suspension and then this coating chemically converted by sodium hydrosulfite to graphene/TiO2 nanocomposite. The homogenous distribution of the graphene/TiO2 nanocomposite on the fiber surface was confirmed by field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDS) and X-ray mapping. X-ray diffraction patterns proved the presence of titanium dioxide nanoparticles with a crystal size of 127 Å on the treated wool fabric. Also, the defect analysis based on X-ray photoelectron spectroscopy (XPS) established the composition of the nanocomposite. Other characteristics of treated fabrics such as antibacterial activity, photo-catalytic self-cleaning, electrical resistivity, ultraviolet (UV) blocking activity and cytotoxicity were also assessed. The treated wool fabrics possess significant antibacterial activity and photo-catalytic self-cleaning property by degradation of methylene blue under sunlight irradiation. Moreover, this process has no negative effect on cytotoxicity of the treated fabric even reduces electrical resistivity and improves UV blocking activity.  相似文献   

10.
In this research we investigated the dyeing of cotton fabrics with extracts of Xylocarpus granatum, a mangrove plant with a long history of use in leather tanning and textile dyeing. X. granatum bark was extracted and spray-dried, yielding a tannin-rich, reddish-brown powder. This powder proved a suitable colorant for the natural dyeing of cotton with promising color fastness properties to wet treatments (washing, water, sea water, and perspiration), hot pressing, crocking, and light exposure. However, the dye alone produced only weak levels of coloration and therefore metallic salt mordants were employed to improve the color strength, through the formation of insoluble tannate complexes. The resulting fabric K/S values were dependent on the mordant used and exhibited the following trend: ferric sulfate > sodium dichromate > copper sulfate > potassium aluminum sulfate > no mordant, for fabrics exposed to mordants before and after dyeing. Mordanting resulted in slight variations in shade and color fastness. In most cases, the color fastness properties were preserved, except for color fastness to light and hot pressing, for which lowered ratings were found for some mordants. Stiffness and mechanical performance were not greatly affected by dyeing or mordanting, except for sodium dichromate mordanting which significantly stiffened and weakened the fabric. The ultraviolet protection factor (UPF) of all the dyed samples achieved the maximum (50+) level, highlighting the excellent UV shielding properties of the fabric. Overall, X. granatum bark extract is a promising, effective colorant for the natural dyeing of cotton in terms of appearance, fastness, and physical characteristics.  相似文献   

11.
3,3'-[1,2-ethanediylbis (oxy-2,1-ethanediyl)]-bis[1-methyl-imidazolium]-dibromide (DImDBr), a gemini imidazolium ionic liquid, was synthesized for the modification and dyeing promotion of poly(ethylene terephthalate) (PET) filaments. The results showed that parameters such as treatment temperature, time, and DImDBr concentration played a critical role on the tensile strength and tensile strength retention of modified PET filaments. The optimal treatment parameters of the PET filaments were 120 °C for 90 min with addition of 6 % ionic liquid. The influence of disperse dyeing parameters (temperature, time, and dye concentration) on DImDBr modified PET filaments were also studied. The disperse dyed PET filaments (after treatment with DImDBr) exhibited a desirable color strength (K/S value), excellent soap washing fastness, light fastness, and rubbing fastness. Furthermore, the native PET filaments and DImDBr treated PET filaments were characterized by FT-IR, XRD, DSC, TGA, and SEM. Density functional theory (DFT) simulation showed the presence of two kinds of hydrogen bonds (C-H/O and O-H/Br) and eight strong hydrogen bonds in the DImDBr/cis-PET monomers, while only three hydrogen bonds were found in the DImDBr/trans-PET monomers. The structural transformation from the crystalline phase to the amorphous phase (FT-IR, XRD, and DFT simulation) after DImDBr modification confirmed the dyeing promotion of PET filaments at lower temperature.  相似文献   

12.
In this study, the natural pigment from sappan was used for the dyeing of wool fabrics after treatment with the protease and transglutaminase. The influences of protease and transglutaminase on the UV/visible absorption spectrum of aqueous extract of sappan were studied. The enzymatic modified wool was compared with non-modified wool in K/S value and fastness after direct dyeing and mordant dyeing. It was shown that protease and transglutaminase made the absorbance at the λ max 540 nm in visible region increase. It suggested that there might be some interaction between the enzymes and sappan dye and the residual enzyme on wool fabric might affect the color of following dyeing. Compared to untreated wool, treatments with protease and transglutaminase enhance K/S value of wool dyed subsequently with sappan. Modification of protease led to some decrease in wet rubbing fastness, whereas transglutaminase had almost no influence on rubbing fastness. Enzymatic treatments have no influence on the washing fastness for samples dyed with sappan.  相似文献   

