首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Pharmacokinetic profiles of the major metabolites of netobimin were investigated in calves after oral administration of the compound (20 mg/kg) as a zwitterion suspension and trisamine salt solution in a two-way cross-over design. Blood samples were taken serially over a 72-h period and plasma was analysed by HPLC for netobimin (NTB) and its metabolites, including albendazole (ABZ), albendazole sulphoxide (ABZSO) and albendazole sulphone (ABZSO2). NTB was occasionally detected in plasma between 0.5 and 1.0 h post-treatment. ABZ was not detectable at any time. ABZSO was detected from 0.5-0.75 h up to 32 h post-administration, with a Cmax for the zwitterion suspension of 1.21 +/- 0.13 micrograms/ml and AUC of 18.55 +/- 1.45 micrograms.h/ml, respectively, which were significantly higher (P less than 0.01) than the Cmax (0.67 +/- 0.12 micrograms/ml) and AUC (8.57 +/- 0.91 micrograms.h/ml) for the trisamine solution. ABZSO2 was detected in plasma between 0.75 and 48 h post-administration. The zwitterion suspension resulted in a Cmax (2.91 +/- 0.10 micrograms/ml) and AUC (51.67 +/- 1.95 micrograms.h/ml) for ABZSO2, which were significantly higher (P less than 0.01) than those obtained for the trisamine solution (Cmax = 1.67 +/- 0.11 micrograms/ml and AUC = 22.77 +/- 1.09 micrograms.h/ml). The ratio of AUC for ABZSO2/ABZSO was 2.92 +/- 0.26 (zwitterion) and 2.80 +/- 0.20 (trisamine). The MRT for ABZSO2 was significantly longer (P less than 0.01) after treatment with the zwitterion suspension than after treatment with the trisamine solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The residue depletion of albendazole (ABZ) and its metabolites was studied in channel catfish muscle tissue. Channel catfish were dosed once with 10 mg/kg ABZ via stomach tube with manual restraint. Muscle tissue samples were collected at 8, 16, 24, 48, 72, 96 and 120 h postdose. A high-performance liquid chromatographic method was used to assay ABZ and its major metabolites: ABZ sulfoxide (ABZ-SO), ABZ sulfone (ABZ-SO2) and ABZ aminosulfone (ABZ-2-NH2SO2) in the muscle tissue. The results indicate that ABZ and ABZ-SO were present in low concentrations, i.e. <15 and <10 microg/kg, respectively, at 8 h postdose in catfish muscle with and without skin. ABZ-SO2 was present at 1 microg/kg concentration levels until 48 h in muscle alone and 72 h in muscle with skin. ABZ-2-NH2SO2 was not detected at any withdrawal periods.  相似文献   

3.
The kinetics of triclabendazole disposition in sheep   总被引:10,自引:1,他引:9  
To investigate whether the disposition of triclabendazole (TCBZ) and its metabolites in blood or bile influenced its flukicidal potency, TCBZ was administered intraruminally at 10 mg kg-1 to sheep surgically fitted with a permanent re-entrant bile duct cannula. The profiles of TCBZ metabolites in peripheral plasma and bile were determined using high performance liquid chromatography. In plasma, only TCBZ sulphoxide (TCBZ-SO) and TCBZ sulphone were present and reached their maximum concentrations (greater than 13 micrograms ml-1) at 18 and 36 h, respectively, after administration. TCBZ metabolites were specifically bound to plasma albumin, which is believed to exert a major influence on the duration of plasma TCBZ metabolite concentrations and consequent exposure of liver fluke. In bile, the major TCBZ metabolites were hydroxylated in the 4' position and secreted predominantly as sulphate esters with lesser proportions as glucuronide conjugates. The major biliary metabolite was conjugated hydroxy TCBZ-SO which reached a maximum concentration in excess of 40 micrograms ml-1 and contributed almost half the total conjugated metabolites. The major free biliary metabolite was TCBZ-SO. Of the administered TCBZ dose, 9.7% was secreted as free metabolites in bile whereas 35.8% was secreted as conjugated metabolites. Approximately 6.5% of the dose was excreted in urine.  相似文献   

