首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal-to-human interspecies transmission is one of the evolutionary mechanisms driving rotavirus strain diversity in humans. Although quite a few studies emanating from Africa revealed evidence of bovine-to-human rotavirus interspecies transmission, whole genome data of African bovine rotavirus strains are not yet available. To gain insight into the complete genome constellation of African bovine rotaviruses, the full genomes of three bovine rotavirus strains were extracted from stool samples collected from calves, amplified using a sequence-independent procedure, followed by 454(?) pyrosequencing. Strains RVA/Cow-wt/ZAF/1603/2007/G6P[5] and RVA/Cow-wt/ZAF/1605/2007/G6P[5] were both genotyped as G6-P[5]-I2-R2-C2-M2-A3-N2-T6-E2-H3 and were probably two variants of the same rotavirus due to their close nucleotide sequence similarity. The genotype constellation of strain RVA/Cow-wt/ZAF/1604/2007/G8P[1] was G8-P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The genetic relationships and phylogenetic analyses suggested that these three bovine rotavirus strains may have emerged through multiple reassortment events between bovine, giraffe and antelope rotaviruses. Due to the close relatedness of genome segments 1 (encoding VP1), 7 (NSP2), 9 (VP7) and 10 (NSP4) of strain RVA/Cow-wt/ZAF/1604/2007/G8P[1] to those of the corresponding segments of human rotaviruses, RVA strain 1604 may represent bovine strains that were transmitted to humans and possibly reassorted with human rotaviruses previously. The complete nucleotide sequences of the bovine rotavirus strains reported in this study represent the first whole genome data of bovine rotaviruses from Africa.  相似文献   

2.
Several epidemiological studies reported the detection of rotavirus strains bearing unusual combinations of genetic background of human and porcine rotaviruses. This observation supports the hypothesis of interspecies transmission of rotaviruses in humans and pigs. The aims of this study were to investigate the genotypes and molecular characteristics of rotaviruses in piglets with diarrhea in several farms from two provinces in Thailand. A total of 207 fecal specimens collected from diarrheic piglets were screened for the presence of groups A, B, and C rotaviruses. Group A rotaviruses were detected in 41 out of 207 (19.8%) fecal specimens tested. A wide variety of G-P combination rotavirus strains were detected in this study. The G4P[6] was identified as the most prevalent genotype (39.0%), followed by G4P[23] (12.2%), G3P[23] (7.3%), G4P[19] (7.3%), G3P[6] (4.9%), G3P[13] (4.9%), G3P[19] (4.9%), G9P[13] (4.9%), G9P[19] (4.9%), G5P[6], and G5P[13] each of 2.4%. Furthermore, G5 and G9 in combinations with P-nontypeable strains were also found at each consisting of 2.4% (n = 1) of the collection. It was interesting to note that among diversified porcine rotavirus strains, novel combinations of G4P[19] and G9P[19] strains were detected for the first time in this study. Nucleotide sequences of VP4 and VP7 of these strains were closely related to human rotaviruses reported previously. The data implies that these porcine rotaviruses were probably generated in nature from the reassortment between the viruses of human and porcine origin. This study provides valuable epidemiological information and molecular characteristics of porcine rotaviruses circulating in piglets with diarrhea in northern Thailand.  相似文献   

