首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT We have characterized strains of Fusarium oxysporum from common bean fields in Spain that were nonpathogenic on common bean, as well as F. oxysporum strains (F. oxysporum f. sp. phaseoli) pathogenic to common bean by random amplified polymorphic DNA (RAPD) analysis. We identified a RAPD marker (RAPD 4.12) specific for the highly virulent pathogenic strains of the seven races of F. oxysporum f. sp. phaseoli. Sequence analysis of RAPD 4.12 allowed the design of oligonucleotides that amplify a 609-bp sequence characterized amplified region (SCAR) marker (SCAR-B310A280). Under controlled environmental and greenhouse conditions, detection of the pathogen by polymerase chain reaction was 100% successful in root samples of infected but still symptomless plants and in stem samples of plants with disease severity of >/=4 in the Centro Internacional de Agricultura Tropical (CIAT; Cali, Colombia) scale. The diagnostic procedure can be completed in 5 h and allows the detection of all known races of the pathogen in plant samples at early stages of the disease with no visible symptoms.  相似文献   

2.
Virulence (≡ severity of disease) and physiological specialization of nine isolates of Fusarium oxysporum f. sp. phaseoli recovered in El Barco de Avila (Castilla y León, west-central Spain) and of two isolates from Chryssoupolis (Greece) were determined. The susceptibility/resistance response showed by a differential set of common bean cultivars ( Phaseolus vulgaris ) selected at the Centro Internacional de Agricultura Tropical (CIAT) delineated the isolates into two new races: races 6 and 7. The results of pathogenicity tests did not show any significant differences in virulence among the isolates. However, the reactions of several Spanish common bean cultivars indicated the presence of two groups of isolates, highly virulent and weakly virulent, among the Spanish isolates analysed. These results indicate that isolates classified in the same race are not homogeneous with respect to virulence, and suggests that race analysis using the CIAT differential cultivars is insufficient to describe the physiological specialization of F. oxysporum f. sp. phaseoli .  相似文献   

3.
常熟地区蚕豆枯萎病病原菌鉴定及其致病力初探   总被引:2,自引:0,他引:2  
2000、2001年在江苏省常熟地区采集了有典型枯萎症状的蚕豆标样各50个,获94个镰刀菌单孢菌株。经鉴定分别属于尖孢镰孢(Fusarium axysporum)、燕麦镰孢(F.avenaceum)、串珠镰孢(F.moniliforme )、木贼镰孢(F.equiseti)、三线镰孢(F.tricinctum)、禾谷镰孢(F.graminearum)和茄镰孢(F.solani),其中尖孢镰孢、燕麦镰孢、串珠镰孢、木贼镰孢为该地区蚕豆镰刀菌枯萎病的主要病原菌。测定了48个镰刀菌菌株对蚕豆的致病力,尖孢镰孢、木贼镰孢、串珠镰孢和燕麦镰孢对蚕豆的致病力都较强。用蚕豆枯萎病菌和棉花枯萎病菌交叉接种棉花和蚕豆,结果表明两者存在着较强的交互侵染能力。  相似文献   

4.
Fifty strains of Fusarium oxysporum, recovered from rhizosphere soil around native Gossypium species and found to be mildly virulent on cotton (Gossypium hirsutum), were used to assay the propensity for evolution of virulence using serial passage assays through cotton. Only one lineage A strain, 2613, successfully completed 10 successive passages, while all others lost the ability to cause foliar disease symptoms at various stages during this process. Based on 46 amplified fragment length polymorphism (AFLP) markers generated with four EcoRI x MseI primer combinations, mutants were identified in offspring isolates from strain 2613 regardless of whether serial passages occurred in cotton or on water agar, suggesting the occurrence of spontaneous mutations. Significantly increased virulence was observed in the offspring isolates generated on cotton, while no increasing virulence was found in those obtained on water agar, suggesting that the evolution of virulence in F. oxysporum f. sp. vasinfectum is associated with the presence of cotton. No clear correlation was observed between the AFLP mutations and increased virulence in this study.  相似文献   