13.
Treatment of polyacrylonitrile (PAN) onto m-aramid fabric was carried out by pad-dry-cure method using dimethylformamide (DMF) dissolved acrylic fiber solution. The obtained PAN treated m-aramid fabric was dyed using exhaustion method with basic dyes. The effect of PAN treatment on fabric stiffness property was acceptable with acrylic fiber solutions ranging from 1 wt% to 4 wt%. Whilst, more than 4 wt% PAN treated fabrics exhibited undesirable stiffness. The dyeing results showed that PAN treated m-aramid fabrics exhibited a significant increase in color strength when compared to untreated fabric, arising from an increase in anionic dye sites (styrene SO3 ? group). Wash fastness was comparable to that of untreated fabric, indicating the strong interaction between dye molecules and the PAN. Rubbing fastness of treated fabrics was not affected by treatments with PAN concentrations lower than 4 wt%. Further increase in PAN concentration led to poorer rubbing fastness property due to the problem of surface dyeing. For light fastness, the PAN treatment failed to improve the light fastness property which is the main disadvantage of basic dyeing of aramid fabric. Finally, in case of PAN treatments with the range of 1 wt% to 4 wt%, the flame retardancy property of PAN treated m-aramid fabrics was found not affected by the percent add-on. However, above 4 wt% PAN treatment, the flame retardancy performance became deteriorated.  相似文献   

14.
Producing fabric with multifunctional properties has been recently a center of research and utilizing nanoparticles is an efficient approach to gain this purpose. Here, nano TiO2 photo catalyst and polysiloxane softener were utilized as stabilizer on the acrylic fabric to obtain soft handle, hydrophilic, and self-cleaning features on the fabric. The effect of various concentrations of nano TiO2 and polysiloxane on the fabric handle, water droplet absorption time, and self-cleaning properties of the fabric has been mathematically modeled based on the response surface methodology (RSM). The optimized treatment conditions indicated that treated acrylic fabric with 2.19 % polysiloxane and 0.68 % nano TiO2 produced the rigidity of 26.8 g.cm, water absorption time of 15.8 s and self-cleaning of ΔE T *=18.1. Also increasing the concentration of polysiloxane enhanced both wettability and photoactive properties of nano TiO2 treated acrylic fabrics. Further, the nano TiO2/polysiloxane treated acrylic fabrics is significantly enable to absorb the light with wavelength lower than 400 nm and improve discoloration of C.I. Reactive Yellow 1.  相似文献   

15.
Cotton fabrics were dyed with three commercial vat dyes in order to provide camouflage in Vis-NIR regions and imitate reflectance profile of greenish leaves. To investigate the effect of nano particles on camouflage properties of dyed fabric, nano particles of TiO2 were applied on dyed fabrics using pad-dry-cure method. The nano TiO2 padded dyed fabrics were investigated using scanning electron microscopy (SEM). Reflectance curves of coated dyed samples with different concentrations of nano TiO2 were measured. Results showed that in both of the standard shades, nano TiO2 increases the reflectance value in NIR region and with increasing the concentration of nano TiO2, the reflectance curves of samples tend to show the maximum reflection of greenish leaves (deciduous leaves) in NIR region. Chromatic values (CIE1976 L*, a*, and b*) and color difference (according to CIECMC color difference ΔE*cmc (2:1)) of each of the coated samples were measured using the reflection spectrophotometer. By considering the influence of white color of nano TiO2 on green shade of dyed cotton fabrics and increasing the color difference (between coated samples and the standard shades of the 1948 U.S army pattern) in visible range, optimum concentrations of nano TiO2 for development of camouflage properties on cotton fabrics in both NIR and visible region were determined. These values for NATO and forest green shades were 0.75 % and 0.5 %, respectively. Fastness results showed that both of the samples have acceptable color fastness. The effect of washing and exposure to light on camouflage properties of coated dyed fabrics in visible (in term of chromatic values) and NIR region (in term of spectral reflectance) was investigated when those were coated in optimum concentrations of nano TiO2. The results showed that the effect of after treatments (washing and exposure to light) on surface color spectral characteristics and camouflage properties was inconsiderable.  相似文献   

16.
Nano-TiO2 based multilayer nanocomposite films were fabricated on cationically modified woven cotton fabrics by layer-by-layer molecular self-assembly technique. Cationization process was used to obtain cationic surface charge on cotton fabrics. Attenuated total reflectance Fourier transform infrared spectroscopy analyses were used to verify the presence of cationic surface charge and multilayer films deposited on the fabrics. Scanning electron microscope micrographs of poly(sodium 4-styrene sulfonate)/TiO2, nano polyurethane/TiO2, and TiO2/poly(diallyldimethylammonium chloride) multilayer films deposited on cotton fabrics were taken. With nano-TiO2 based multilayer film deposition, the protection of cotton fabrics against UV radiation is enhanced. The UV protection durability of the self-assembled multilayer films deposited on the cotton fabrics was analyzed after 10 and 20 washing cycles at 40 °C for 30 min. Air permeability and whiteness value analysis were performed on the untreated and multilayer film deposited cotton fabrics. The effect of layer-by-layer deposition process on tensile strength properties of the warp and weft yarns was determined.  相似文献   