3.
Group A rotaviruses can infect both humans and animals. Individual rotavirus strains can occasionally cross species barriers and might hereby contribute to the emergence of new genotypes in heterologous hosts. The incidence and impact of zoonotic rotavirus are not well defined, and one reason for this is a lack of data about strains circulating in suspected reservoir animal hosts. In this study we report the incidence, genetic diversity, and molecular epidemiology of rotaviruses detected in domestic cattle and swine in 6 European countries. From 2003 to 2007, 1101 and more than 2000 faecal specimens were collected from swine and cattle, both healthy and diarrhoeic, and tested for rotaviruses. Viruses from positive stools were genotyped and a subset of strains was characterized by nucleotide sequencing and phylogenetic analysis of the VP7 (G) and VP4 (P) genes. Rotaviruses were detected in 43% of bovine samples and in 14% of porcine samples. In cattle, 10 different combinations of G and P types were identified and the most common strains were G6P[11] and G6P[5]. In swine, the number of identified G-P combinations was higher (n=21), however, no single combination was predominant across Europe. Newly described genotype specificities, P[27] and P[32], were identified in swine. When compared at the nucleotide sequence level, the identified porcine rotavirus strains and contemporary human strains grouped together phylogenetically, whereas bovine rotavirus strains formed separate clades. These data demonstrate large genetic diversity of porcine and bovine rotavirus strains across Europe, and suggest that livestock herds may serve as potential reservoirs for human infections.  相似文献   

4.
5.
Isolation and molecular characterisation of equine rotaviruses from Germany   总被引:2,自引:0,他引:2  
A total of 26 rotavirus positive faecal samples of diarrhoeal foals, and 8 equine rotavirus isolates were examined. Viral RNA patterns were generated, G typing was performed by PCR, and a P[12]-specific DNA probe was developed for P typing. Furthermore, five equine rotavirus isolates were sequenced in the genomic regions coding for VP7 and part of VP4. Rotaviruses of genotype G3 P[12] were found in 22 faecal samples and G14 P[12] type could be found in 4 faecal samples. These findings confirm that in Germany G3 P[12] is the predominating type of equine rotaviruses.  相似文献   

6.
7.
An epidemiological survey was carried out to investigate the distribution of the VP7 and VP4 specificities of lapine rotaviruses (LRVs) in rabbitries from different geographical regions of Italy. Almost all the strains were characterized as P[22],G3, confirming the presence of the newly-recognized rotavirus P[22] VP4 allele in Italian rabbits. Only one P[14],G3 LRV strain was identified and two samples contained a mixed (P[14] + [22],G3) rotavirus infection. All the LRV strains analyzed exhibited a genogroup I VP6 specificity and a long dsRNA electropherotype. However, one of the P[14],G3 strains possessed a super-short pattern. Altogether, these data highlight the epidemiological relevance of the P[22] LRVs in Italian rabbitries.  相似文献   

8.
Group A rotaviruses with G2 and G9 VP7 specificity are common in humans, while G11 strains have been detected only sporadically. G2, G9 and G11 rotaviruses also circulate in pigs and swine rotaviruses have been suspected of interspecies and zoonotic transmissions in numerous studies. However, the complete gene constellation of G2 and G9 porcine rotaviruses has not yet been determined. In order to start filling this gap, the genomic make up of two G2, one G9 and one G11 porcine rotavirus strains, detected in Canada in 2005–2007, was determined. With the exception of a G2P[34] strain, with E9 NSP4 type and mixed I5 + I14 VP6 type, the constellation of genomic segments was rather conserved and were closely related to prototype porcine strains in the four viruses characterized (I5-R1-C1-M1-A8-N1-T7-E1-H1). Most notably, all the viruses displayed a rare NSP3 genotype, T7, which has also been identified in rare human reassortant strains and in the reference strain RVA/Cow-tc/GBR/UK/1973/G6P[5]. This study provides crucial genetic data on these complex viruses and will help understand the origin and ecological niche of gene segments and the role played by pigs in their evolution.  相似文献   