5.
香蕉枯萎病菌RAPD分析及4号生理小种的快速检测   总被引:3,自引:0,他引:3  
 用随机扩增多态性DNA(RAPD)技术,对采自广东、广西的香蕉和粉蕉上的30个香蕉枯萎病菌(Fusarium oxysporum f.sp.cubense)菌株和3个其它尖孢镰刀菌专化型的菌株进行比较及聚类分析。在遗传相似系数0.67时,可将供试菌株划分为3个RAPD群(RGs),其中香蕉枯萎病菌4号生理小种(FOC4)共15个菌株属于RGⅠ,1号生理小种(FOC1)共15个菌株属于RGⅡ,供试的其它尖孢镰刀菌专化型的3个菌株则属于RGⅢ。这说明香蕉枯萎病菌和供试3个其它专化型菌株与致病性间存在明显的相关性。1号生理小种内菌株间的遗传分化大于4号生理小种内菌株间的遗传分化。从90条RAPD随机引物中筛选出2条引物可产生4号生理小种的RAPD标记2个。将这2个RAPD标记电泳切胶回收、克隆及测序,并根据这2个特异片段序列设计SCAR上下游特异引物,通过对30个菌株的PCR扩增检验,其中一个RAPD标记成功地转化为SCAR标记,初步建立了以此为基础的4号生理小种快速检测技术,其检测灵敏度为2 ng新鲜菌丝。对采自不同地区的显症样品、吸芽、室内接种未显症的香蕉苗以及发病的香蕉植株不同部位进行检测,能够准确灵敏地鉴定出4号生理小种,从而为香蕉枯萎病菌的快速检测及防治奠定了基础。同时,快速检测结果发现,田间发病植株果柄的各部位及果实内并没有枯萎病菌的存在。  相似文献   

6.
ABSTRACT Fusarium species can cause severe root disease and damping-off in conifer nurseries. Fusarium inoculum is commonly found in most container and bareroot nurseries on healthy and diseased seedlings, in nursery soils, and on conifer seeds. Isolates of Fusarium spp. can differ in virulence; however, virulence and colony morphology are not correlated. Forty-one isolates of Fusarium spp., morphologically indistinguishable from F. oxysporum, were collected from nursery samples (soils, healthy seedlings, and diseased seedlings). These isolates were characterized by amplified fragment length polymorphism (AFLP) and DNA sequencing of nuclear rDNA (internal transcribed spacer including 5.8S rDNA), mitochon-drial rDNA (small subunit [mtSSU]), and nuclear translation elongation factor 1-alpha. Each isolate had a unique AFLP phenotype. Out of 121 loci, 111 (92%) were polymorphic; 30 alleles were unique to only highly virulent isolates and 33 alleles were unique to only isolates nonpathogenic on conifers. Maximum parsimony and Bayesian analyses of DNA sequences from all three regions and the combined data set showed that all highly virulent isolates clearly separated into a common clade that contained F. commune, which was recently distinguished from its sister taxon, F. oxysporum. Interestingly, all but one of the nonpathogenic isolates grouped into a common clade and were genetically similar to F. oxysporum. The AFLP cladograms had similar topologies when compared with the DNA-based phylograms. Although all tested isolates were morphologically indistinguishable from F. oxysporum based on currently available monographs, some morphological traits can be plastic and unreliable for identification of Fusarium spp. We consider the highly virulent isolates to be F. commune based on strong genetic evidence. To our knowledge, this is the first reported evidence that shows F. commune is a cause of Fusarium disease (root rot and dampingoff) on Douglas-fir seedlings. Furthermore, several AFLP genetic markers and mtSSU sequences offer potential for development of molecular markers that could be used to detect and distinguish isolates of F. oxysporum nonpathogenic to conifers and highly virulent isolates of F. commune in forest nurseries.  相似文献   

