首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 383 毫秒
1.
如何控制养殖水体氨氮含量   总被引:2,自引:0,他引:2  
氮元素在水体中的存在形式主要有硝酸氮(NO3-)、亚硝酸氮(NO2-)、总氨氮(包括分子态NH3和离子态NH4+)和氮气(N2)。这儿种形式可以相互转化,在亚硝酸菌和硝酸菌的作用下,氨氮被转化为亚硝酸盐和硝酸盐,这个过程被称为硝化反应;反之,在反硝化菌作用下,亚硝  相似文献   

2.
养殖水体中氨氮的存在、危害及控制   总被引:3,自引:0,他引:3  
1 氨氮在水中的存在及危害 氮元素在水中的存在形式主要有硝酸氮(NO3-)、亚硝酸氮(NO2-)、氨氮(包括分子态NH3和离子态NH4 )和氮气.水生植物直接吸收水中的氨氮和硝酸氮,水生动物通过摄食获得氮,生物死亡后,有机物被分解,氮又回到水中.  相似文献   

3.
亚硝酸氮(NO2-N)对鱼、虾、蟹、贝类等水产养殖动物的危害,大量实验资料早已对其致病和致死机理进行了科学的阐述。同时各国水产养殖业因其发生养殖水产动物致死事件也是屡见不鲜。面对养殖水体,特别是高密度养殖水体中高浓度的亚硝酸氮,一些降亚硝酸氮的方法已被采用,但均未取得预期的效果。  相似文献   

4.
分别以配合饲料与蓝圆鲹饲养点带石斑鱼(Epinephelus coioides),观察其对养殖水体中氮、磷含量变化的影响。点带石斑鱼摄食后水体中的氨氮(NH3-N)、亚硝酸氮(NO2-N)、总磷(TP)含量随着其摄食后时间的延长呈现先升高后下降的趋势,NH3-N含量在鱼摄食后10-14h内达到高峰,NO2-N、TP含量在鱼摄食后14~18h达到高峰。试验组水体中的NH3N含量、NO2-N含量在排泄高峰期低于对照组(P〈0.01),1TP含量在排泄高峰期也低于对照组(P〈0.05)。  相似文献   

5.
养殖水体中“富氮”的危害及防治方法   总被引:1,自引:0,他引:1  
李贵雄 《内陆水产》2006,31(6):20-21
氮在水体中以氮气、游离氨、离子铵、亚硝酸盐、硝酸盐和有机氮的形式存在。其中游离氨和离子铵被合称为氨氮。水体中只有以NH4^+、NH2^-和NO3^-形式存在的氮才能被植物所利用.其他形式的氮不能被浮游生物所利用,并且会对池鱼产生危害。  相似文献   

6.
养殖水体沉积物中氮的形态、分布及环境效应   总被引:8,自引:1,他引:8  
养殖水体沉积物中的氮可分为有机态氮和无机态氮,以有机态氮为主(70%~90%)。无机态氮主要有NO3--N、NO2--N和NH4 -N,其中以NH4 -N为主。各形态的氮含量在水平方向上的分布随距污染源的远近而有小到大变化;垂直方向上的分布则是:NH4 -N随沉积深度的增加含量增大,NO3--N随沉积深度的增加含量减小,而NO2--N随沉积深度的变化不明显。  相似文献   

7.
养殖池塘含氮物质中毒及预防   总被引:6,自引:0,他引:6  
随着养殖单产的提高,近年来的春季、晚秋和初冬不断发生鱼类氨氮中毒或亚硝酸盐中毒事件,有的造成了严重的经济损失,给渔业生产带来了危害。一、原因分析池塘中氮的存在形式有:氮气(N2)、游离氨(NH3)、离子氨(NH4+)、亚硝酸盐(NO2-)、硝酸盐(NO3-)、有机氮(存在于动植物体中的氨基酸和蛋白质中的氮)。其中游离氨+离子氨=总氨氮(TAN)。引起鱼类毒害的氮有两种形式:游离氨(NH3)和亚硝酸盐(NO2-)。游离氨来自鱼类的排泄物和细菌的分解作用。水体中的游离氨和离子氨建立平衡关系(NH3+H+→NH4…  相似文献   