9.
Reports of rotavirus excretion in calves usually result from cross-sectional studies, and in face of the conflicting results regarding protection of calves born to vaccinated dams against diarrhea, the aim of the present study was to evaluate rotavirus excretion in dairy calves born to vaccinated or unvaccinated dams, to identify the genotypes of bovine rotavirus group A (RVA) strains isolated from these animals as well as to investigate characteristics of the disease in naturally occurring circumstances throughout the first month of life. Five hundred fifty-two fecal samples were taken from 56 calves, 28 from each farm and, in the vaccinated herd, 11/281 samples (3.91%) taken from six different calves tested positive for RVA while in the unvaccinated herd, 3/271 samples (1.11%) taken from 3 different calves tested positive. The genotyping of the VP7 genes showed 91.2% nucleotide sequence identity to G6 genotype (NCDV strain), and for the VP4 gene, strains from the vaccinated herd were 96.6% related to B223 strain, while strains from the unvaccinated herd were 88% related to P[5] genotype (UK strain). Genotypes found in this study were G6P[11] in the vaccinated herd and G6P[5] in the unvaccinated herd. All calves infected with rotavirus presented an episode of diarrhea in the first month of life, and the discrepancy between the genotypes found in the commercial vaccine (G6P[1] and G10P[11]) and the rotavirus strains circulating in both vaccinated and unvaccinated herds show the importance of keeping constant surveillance in order to avoid potential causes of vaccination failure.  相似文献   

10.
S Y Kang  L J Saif 《Avian diseases》1991,35(3):563-571
Fifteen monoclonal antibodies (MAbs) against an avian group A rotavirus were cloned and characterized. Eight of the 15 MAbs had neutralizing activity (N-MAbs). Five of the N-MAbs (1G1, 5B8, 4E2, 3G1, 2E3) were VP4-specific by radioimmunoprecipitation assay (RIPA), and two N-MAbs (2D11, 6E8) were possibly VP7-specific (faint bands by RIPA). One N-MAb (4H12) of undefined protein specificity cross-reacted with serotype 3 simian rotaviruses. The other seven N-MAbs did not cross-react with any of the eight distinct serotypes of human and mammalian rotaviruses tested. Of the seven non-neutralizing MAbs, three were VP6-specific (3H10, 4B12, 5F6), two were VP8-specific (6C9, 1D1), one was VP4-specific (4E9), and one was of undefined protein specificity (1B11). Four non-neutralizing MAbs recognized only avian group A rotavirus in cell-culture immunofluorescence tests (6C9, 1D1, 4E9 and 5F6), whereas two MAbs (3H10 and 4B12) cross-reacted with all human and animal rotaviruses tested. The MAb 1B11 did not recognize any human rotavirus serotypes but cross-reacted with all nonhuman animal rotavirus serotypes. The MAbs produced in this study should be useful for the detection and further characterization of avian group A rotaviruses.  相似文献   

11.
This study investigated the occurrence of rotavirus infections in ostriches (Struthio camelus) reared in Northern Paraná, Brazil. Fecal (n=66) and serum (n=182) samples from nine farms located in four different cities were analyzed by silver stained-polyacrylamide gel electrophoresis (ss-PAGE), RT-PCR assay, virus isolation, and counterimmunoelectroosmophoresis (CIE). Rotavirus group A seropositivity occurred in 5.49% (10/182) of serum samples of ostriches originated from two farms. Only 9.09% (6/66) of fecal samples from ostriches with diarrhea maintained in one farm were positive by ss-PAGE, RT-PCR, and virus isolation. The G (VP7) and P (VP4) genotypes of rotavirus wild strains isolated in cell culture were determined by multiplex-nested PCR. The genotyping identified two rotavirus strains: G6P[1] and G10P[1]. In three rotavirus strains it was only possible to identify the P type; one strain being P[1] and two strains that presented the combination of P[1]+P[7]. These findings might represent the first characterization of rotavirus in ostriches, and the finding of porcine and bovine-like rotavirus genotypes in ostriches might suggest virus reassortment and possible interspecies transmission.  相似文献   