7.
Katan T  Shlevin E  Katan J 《Phytopathology》1997,87(7):712-719
ABSTRACT Plants exhibiting symptoms of wilt and xylem discoloration typical of Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici were observed in greenhouses of cherry tomatoes at various sites in Israel. However, the lower stems of some of these plants were covered with a pink layer of macroconidia of F. oxysporum. This sign resembles the sporulating layer on stems of tomato plants infected with F. oxysporum f. sp. radicis-lycopersici, which causes the crown and root rot disease. Monoconidial isolates of F. oxysporum from diseased plants were assigned to vegetative compatibility group 0030 of F. oxysporum f. sp. lycopersici and identified as belonging to race 1 of F. oxysporum f. sp. lycopersici. The possibility of coinfection with F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici was excluded by testing several macroconidia from each plant. Airborne propagules of F. oxysporum f. sp. lycopersici were trapped on selective medium in greenhouses in which plants with a sporulating layer had been growing. Sporulation on stems was reproduced by inoculating tomato plants with races 1 and 2 of F. oxysporum f. sp. lycopersici. This phenomenon has not been reported previously with F. oxysporum f. sp. lycopersici and might be connected to specific environmental conditions, e.g., high humidity. The sporulation of F. oxysporum f. sp. lycopersici on plant stems and the resultant aerial dissemination of macroconidia may have serious epidemiological consequences. Sanitation of the greenhouse structure, as part of a holistic disease management approach, is necessary to ensure effective disease control.  相似文献   

8.
Perchepied L  Pitrat M 《Phytopathology》2004,94(12):1331-1336
ABSTRACT Fusarium oxysporum f. sp. melonis is responsible for Fusarium wilt of melon. Race 1.2 strains overcome two dominant resistance genes (Fom-1 and Fom-2) and are further divided into two types depending on the symptoms they cause, yellowing or wilting. Partial resistance to F. oxysporum f. sp. melonis race 1.2 was studied by using a recombinant inbred line (RIL) population that was developed by single seed descent from an F(1) hybrid between 'Isabelle', a partially resistant line, and a susceptible line, 'Védrantais'. Artificial inoculations were performed with a yellowing strain (TST) and a wilting strain (D'Oléon 8) and replicated in six locations. Disease reactions of the parental lines, controls, and RILs were scored using a 1-to-5 scale and by using the area under the disease progress curve (AUDPC). Phenotypic correlations were highly significant between the different locations and experiments. The heritability of the resistance was high, from 0.72 to 0.96, and 4 to 14 genetic factors were estimated to confer resistance to F. oxysporum f. sp. melonis race 1.2. Thirteen other strains were tested with an RILs subset. Some small strainspecific effects may be involved. These results contribute to a better understanding of the polygenic inheritance of the partial resistance to F. oxysporum f. sp. melonis race 1.2.  相似文献   

9.
为建立甘蓝枯萎病菌(Fusarium oxysporumf.sp.conglutinans)转化子致病力评价方法,从接种方法、甘蓝品种、苗龄、病原菌接种体浓度等几方面探索,建立了一种评价甘蓝枯萎病菌转化子致病力差异的体系。结果表明:蘸根法和伤根法均适于甘蓝枯萎病菌转化子致病力的评价,其中伤根法更优;其他适合甘蓝枯萎病菌转化子致病力评价的因素有:甘蓝品种为‘中甘21’,苗龄为三叶期,甘蓝枯萎病菌孢子悬浮液浓度为孢子含量1×106个/mL。该致病力评价方法的建立为甘蓝枯萎病菌转化子致病力衰弱或增强突变体的筛选提供了方法支持,也为下一步尖孢镰刀菌致病机理的解析奠定了基础。  相似文献   