4.
In a 4 x 4 crossover-design study, pharmacokinetic variables of 2 injectable formulations of netobimin (trisamine salt solution and zwitterion suspension) were compared after SC administration in calves at dosage of 12.5 mg/kg of body weight. Netobimin parent drug was rapidly absorbed, being detected between 0.25 and 12 hours after treatment, with maximal plasma drug concentration (Cmax) values of 2.20 +/- 1.03 micrograms/ml achieved at 0.75 +/- 0.19 hour (trisamine) and 1.37 +/- 0.59 micrograms/ml at 0.81 +/- 0.18 hour (zwitterion). Netobimin area under the plasma concentration-time curve (AUC) was 7.59 +/- 3.11 micrograms.h/ml (trisamine) and 6.98 +/- 1.60 micrograms.h/ml (zwitterion). Elimination half-life (t1/2 beta) was 2.59 +/- 0.63 hours (trisamine) and 3.57 +/- 1.45 hours (zwitterion). Albendazole was not detected at any time. Albendazole sulfoxide was detected from 4 hours up to 20 hours (trisamine) and from 6 hours up to 24 hours (zwitterion) after administration of the drug. The Cmax values were 0.48 +/- 0.16 micrograms/ml and 0.46 +/- 0.26 micrograms/ml for trisamine and zwitterion formulations, respectively, achieved at time to peak drug concentration (Tmax) values of 9.50 +/- 1.41 hours (trisamine) and 11.30 +/- 1.04 hours (zwitterion). Albendazole sulfoxide AUC was 3.86 +/- 1.04 micrograms.h/ml (trisamine) and 4.40 +/- 3.24 micrograms.h/ml (zwitterion); t1/2 beta was 3.05 +/- 0.75 hours (trisamine) and 3.90 +/- 1.44 hours (zwitterion). Albendazole sulfone was detected from 4 (trisamine) or 6 hours (zwitterion) to 24 hours after treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Lifschitz, A., Virkel G., Mastromarino, M. and Lanusse C., 1997. Enhanced plasma availability of the metabolites of albendazole in fasted adult sheep. Veterinary Research Communications, 21 (3), 201-211The influence of fasting prior to treatment and of dosing rate on the plasma availability and disposition kinetics of albendazole (ABZ) and its sulphoxide (ABZSO) and sulphone (ABZSO2) metabolites was studied in adult sheep grazing on pasture. A micronized suspension of ABZ was administered orally at either 7.5 mg/kg (group A) or 11.3 mg/kg (group C) to sheep fed ad libitum, and at 7.5 mg/kg to sheep subjected to a 24 h fasting period prior to treatment (group B). Blood samples were taken serially over 96 h after treatment, and the plasma was analysed for ABZ and its metabolites by high-performance liquid chromatography. ABZSO and ABZSO2 were recovered from the plasma. Fasting induced marked modifications in the pharmacokinetic behaviour of the ABZ metabolites in sheep. An extended absorption process, with a delayed peak concentration in the plasma, was observed for both metabolites in the fasted sheep. Significantly higher area under the curve (AUC) and peak plasma concentration (Cmax) values were obtained for both metabolites in the fasted animals compared to those fed ad libitum. Delayed elimination with prolonged detection in plasma was also observed in the fasted sheep. Treatment with ABZ at 7.5 mg/kg in the starved animals resulted in bioequivalence to the administration of the compound at a 50% higher dose rate (11.3 mg/kg) in the fed animals. It is suggested that fasting enhances ABZ dissolution and absorption by delaying its passage down the digestive tract.  相似文献   