17.
Depositing of TiO2 nanoparticles on cellulose fiber surface has potential technological applications in the field of photocatalysis. With this motivation, multilayers composed of lignosulfonates (LS) and TiO2 nanoparticles were constructed on cellulose fiber surface via layer-by-layer (LBL) self-assembly technique. X-ray photoelectron spectroscopy (XPS), zeta potential measurement and atomic force microscopy (AFM) were used to characterize the LS/TiO2 multilayers on cellulose fiber surface. Moreover, the photocatalytic activities of modified cellulose fibers (decomposition of methyl orange and antibacterial test) were investigated. The decomposition efficiency of methyl orange for a (LS/TiO2)5 multilayer modified cellulose fibers was 74.7 % under 5 h UV irradiation. Photocatalytic decomposition efficiency of methyl orange by LS/TiO2 multilayer modified cellulose fibers under the same UV irradiation time increased linearly with the number of bilayers. Antibacterial tests results revealed that the cellulose fibers modified with LS/TiO2 multilayers exhibited excellent antibacterial activity against E.coil. The degree of E.coil growth inhibition for a (LS/TiO2)5 multilayer modified cellulose fiber reached as high as 93 %. In addition, the effect of LS/TiO2 multilayers on properties of handsheets made from modified cellulose fibers was also considered. The air permeability of the handsheet prepared from fibers modified with TiO2/LS multilayers had 6.1–24.3 % higher compared with that of handsheet prepared from original fibers. The wetting properties measurement results demonstrated that the water contact angle of handsheet oscillated with the increasing number of layers depended on building block which was in the outermost layer.  相似文献   

18.
Transfer printing with disperse dyes on cotton fabric modified with an aqueous tolylene diisocyanate derivative (TDD) was discussed in this paper. The effect of the degree of substitution (DS) on color strength (K/S value) of the modified and transfer printed fabric was investigated. The DS of the cotton fabric increased with increases in TDD concentration and curing temperature and time, while the sample whiteness decreased with the increasing curing temperature and time. And the change of structure of the modified cotton fabric was characterized by FT-IR spectra, DSC curves, and SEM images. All of the factors, such as the concentration and molecular weight of poly(ethylene glycol), the DS of the modified fabric, the transfer printing temperature and time would affect the K/S value of the sample. After transfer printing with disperse dye, the K/S value and printing fastness of TDD-modified cotton fabric were higher than those of cotton control fabric, the change of chromatic difference was not obvious, but the tensile strength of the modified fabric was lower than that of original cotton.  相似文献   

19.
The application of poly (p-phenylene-2, 6-benzobisoxazole) (PBO) fiber as reinforcement in composite material was restricted by its photo-degradation, therefore, some measures should be considered to protect PBO fiber against UV aging. In this study, A series of multilayer coating for (POSS/TiO2)n was prepared on PBO fiber surface via LbL assembly technique for enhancement of UV resistance. TiO2 as UV absorbing material was used to relieve UV-degradation of PBO. Surface elemental composition, surface morphology, mechanical and interfacial properties, and UV resistance of uncoated and coated PBO fibers were investigated. These experimental results show multilayer coating of (POSS/TiO2)n was uniform deposition on fiber surface after treatment, tensile strength decreased to certain extent, interfacial shear strength increased in a small range and UV resistance is obvious enhanced. After the same accelerated aging time under UV irradiation, the retention of tensile strength and intrinsic viscosity of coated PBO fibers were much better than that of untreated PBO fibers.  相似文献   

20.
Waterborne polyurethane modified by acrylate/nano-ZnO (PUA/ZnO) was synthesized and used to improve the wet rubbing fastness of reactive dyed cotton fabric. The reaction conditions were optimized and the products were characterized by FT-IR, TG, DSC, SEM, and particle size distribution. The dyed cotton fabrics were finished with PUA/ZnO emulsion and the rubbing fastness, ultraviolet resistant property, and wearability of treated fabrics were measured. The wet rubbing fastness of treated fabrics was increased by about 0.5–1 rate to achieve 3–4 rate, and the ultraviolet protection factor (UPF) achieved 50+ level. The whiteness, air permeability, and elongation at break of treated fabric were not decreased significantly. SEM showed that the smooth and reticular coating on the surface of treated fabric reduced the mechanical friction force between dyed fabric and rubbing cloth, and thus improved the rubbing fastness. The decomposition temperature of finished fabric was increased by 50–80 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号