8.
试验表明,中华鳖集约化养殖生产过程中,利用光合细菌等微生物,能调节养鳖池水的化学耗氧量(COD)、氨氮(NH3-N)、亚硝酸氮(NO2-N)等水质指标,有效改善水体环境,减少用药与换水。一、材料与方法 1、试验材料 试验于2009年10月11日至2010年4月27日在东莞市虎门镇某养殖场开展。  相似文献   

9.
氮在水体中以氮气、游离氮、离子铵、亚硝酸盐、硝酸盐和有机氮的形式存在.其中游离氮和离子铵被合称为氨氮.在水体中只有以NH4+、NO2-和NO3-的形式才能被植物所利用.把水体中不能被浮游植物所利用而显富余,并且对池鱼产生危害,超过国家渔业用水的标准的那部分氮称为"富氮",它们是氨氮和亚硝酸盐的总称.  相似文献   

10.
在水产养殖中,氨氮(NH4+- N)和亚硝酸盐氮(NO2-- N)是危害水产动物生长发育的关键因子。为评估小球藻在调控水体NH4+- N和NO2-- N的应用前景,本研究以普通小球藻为研究对象,首先确定了小球藻去除水体中NH4+- N和NO2-- N的适宜条件,其次探究了小球藻作用下水体中NH4+- N和NO2-- N的变化规律,最后解析了小球藻去除水体NO2-- N的途径。结果显示:在适宜的光照条件下,小球藻具有极佳的氮盐去除效果,在18000 Lux时对NH4+- N去除率最高(96.23 %),在9000 Lux时对NO2-- N去除率最高(99.19 %);小球藻去除氮盐顺序为NH4+- N>NO3-- N>NO2-- N;初始藻密度在2.5×105 cells/mL时对NH4+- N、NO2-- N去除率最高,分别为94.92 %、99.05 %。NH4+- N下降阶段小球藻亚硝酸盐还原酶活性显著低于NO2-- N下降阶段,表明该还原酶对小球藻去除NO2-- N的关键作用。综上,普通小球藻能显著降低水体NH4+- N与NO2-- N含量,NO2-- N由藻细胞内亚硝酸盐还原酶还原成NH4+- N进而被同化吸收。  相似文献   

11.
针对目前循环养殖废水水质处理过程中存在脱氮碳源不足的问题,本文以高NO3--N降解能力和低NO2--N积累量为碳源优化指标,研究了乙醇、丙三醇、葡萄糖、蔗糖、乙酸钠和酒石酸钾钠6种碳源及不同碳氮比(C/N)对复合菌群净化循环养殖废水效果的影响。试验结果显示,不同碳源及C/N对养殖废水的NH4 -N去除率并无显著差异,且各处理组的NH4 -N去除率高达98%左右,显著地高于对照组(p<0.05);当以葡萄糖、蔗糖等糖类物质为外加碳源时,试验过程中有明显的NO2--N积累现象;当以醇类物质为外加碳源时,NO2--N积累量几乎为零,且NO3--N去除率高达90%左右,显著地高于对照组(58.96%);特别是以乙醇为外加碳源且C/N为3.0时,复合菌群对养殖废水的TN、NH4 -N和NO3--N去除率分别高达93.28%、98.90%和91.82%。虽然外加碳源短期内会引起水体CODMn含量大幅升高,但可被反硝化细菌迅速降解;此外,外加碳源还能改善水体pH值,经处理组净化后的水体pH值维持在7.5左右。试验结果表明,循环养殖废水水质净化过程中添加相应的碳源及并适当控制C/N比能显著改善池水水质,提高生物脱氮效率。  相似文献   