6.
Pharmacokinetic behaviour of netobimin and its metabolites in sheep   总被引:2,自引:0,他引:2  
The pharmacokinetics and the profile of urine excretion of netobimin (NTB) and its metabolites were investigated after its intraruminal (i.r.) and subcutaneous (s.c.) administration to sheep at 20 mg/kg. Plasma and urine concentrations of NTB, albendazole (ABZ), albendazole sulphoxide (ABZSO) and albendazole sulphone (ABZSO2) were measured serially over a 120-h period by HPLC. NTB showed a similar pharmacokinetic profile in both treatments, being detected between 0.5 and 12 h post-treatment, but the tmax was achieved significantly earlier (P less than 0.05) after s.c. treatment. ABZ was detected in plasma only after i.r. treatment, resulting in a low area under the curve (AUC). The peak plasma concentration (Cmax) and AUC for ABZSO and ABZSO2 were significantly higher after i.r. administration of NTB. In both treatments, the ABZSO Cmax was reached earlier than the ABZSO2 Cmax. The ratio of AUC ABZSO2:ABZSO was higher following s.c. administration (1.33) than following i.r. administration (0.35). The percentages of total dose excreted in the urine as NTB, ABZ, ABZSO and ABZSO2 were 17.05 (i.r.) and 8.16 (s.c.). There was a less efficient conversion of NTB into ABZ metabolites after s.c. administration. The detection of ABZ in plasma and the high ABZSO AUC obtained after i.r. treatment may be of major importance for anthelmintic efficacy.  相似文献   

7.
Forty sheep and 40 heifers were dosed with an intraruminal slow release capsule (IRSRC) constructed to deliver albendazole (ABZ) at a low daily dosage for three months. Blood samples were collected at standardised intervals for 110 days and analysed by high performance liquid chromatography for the quantification of the two main metabolites sulphoxide (SO.ABZ) and sulphone (SO2ABZ). The plasma profiles show sustained concentrations of the active metabolite SO.ABZ for 105 days in sheep (m = 0.06 +/- 0.032 micrograms ml-1) and 85 days in cattle (m = 0.10 +/- 0.019 micrograms ml-1). In both species, the proportions of the metabolites were inverted compared to that observed after a single dosage. The bioavailability of ABZ after the administration of the IRSRC compared with a drench was reduced in sheep but increased in cattle. The IRSRC exhibited a preventive and therapeutic effect for at least three months.  相似文献   

8.
The plasma disposition of fenbendazole (FBZ), oxfendazole (OFZ) and albendazole (ABZ); and the enantiospecific disposition of OFZ, and ABZSO produced were investigated following an oral administration (50 mg/kg) in dogs. Blood samples were collected from 1 to 120 h post-administration. The plasma samples were analysed by high performance liquid chromatography (HPLC). The plasma concentration of FBZ, OFZ, ABZ and their metabolites were significantly different from each other and depended on the drug administered. The sulphone metabolite (FBZSO2) of FBZ was not detected in any plasma samples and the parent molecule ABZ did not reach quantifiable concentrations following FBZ and ABZ administration, respectively. OFZ and its sulphone metabolite attained a significantly higher plasma concentration and remained much longer in plasma compared with FBZ and ABZ and their respective metabolites. The maximum plasma concentrations (Cmax), area under the concentration time curve (AUC) and mean residence time (MRT) of parent OFZ were more than 30, 68 and 2 times those of FBZ, respectively. The same parameters for ABZSO were also significantly greater than those of FBZSO. The ratio for total AUCs of both the parent drug and the metabolites were 1:42:7 for following FBZ, OFZ and ABZ administration, respectively. The enantiomers were never in racemic proportions and (+) enantiomers of both OFZ and ABZSO were predominant in plasma. The AUC of (+) enantiomers of OFZ and ABZSO was, respectively more than three and seven times larger than that of (-) enantiomers of both molecules. It is concluded that the plasma concentration of OFZ was substantially greater compared with FBZ and ABZ. The data on the pharmacokinetic profile of OFZ presented here may contribute to evaluate its potential as an anthelmintic drug for parasite control in dogs.  相似文献   

9.
The effect of an oral dose of probenecid on the disposition kinetics of ampicillin was determined in four horses. An intravenous bolus dose (10 mg/kg) of ampicillin sodium was administered to the horses on two occasions. On the first occasion the antibiotic was administered on its own, and on the second occasion it was administered one hour after an oral dose of 75 mg/kg probenecid. The plasma concentration of probenecid reached a mean (+/- se) maximum concentration (Cmax) of 188-6 +/- 19.3 micrograms/ml after 120.0 +/- 21.2 minutes and concentrations greater than 15 micrograms/ml were present 25 hours after it was administered. The disposition kinetics of ampicillin were altered by the presence of probenecid and as a result the antibiotic had a slower body clearance (ClB; 109.4 +/- 6.71 ml/kg hours compared with 208.9 +/- 26.2 ml/kg hours) a longer elimination half-life (t1/2 beta 1.198 hours compared with 0.701 hours) and consequently a larger area under the plasma concentration versus time curve (AUC 92.3 +/- 5.09 mg/ml hours compared with 35.95 +/- 3.45 mg/ml hours) when compared with animals to which ampicillin was administered alone. The ampicillin concentrations observed suggest that the dosing interval for horses may be increased from between six and eight hours to 12 hours when probenecid is administered in conjunction with the ampicillin.  相似文献   