12.
Group A rotavirus (RV-A) with short electropherotype was identified by ss-PAGE in a neonatal diarrhea outbreak at a Brazilian pig farm where the sows were regularly vaccinated with a commercial vaccine containing OSU (G5P[7]) and Gottfried (G4P[6]) porcine RV-A (PoRV-A) strains. The ss-PAGE positive stool samples (n=20) were characterized as P[6] genotype by multiplex-nested-RT-PCR assay. The nucleotide analysis of the VP4 gene (VP8*) state that the viruses clustered in P[6] lineages that are also shared by RV-A strains identified in human hosts. Nucleotide analysis of the VP7 gene identified different lineages in G4 including a new lineage tentatively designated IX. The immunological pressure induced by commercial vaccine with a rotavirus containing a G4P[6] genotype of porcine origin (Gottfried strain) might have allowed the selection of PoRV-A strains with characteristics found in RV-A strains isolated of human hosts, such as P[6]-Ie and If, and promoted the selection or emergence of RV-A strains with a new lineage of the G4 genotype. The characterization of PoRV-A strains with unusual genotypes described in this study highlight the importance of surveys on the relationship between human and animal rotavirus strains.  相似文献   

13.
Physical, chemical, and serological characterization of rotavirus isolates from turkeys was done. Cesium chloride (CsCl)-gradient isopycnic centrifugation of infected cell cultures revealed the presence of rotavirus particles of three different densities. They were double-shelled, single-shelled, and core particles. The double-shelled particles had a buoyant density (in CsCl) of 1.34 g/cml3, and that of single-shelled particles in CsCl was 1.36 g/cm3. The buoyant density of core particles in CsCl was greater than 1.40 g/cm3. These rotavirus isolates were not inactivated by chloroform and were relatively stable at pH 3.0. Their replication was not affected by 5-bromo-2'-deoxyuridine. Avian rotaviruses were not completely inactivated by heat treatment of 56 C for 8 hr. All six avian rotavirus isolates examined were antigenically related to each other. However, there was no antigenic relationship between mammalian rotaviruses and the avian rotavirus isolates examined.  相似文献   

14.
Certain plant extracts are bioactive substances of some foods or traditional herbs, known to possess antioxidant, antibacterial, and perhaps immunoregulatory effects. This study investigated the in vitro anti-inflammatory effects of 7 plant extracts (anethol, capsicum oleoresin, carvacrol, cinnamaldehyde, eugenol, garlicon, and turmeric oleoresin) on porcine alveolar macrophages collected from weaned pigs (n = 6 donor pigs) by bronchoalveolar lavage. The experimental design for this assay was a 2 [with or without 1 μg lipopolysaccharide (LPS)/mL] × 5 (5 different amounts of each plant extract) factorial arrangements in a randomized complete block design. The application of plant extracts were 0, 25, 50, 100, and 200 μg/mL, except for cinnamaldehyde and turmeric oleoresin, which were 0, 2.5, 5, 10, and 20 μg/mL. The 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay was used to determine the number of live cells, Griess assay was applied to detect nitric oxide (NO) production, and ELISA was used to measure tumor necrosis factor-α (TNF-α), IL-1β, transforming growth factor-β (TGF-β), and IL-10 in the cell culture supernatants of macrophages. The LPS increased (P < 0.001) the secretion of TNF-α, IL-1β, and TGF-β. Without LPS, anethol and capsicum oleoresin increased (linear, P < 0.001) cell viability of macrophages, whereas other plant extracts reduced (linear, P < 0.001) it. Anethol, capsicum oleoresin, and carvacrol enhanced (linear, P < 0.001) the cell proliferation of LPS-treated macrophages. Without LPS, anethol, capsicum oleoresin, cinnamaldehyde, or turmeric oleoresin stimulated TNF-α secretion, whereas all plant extracts except eugenol enhanced IL-1β concentration in the supernatants of macrophages. However, all plant extracts suppressed (linear, P < 0.001) TNF-α, and all plant extracts except turmeric oleoresin decreased (linear, P < 0.05) IL-1β secretion from LPS-treated macrophages. Anethol and capsicum oleoresin decreased (linear, P < 0.001) TGF-β from macrophages in the absence of LPS, but the other plant extracts increased it. Anethol, capsicum oleoresin, and carvacrol also suppressed (linear, P < 0.001) TGF-β from macrophages with LPS stimulation; the other plant extracts enhanced or did not affect it. The anti-inflammatory cytokine, IL-10, was not detected in any supernatants. Only very low amounts of NO were detected in the supernatants of macrophages. In conclusion, the TNF-α results indicate all plant extracts tested here may have anti-inflammatory effects to varying degrees.  相似文献   