12.
氮在水体中以氮气、游离氨、离子铵、亚硝酸盐、硝酸盐和有机氮的形式存在。其中游离氨和离子铵被合称为氨氮。水体中只有以NH4 、NH2-和NO3-形式存在的氮才能被植物所利用。水体中其它形式的氮不能被浮游生物所利用,并且会对池鱼产生危害。一、水体氮的来源鱼池中施入大量畜禽  相似文献   

13.
在褐菖鲉(Sebastiscusmarmoratus)室内养殖条件下,以不换水作为对照组,设置2个石莼(Ulva lactuca)养殖密度梯度,研究了石莼对褐菖鲉养殖水体的生态作用。试验结果表明,石莼对褐菖鲉养殖水体中氮、磷营养盐的清除效果明显。在褐菖鲉养殖水体中分别加入石莼534和801g·m13共9d不换水,与对照组相比,养殖密度为534g·m-3的石莼组对硝态氮(NO3-N)、氨态氮(NH4-N)和无机磷(PO4-P)的清除率分别为83.7%、90.7%和86.5%;养殖密度为801g·m^-3的石莼组对NO3-N、NH4-N和PO4-P的清除率分别为90.1%、96.9%和92.7%。  相似文献   

14.
氮是一切藻类必须的一种营养元素,也是养殖水体内一种限制初级生产力的营养元素。在天然水体内,氮一般以-3至+5九种不同价态成单质(N2)、无机物(NH3、NH^+4、NO^-2、NO^-3,等)及有机物(如尿素、氨基酸、蛋白质)等形式存在,在生物及非生物因素的共同作用下,它们在水体内不断地迁移、转化,构成一个复杂的动态循环,对养殖生产有很大影响。  相似文献   

15.
花津滩芽孢杆菌(Bacillus hwajinpoensis) SLWX2是1株从海水养殖环境分离的可高效去除水体中氨氮(NH4+-N)、亚硝酸氮(NO2–-N)和硝酸氮(NO3–-N)的菌株。本实验在添加葡萄糖条件下,研究NH4+-N、NO2–-N和NO3–-N作为唯一氮源和环境因子(温度、pH、C/N和盐度)对该菌株生长和脱氮性能的影响。结果显示,菌株对这3种形态氮的去除与其生长保持一致,主要发生在对数生长期;当NH4+-N作为唯一氮源时,生长和脱氮均没有延迟期,NH4+-N在去除过程中,没有NO2–-N和NO3–-N的积累;当NO2–-N作为唯一氮源时,生长和脱氮均有较长延迟期,在NO2–-N消除过程中,没有NH4+-N和NO3–-N的积累;当NO3–-N作为唯一氮源时,生长和脱氮也有较长延迟期,在NO3–-N消除过程中,基本检测不到NH4+-N,NO2–-N呈先上升后下降趋势。环境因子影响研究表明,环境因子对该菌株的生长和脱氮性能影响基本一致,在pH为6~8.5、温度为28~40℃、C/N为5~25、NaCl为0~30 g/L条件下,菌株展现了良好的生长特性和脱氮性能。其中,最佳条件中,温度为30℃,C/N为25,pH为8.0,盐度为25。该菌株可高效去除NH4+-N、NO2–-N和NO3–-N,对环境条件适应范围较广,在工业和养殖废水脱氮中具有较大的应用潜力。  相似文献   

16.
1水体中NH3主要来源①有机物分解产生氨态氮。在沙塘鳢工厂化苗种培育阶段投喂的轮虫、枝角类等浮游动物的尸体都可以分解产生NH3。②高密度养殖容易造成培育池水体呈富营养化,水中溶氧很低,温度又比较高时,反硝化微生物如棱状芽孢杆菌等会将水中的硝酸还原为亚硝酸和氮。③沙塘鳢苗种的代谢产物一  相似文献   

17.
养殖水体中的无机态氮如溶解氮气(N_2—N)、氨(铵)态氮[NH_3(NH_4~-)—N]、硝酸态氮(NO_3~—N)、亚硝酸态氮(NO_2~—N)等是水中浮游植物生长繁殖所需的营养物质。众所周知,氨(NH_3)可以在一定条件下渗入养殖生物体内对其产生毒害作用。因此,少量的NH_3—N是饵料生物生长繁殖的营养物质,而当NH_3—N超过一定限度则对水生生物产生直接危害或使水质变坏而间接影响养殖动物。  相似文献   