10.
Metabolic and residue depletion profiles of albendazole (ABZ) and its major metabolites in three fish species, rainbow trout, tilapia and Atlantic salmon are reported. Based on these profiles, similarities (or dissimilarities) between species will determine the potential to group fish species. ABZ at 10 mg/kg body weight was incorporated into fish food formulated in a gelatin base or in gel capsule and fed as a single dose to six fish from each species. Rainbow trout were held three each in a partitioned 600-L tank. Tilapia and Atlantic salmon were housed in separate 20-L tanks. Samples of muscle with adhering skin were collected at 8, 12, 18, 24, 48, 72, and 96 h postdose from trout kept at 12 degrees C, at 4, 8, 12, 24, 48, 72, 96, 120, and 144 h postdose from tilapia kept at 25 degrees C and at 8, 14, 24, 48, 72, and 96 h postdose from Atlantic salmon kept at 15 degrees C. The samples were homogenized in dry ice and subjected to extraction and cleanup procedures. The final extracts were analyzed for parent drug ABZ and its major metabolites, albendazole sulfoxide (ABZ-SO), albendazole sulfone (ABZ-SO2) and albendazole aminosulfone using high-performance liquid chromatography with fluorescence detection. ABZ was depleted by 24 h in trout and tilapia and by 48 h in salmon; ABZ-SO, a pharmacologically active metabolite, was depleted by 48 h in tilapia, by 72 h in rainbow trout and was present until 96 h in salmon; and low levels of ABZ-SO2 and albendazole aminosulfone, both inactive metabolites, were detectable at least till 96 h in all three fish species.  相似文献   

11.
Fasting is associated with unconjugated hyperbilirubinemia in several species, including the horse. Studies in ponies showed that a 3-day fast decreased plasma clearance of bilirubin, cholic acid, and sulfobromophthalein (BSP). Since these organic anions are conjugated with different substrates, it is possible that observed differences in plasma clearance result from a general decrease in hepatic conjugating capacity during the animals' fasting. To test this hypothesis, the effects of a 3-day fast on plasma clearance of IV injected BSP (4.4 to 5.1 mg/kg), which is conjugated to glutathione, and indocyanine green (ICG; 0.8 to 1.1 mg/kg), which is not conjugated, were studied in 10 healthy horses and 2 ponies with diverted enterohepatic circulations (indwelling T tubes). Blood samples were obtained for 30 minutes after injection, and bile samples from ponies were obtained for 3 hours. Fasting increased plasma bilirubin concentration in all animals studied (from 1.03 +/- 0.337 mg/dl in control animals to 3.49 +/- 1.01 mg/dl in fasted animals). Kinetic values of ICG disappearance were determined from single exponential functions, and those for BSP were determined from both single and curvilinear (2-exponential) functions. Plasma clearance of BSP in fed horses (8.65 +/- 1.02 ml X min-1 X kg-1) was greater than clearance of ICG (3.54 +/- 0.67 ml X min-1 X kg-1), results similar to those reported in dogs, cats, rats, and persons. Fasting significantly decreased fractional plasma disappearance rate of both BSP (-36%) and ICG (-58%) and similarly reduced plasma clearance (BSP,-48%; ICG,-55%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The pattern of in vivo uptake of albendazole (ABZ) and its major metabolite, ABZ-sulphoxide (ABZSO), by Haemonchus contortus and Fasciola hepatica recovered from ABZ-treated sheep, was investigated. Concentration profiles of both compounds were simultaneously measured in target tissues/fluids from the same infected sheep. In addition, the proportion of the (+) and (-) ABZSO enantiomers was determined in plasma, bile and F. hepatica recovered from treated sheep. Sheep naturally infected with H. contortus were intraruminally (i.r.) treated with ABZ (micronized suspension, 7. 5mg/kg) and the plasma concentrations of ABZSO and ABZ-sulphone (ABZSO(2)) determined in addition to the concentration of ABZ and ABZSO in H. contortus, abomasal mucosa and fluid content samples. In addition, F. hepatica artificially infected sheep were treated i.r. with the same ABZ suspension (7.5mg/kg), and samples of blood, bile, liver tissue and adult flukes were collected and analysed by HPLC to determine the concentrations of ABZ and both enantiomers of ABZSO. ABZSO and ABZSO(2) were the analytes recovered in plasma with ABZ and ABZSO present in H. contortus. ABZ was the analyte recovered at the highest concentration in H. contortus and abomasal mucosa, whereas higher concentrations of ABZSO were measured in abomasal fluid content. Only low concentrations of ABZ were detected in F. hepatica and bile, but markedly higher concentrations of ABZ were measured in liver tissue. ABZSO was the main molecule recovered in F. hepatica, plasma and bile samples collected from ABZ-treated sheep. The (+) enantiomer of ABZSO was recovered at a higher proportion in plasma (75%), bile (78%) and F. hepatica (74%) after ABZ administration to infected sheep.  相似文献   