15.
The aim of this retrospective study was to use RT-PCR and nucleotide sequencing analysis to determine the G (VP7 gene) and P (VP4 gene) genotypes of 155 Brazilian bovine rotavirus A (RVA) wild-type strains detected in diarrheic calves from all Brazilian geographical regions from 2006 to 2015. The RVA strains evaluated belonged to the G6, G10, P[5], and P[11] genotypes. The G6P[5] genotype was prevalent (65.5%; P < 0.05) in beef, and the G10P[11] (38.4%) and G6P[11] (30.8%) genotypes were more prevalent in dairy cattle herds. The Midwest was the region with the highest number of genotyped RVA strains, where the genotypes G6, P[5], and P[11] were identified. Genotype combination G6-IV/P[5]-IX, prevalent in beef herds, and G6-III/P[11]-III or G10-IV/P[11]-III, prevalent in dairy herds, were detected. In addition, for the first time in Brazil, we detected the P[5] and P[11] genotype RVA strains that belong to lineage II and VII, respectively.  相似文献   

16.
17.
Bovine rotavirus (BRV) has been detected in both dairy and beef cattle herds worldwide. Stool samples collected from calves in the Gippsland region of Victoria, Australia were screened to determine the presence of BRV. A total of 100 faecal samples were collected from calves with and without diarrhoea across three farms during 2004 and 2005. Group A BRV was detected in 26% of faecal samples (22 from diarrheic calves and four from asymptomatic calves). Genotyping analysis of rotavirus positive samples indicated that G6P[5] was the most prevalent genotype (38.5%) followed by G6P[5 + 11] (15.4%). G10P[11] and G6 + G10P[5] were each detected at a rate of 7.7%, and G6 + G10P[11] was found in a single sample (3.8%). Seven samples (26.9%) could not be G and/or P typed. Thirty percent of the BRV positive samples were mixed infections, indicating that individual calves were co-infected with more than one strain of rotavirus. The G6P[5] strains exhibited high VP7 identity (>97% amino acid identity) with B-60, a G6 strain identified in Victorian calves during 1988. A G10P[11] isolate was closely related (>97% amino acid identity in VP7 and VP4 proteins) to a Victorian G10P[11] strain (B-11) also identified during 1988. This study demonstrates that BRV is a contributing pathogen to diarrhoeal disease in Victorian calves, with sequence analysis suggesting long-term conservation of the VP7 protein over a 16-year period.  相似文献   

18.
Group A bovine rotavirus (BRV) is one of the main causes of neonatal calf diarrhea. The present study reports the incidence of rotavirus diarrhea and the genotypes of BRV strains circulating in beef and dairy herds from Argentina, during a 10-year period (1994-2003). Group A BRV was detected in 62.5% (250/400) of the total studied cases of diarrhea. Positive cases were analyzed by heminested multiplex RT-PCR for P and G genotypes identification. Sixty percent of them were typed as P[5]G6, 4.4% P[11]G10, 4.4% P[11]G6 and 2.4% P[5]G10. Additionally, 9.2% of the cases were initially typed as G8 combined with P[5] or P[11], but sequence analysis revealed they belonged to genotype G6, lineage Hun4-like. Partial typing was assessed in 12.0% of the cases. One of the partially typed samples was closely related to genotype G15. BRV was detected in 71% and 58% of the outbreaks registered in beef and dairy farms, respectively. A clear differential distribution of G/P types was found according to the herd type. P[5]G6 was the prevalent strain in beef herds, while P[11] was the prevalent P-type in dairy herds (71%), associated in similar proportions with G6 and G10, These findings indicate that BRV genotypes included in the current commercially available rotavirus vaccines (G6, G10, P[5] and P[11]) should protect calves from most Argentinean field strains. Nevertheless, continuous surveillance is necessary to detect the emergence of new variants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号