10.
Pathogenic isolates were selected representing all known vegetative compatibility groups (VCGs) and races of Fusarium oxysporum sensu lato from Dianthus spp. On basis of differences in the internal transcribed spacer region of the ribosomal DNA, six VCGs were classified as F. oxysporum f.sp. dianthi and four as F. redolens f.sp. dianthi. All VCGs of F. oxysporum f.sp. dianthi were characterized by unique restriction fragment length polymorphisms (RFLPs), unique overall esterase profiles, and unique virulence spectra, supporting a clonal lineage concept. Two VCGs of F. oxysporum f.sp. dianthi nevertheless comprised more than one race, but races within the same VCG shared the same distinct overall virulence spectrum. VCGs belonging to F. redolens f.sp. dianthi also had unique RFLPs and unique virulence spectra, but had grossly identical esterase profiles. Three new races (9, 10 and 11) are described for F. oxysporum f.sp. dianthi, and four for F. redolens f.sp. dianthi. Two races previously considered lost were recovered; race 7 was identified as a member of VCG 0021 of F. oxysporum f.sp. dianthi while race 3 was identified as a distinct VCG and race of F. redolens f.sp. dianthi. A summary of races and VCGs in F. oxysporum f.sp. dianthi and F. redolens f.sp. dianthi is presented.  相似文献   

11.
ABSTRACT Specific primers and polymerase chain reaction (PCR) assays that identify Fusarium oxysporum f. sp. ciceris and each of the F. oxysporum f. sp. ciceris pathogenic races 0, 1A, 5, and 6 were developed. F. oxysporum f. sp. ciceris- and race-specific random amplified polymorphic DNA (RAPD) markers identified in a previous study were cloned and sequenced, and sequence characterized amplified region (SCAR) primers for specific PCR were developed. Each cloned RAPD marker was characterized by Southern hybridization analysis of Eco RI-digested genomic DNA of a subset of F. oxysporum f. sp. ciceris and nonpathogenic F. oxysporum isolates. All except two cloned RAPD markers consisted of DNA sequences that were found highly repetitive in the genome of all F. oxysporum f. sp. ciceris races. F. oxysporum f. sp. ciceris isolates representing eight reported races from a wide geographic range, nonpathogenic F. oxysporum isolates, isolates of F. oxysporum f. spp. lycopersici, melonis, niveum, phaseoli, and pisi, and isolates of 47 different Fusarium spp. were tested using the SCAR markers developed. The specific primer pairs amplified a single 1,503-bp product from all F. oxysporum f. sp. ciceris isolates; and single 900- and 1,000-bp products were selectively amplified from race 0 and race 6 isolates, respectively. The specificity of these amplifications was confirmed by hybridization analysis of the PCR products. A race 5-specific identification assay was developed using a touchdown-PCR procedure. A joint use of race 0- and race 6-specific SCAR primers in a single-PCR reaction together with a PCR assay using the race 6-specific primer pair correctly identified race 1A isolates for which no RAPD marker had been found previously. All the PCR assays described herein detected up to 0.1 ng of fungal genomic DNA. The specific SCAR primers and PCR assays developed in this study clearly identify and differentiate isolates of F. oxysporum f. sp. ciceris and of each of its pathogenic races 0, 1A, 5, and 6.  相似文献   

12.
ABSTRACT Two nonpathogenic mutant strains 4/4 and 15/15 of Fusarium oxysporum f. sp. melonis (race 1,2) were isolated by a continuous dipinoculation technique following UV mutagenesis of the virulent wild-type isolate FOM1.2. No disease symptoms or detrimental effects were observed following inoculation of muskmelon seedlings by strain 4/4. In contrast, strain 15/15 caused mortality of susceptible cultivars although to a lesser extent than the wild-type isolate. Strain 4/4 colonized a variety of muskmelon and watermelon cultivars. In muskmelon cv. Ein Dor, seedlings were dipped in a conidial suspension of strain 4/4 and planted in medium amended with the mutant to achieve 100% colonization of roots and between 30 to 70% of the lower stem tissues 7 days after planting. Similar percent colonization of watermelon seedlings by strain 4/4 was recorded. In cross-protection experiments with muskmelon cultivars, significant reduction in seedling mortality was observed between 4/4-colonized FOM1.2. challenged plants compared with that of wild-type challenged plants alone. Similarly, strain 4/4 was able to significantly reduce mortality of watermelon seedlings caused by F. oxysporum f. sp. niveum race 2. This novel approach of generating nonpathogenic mutants for biological control in Fusarium spp. and other fungal pathogens from virulent wild-type isolates may be beneficial for control, because the mutant strains, lacking only in pathogenicity, may compete more efficiently than other biocontrol organisms against the pathogen of origin.  相似文献   