18.
草鱼养殖水体中参与氮转化途径的异养菌分析   总被引:1,自引:0,他引:1  
为分析草鱼池塘中参与氮代谢的异养细菌比例及其代谢途径,从杭州郊区取得4个草鱼池塘的水样,每个水样通过涂布随即挑选100株菌株进行定性显色试验,并据此选取11株异养菌进行16S rRNA序列分析。结果表明,4个草鱼养殖池塘中NH4+-N和NO2--N的平均水平分别为5.597 mg/L和0.135 mg/L。池塘中可培养的异养菌平均为3.26×105cfu/mL,其中的89.75%参与了氮的不同代谢途径,其中31.25%的氨化菌和33.50%NO3--N(NO2--N)还原菌参与了NH4+-N的生成,32.45%的氨氧化菌参与了NH4+-N的降低;NO2--N生成途径主要包括蛋白质直接转化(11.26%)、氨氧化(4.25%)和硝酸盐氮还原(10.75%),而NO2--N降低主要通过15.50%的亚硝酸氧化菌、8.75%的NO2--N还原菌和10.75%的反硝化菌实现。结果提示,草鱼养殖水体中存在大量的异养硝化菌参与不同的氮代谢途径,且产生氨氮的异养菌比例远高于去除氨氮的菌,这是草鱼养殖水体中氨氮含量易偏高的原因。同时,11株不同功能的异养菌16SrRNA鉴定结果为寡养食单胞菌(Stenotrophomonas)6株、假单胞菌(Pseudomonas)3株、克雷伯氏菌(Klebsiella)和肠杆菌(Enterobacter)各1株,而且细菌对氮源的利用具有菌株特异性。  相似文献   

19.
通过对黄颡鱼养殖池塘水体主要水质因子周年变化的测定与比较,探讨黄颡鱼养殖对水体环境的影响。研究主要测定了水体总磷(TP)、磷酸盐(PO4-P)、硝酸盐氮(NO3-N)、亚硝酸盐氮(NO2-N)和氨氮(NH4-N)含量。结果表明:养殖水体TP全年变化范围为0.08~1.17mg/L,5月份TP含量最低。PO4-P全年变化范围为0.02~0.27mg/L,10-12月份PO4-P含量较高为0.24~0.27mg/L。NO3-N全年变化范围为0.02~11.67mg/L,8月和11月份形成2个峰值;NO2-N全年变化范围为0.02~0.48mg/L,10月份呈现最高值0.48±0.01mg/L。NH4-N全年变化范围为0.06~2.02mg/L,5月份呈现峰值。溶解态无机氮(DIN)全年含量为0.43~11.76mg/L,且从全年氮平均含量进行考察,NO3-N、NH4-N和NO2-N分别占DIN的78.16%、16.72%和5.12%,N/P比值在5月和11月份出现2个峰值。黄颡鱼养殖池塘的水体氮和磷营养含量受光照、水温和鱼体活动等因素影响。  相似文献   

20.
植物修复技术是处理水产养殖带来的污染问题的一种有效手段和途径.本文主要针对底栖水草-轮叶黑藻对水体富营养化污染指标的降解作用进行研究.通过分组对比试验测试了轮叶黑藻对富营养化污水的吸收降解效果。试验结果表明:1)试验结束时,种植轮叶黑藻水体中TN、NH4^+-、NO3^--N、TP、PO4^3--P和CODcr的去除率分别为8.2%、68.8%、90.2%、81.9%、89.5%和48.2%:2)轮叶黑藻对水中各种形态氮(尤其硝态氮)的净化效果良好;3)对水中磷的净化效果明显。由此可见,轮叶黑藻在养殖水体污染控制与治理方面有广阔的应用前景,试验为应用轮叶黑藻修复受污染的养殖水体环境打下基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号