13.
The pharmacokinetics of amikacin were studied in healthy mature female chickens (n = 6). Single doses of amikacin were injected as an i.v. bolus (10 mg/kg) and i.m. (20 mg/kg) into the same birds with a 30-day rest period between treatments. Amikacin was determined by the fluorescence polarization immunoassay method. The i.v. pharmacokinetics could be described by a two-compartment model with a t1/2 alpha of 0.150 +/- 0.064 h and a t1/2 beta of 1.44 +/- 0.34 h. The total body clearance was 0.109 +/- 0.017 1/h/kg and the volume of distribution at steady-state was 0.193 +/- 0.060 l/kg. Following a single i.m. injection, the peak plasma concentration (Cmax) was 50.79 +/- 4.05 micrograms/ml and occurred at 0.50 +/- 0.26 h. The i.m. extent of absorption was 91.2 +/- 17.6%. Simultaneous modeling of i.v. and i.m. results provided estimates of an absorption half-life of 0.480 +/- 0.158 h. The i.m. pharmacokinetics after repeated administration were studied following the tenth dose (20 mg/kg, every 8 h). The Cssmax was 38.58 +/- 6.96 micrograms/ml and occurred at 0.79 +/- 0.37 h, and the biological half-life of amikacin was 1.86 +/- 0.47 h. The multiple dosing yielded peak concentrations of 39 micrograms/ml and trough concentrations of 3.26 micrograms/ml. Based on these data, the recommended amikacin dosage in chickens is 20 mg/kg body weight every 8 h.  相似文献   

14.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin administered IV and orally to foals. ANIMALS: 5 clinically normal foals. PROCEDURE: A 2-dose cross-over trial with IV and oral administration was performed. Enrofloxacin was administered once IV (5 mg/kg of body weight) to 1-week-old foals, followed by 1 oral administration (10 mg/kg) after a 7-day washout period. Blood samples were collected for 48 hours after the single dose IV and oral administrations and analyzed for plasma enrofloxacin and ciprofloxacin concentrations by use of high-performance liquid chromatography. RESULTS: For IV administration, mean +/- SD total area under the curve (AUC0-infinity) was 48.54 +/- 10.46 microg x h/ml, clearance was 103.72 +/- 0.06 ml/kg/h, half-life (t1/2beta) was 17.10 +/- 0.09 hours, and apparent volume of distribution was 2.49 +/- 0.43 L/kg. For oral administration, AUC0-infinity was 58.47 +/- 16.37 microg x h/ml, t1/2beta was 18.39 +/- 0.06 hours, maximum concentration (Cmax) was 2.12 +/- 00.51 microg/ml, time to Cmax was 2.20 +/- 2.17 hours, mean absorption time was 2.09 +/- 0.51 hours, and bioavailability was 42 +/- 0.42%. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with adult horses given 5 mg of enrofloxacin/kg IV, foals have higher AUC0-infinity, longer t1/2beta, and lower clearance. Concentration of ciprofloxacin was negligible. Using a target Cmax to minimum inhibitory concentration ratio of 1:8 to 1:10, computer modeling suggests that 2.5 to 10 mg of enrofloxacin/kg administered every 24 hours would be effective in foals, depending on minimum inhibitory concentration of the pathogen.  相似文献   

15.
Pharmacokinetics of cefotaxime in the domestic cat   总被引:1,自引:0,他引:1  
Cefotaxime was administered as single IV or IM dose for the purpose of examining its pharmacokinetics in healthy cats. The mean predicted plasma concentration of cefotaxime in 6 cats at 0 time after a single IV dosage of 10 mg/kg of body weight was 88.9 micrograms/ml. The mean plasma concentrations decreased to 10.8 micrograms/ml at 2 hours, 3.7 micrograms/ml at 3 hours, and 0.5 microgram/ml at 6 hours. The half-life was 0.98 +/- 0.25 hour (mean +/- SD), and the total body clearance was determined to be 2.76 +/- 1.25 ml/min/kg. After a single IM injection of 10 mg/kg of body weight, the mean maximum observed plasma concentration was 36.2 micrograms/ml at 0.75 hour. The mean absorption half-life was 0.24 hour. In 2 animals, the bioavailability of an IM injection was 98.2% and 93.0%.  相似文献   

16.
The pharmacokinetics and bioavailability of rifampin were determined after IV (10 mg/kg of body weight) and intragastric (20 mg/kg of body weight) administration to 6 healthy, adult horses. After IV administration, the disposition kinetics of rifampin were best described by a 2-compartment open model. A rapid distribution phase was followed by a slower elimination phase, with a half-life (t1/2[beta]) of 7.27 +/- 1.11 hours. The mean body clearance was 1.49 +/- 0.41 ml/min.kg, and the mean volume of distribution was 932 +/- 292 ml/kg, indicating that rifampin was widely distributed in the body. After intragastric administration of rifampin in aqueous suspension, a brief lag period (0.31 +/- 0.09 hour) was followed by rapid, but incomplete, absorption (t1/2[a] = 0.51 +/- 0.32 hour) and slow elimination (t1/2[d] = 11.50 +/- 1.55 hours). The mean bioavailability (fractional absorption) of the administered dose during the first 24 hours was 53.94 +/- 18.90%, and we estimated that 70.0 +/- 23.6% of the drug would eventually be absorbed. The mean peak plasma rifampin concentration was 13.25 +/- 2.70 micrograms/ml at 2.5 +/- 1.6 hours after dosing. All 6 horses had plasma rifampin concentrations greater than 2 micrograms/ml by 45 minutes after dosing; concentrations greater than 3 micrograms/ml persisted for at least 24 hours. Mean plasma rifampin concentrations at 12 and 24 hours after dosing were 6.86 +/- 1.69 micrograms/ml and 3.83 +/- 0.87 micrograms/ml, respectively. We tested 162 isolates of 16 bacterial species cultured from clinically ill horses for susceptibility to rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The oral absorption and bioavailability of flumequine was studied in 1-, 5- and 18-week-old calves following intravenous and oral administration of different formulations of flumequine (Flumix, Flumix C and pure flumequine). Increasing age had a negative influence on the Cmax after the administration of Flumix, based on a larger VD in the older calves. The Cmax decreased from 5.02 +/- 1.46 micrograms/ml in the first week to 3.28 +/- 0.42 micrograms/ml in the 18th week. Adding colistin sulfate to the flumequine formulation and administring pure flumequine mixed with milk replacer had a negative effect on the Cmax of flumequine after oral administration of 5 and 10 mg/kg body weight. The bioavailability of the orally administered flumequine formulations was 100% in all cases except after the administration of Flumix C, for which it was 75.9 +/- 18.2%. The urinary recovery of flumequine after intravenous injection of a 10% solution varied from 35.2 +/- 2.3% for Group B, to 41.2 +/- 6.3% for Group C. The dosage of 5 mg/kg body weight Flumix twice daily in 1-week-old veal calves is sufficient to reach therapeutic plasma concentrations, based on a MIC value of 0.8 micrograms/ml of the target bacteria. In older calves it is advisable to increase the dosage 7.5 or 10 mg/kg body weight every 12 hours. In combination with colistin sulfate it is also advisable to increase the dosage slightly because of the negative effect of the colistin sulfate on the Cmax of flumequine.  相似文献   

18.
The pharmacokinetics of amikacin (AMK) were investigated after intravenous (i.v.) and intramuscular (i.m.) administration of 7.5 mg/kg bw in 6 healthy lactating sheep. After i.v. AMK injection (as a bolus), the elimination half-life (t1/2beta), the volume of distribution (Vd,area), the total body clearance (ClB) and the area under the concentration-time curve (AUC) were 1.64 +/- 0.06 h, 0.19 +/- 0.02 L/kg, 1.36 +/- 0.1 ml/min per kg and 94.09 +/- 6.95 (microg.h)/ml, respectively. The maximum milk concentration of AMK (Cmax), the area under the milk concentration-time curve (AUCmilk) and the ratio AUCmilk/AUCserum were 1.18 +/- 0.22 microg/ml, 22.45 +/- 3.21 (micro.h)/ml and 0.24 +/- 0.02, respectively. After i.m. administration of AMK the t1/2beta, Cmax, time of Cmax (tmax) and absolute bioavailability (Fabs) were 1.29 +/- 0.1 h, 16.97 +/- 1.54 microg/ml, 1.0 +/- 0 h and 64.88% +/- 6.16%, respectively. The Cmax, AUCmilk and the ratio AUCmilk/AUCserum were 0.33 microg/ml, 1.67 (microg.h)/ml and 0.036, respectively.  相似文献   

19.
The gastrointestinal (GI) distribution and plasma disposition kinetics of alberidazole (ABZ) metabolites after oral administration of netobirnin (NTB) to cattle were studied. Eight Holstein steers (150–180 kg) were surgically fitted with permanent cannulae in the rumen, abomasum and ileum. After post-surgical recovery, the ariinials were treated orally with a suspension of neto1)imin zwitterion (400 mg/ml) at 20 nig/kg. Jugular blood and ruminal, abomasal arid ileal fluid samples were taken serially over a 96 h period and analysed by HPLC for NTB and its metabolites, including ABZ, ABZ sulphoxide (ABZSO), AH% sulphone (ABZSO?) and amino-albendazole sulphone (NHp4BZSOy). N T B parent drug was only fonnd in the G I tract and for only 12–18 h post-treatment. ABZSO and ABZSOp were the main metabolites found in plasma, being present for 30–36 h. These metabolites were exchanged between plasma and different GI fluids and were greatly concentrated in the abomasum. This phenornenori may account for the presence of ABZ, ABZSO and ABZSO? in the GI tract f'or 72 h post-treatment despite the fact that ABZ was riot detected in plasma and ABZSO and ABZSO.;, were detected for only 30–36 h in plasma. The presence o f ABZ and ABZSO in the abomasum and intestine for this extended period of time is probably relevant for anthelmintic efficacy against GI parasites. The NH2 ABZSO2 metabolite was detected in plasma, abomasum and ileum and its disposition kinetics were characterized for the first time.  相似文献   

20.
Pharmacokinetics and renal clearance of ampicillin were investigated in 13 sheep, following one single oral dose of 750 mg. A peak concentration in plasma 0.38 +/- 0.04 microgram/ml (mean +/- SEM) was achieved 95.3 +/- 5.95 min after drug administration. Absorption half-life was 44.4 +/- 4.4 min. The area under the plasma concentration curve was 94.6 +/- 4.5 micrograms.hour.ml-1, while in the case of urine it was 370.5 +/- 28.3 micrograms.hour.ml-1. Biological half-life of ampicillin was 110 +/- 3 min, with an elimination rate constant of 0.0064 +/- 0.0002 min-1. The values for volume of distribution and total body clearance were 8.2 +/- 0.71/kg or 52.0 +/- 4.2 ml/kg/min, respectively. The priming and maintenance doses, using MIC as 0.05 microgram/ml, were suggested to be 8.8 or 8.4 mg/kg, respectively, at an 8-h interval. For MIC of 0.5 microgram/ml, this dose should be 10 times higher. Renal clearance of ampicillin seemed to involve active tubular secretion. Renal excretion indicated either extensive metabolism or excretion through routes other than kidneys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号