13.
ABSTRACT In order to elucidate the origin of Fusarium oxysporum f. sp. dianthi in Argentina, the genetic diversity among pathogenic isolates together with co-occurring nonpathogenic isolates on carnation was investigated. In all, 151 isolates of F. oxysporum were obtained from soils and carnation plants from several horticultural farms in Argentina. The isolates were characterized using vegetative compatibility group (VCG), intergenic spacer (IGS) typing, and pathogenicity tests on carnation. Seven reference strains of F. oxysporum f. sp. dianthi also were analyzed and assigned to six different IGS types and six VCGs. Twenty-two Argentinean isolates were pathogenic on carnation, had the same IGS type (50), and belonged to a single VCG (0021). The 129 remaining isolates were nonpathogenic on carnation and sorted into 23 IGS types and 97 VCGs. The same VCG never occurred in different IGS types. Our results suggest that the pathogen did not originate in the local populations of F. oxysporum but, rather, that it was introduced into Argentina. Given the genetic homogeneity within Argentinean isolates of F. oxysporum f. sp. dianthi, either IGS type or VCG can be used for the identification of the forma specialis dianthi currently in Argentina.  相似文献   

14.
Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris can be managed by risk assessment and use of resistant cultivars. A reliable method for the detection and quantification of F. oxysporum f. sp. ciceris in soil and chickpea tissues would contribute much to implementation of those disease management strategies. In this study, we developed a real-time quantitative polymerase chain reaction (q-PCR) protocol that allows quantifying F. oxysporum f. sp. ciceris DNA down to 1 pg in soil, as well as in the plant root and stem. Use of the q-PCR protocol allowed quantifying as low as 45 colony forming units of F. oxysporum f. sp. ciceris per gram of dry soil from a field plot infested with several races of the pathogen. Moreover, the q-PCR protocol clearly differentiated susceptible from resistant chickpea reactions to the pathogen at 15 days after sowing in artificially infested soil, as well as the degree of virulence between two F. oxysporum f. sp. ciceris races. Also, the protocol detected early asymptomatic root infections and distinguished significant differences in the level of resistance of 12 chickpea cultivars that grew in that same field plot infested with several races of the pathogen. Use of this protocol for fast, reliable, and cost-effective quantification of F. oxysporum f. sp. ciceris in asymptomatic chickpea tissues at early stages of the infection process can be of great value for chickpea breeders and for epidemiological studies in growth chambers, greenhouses and field-scale plots.  相似文献   

15.
ABSTRACT A total of 106 isolates of Fusarium oxysporum obtained from diseased cucumber plants showing typical root and stem rot or Fusarium wilt symptoms were characterized by pathogenicity, vegetative compatibility, and random amplified polymorphic DNA (RAPD). Twelve isolates of other formae speciales and races of F. oxysporum from cucurbit hosts, three avirulent isolates of F. oxysporum, and four isolates of Fusarium spp. obtained from cucumber were included for comparison. Of the 106 isolates of F. oxysporum from cucumber, 68 were identified by pathogenicity as F. oxysporum f. sp. radicis-cucumerinum, 32 as F. oxysporum f. sp. cucumerinum, and 6 were avirulent on cucumber. Isolates of F. oxysporum f. sp. radicis-cucumerinum were vegetatively incompatible with F. oxysporum f. sp. cucumerinum and the other Fusarium isolates tested. A total of 60 isolates of F. oxysporum f. sp. radicis-cucumerinum was assigned to vegetative compatibility group (VCG) 0260 and 5 to VCG 0261, while 3 were vegetatively compatible with isolates in both VCGs 0260 and 0261 (bridging isolates). All 68 isolates of F. oxysporum f. sp. radicis-cucumerinum belonged to a single RAPD group. A total of 32 isolates of F. oxysporum f. sp. cucumerinum was assigned to eight different VCGs and two different RAPD groups, while 2 isolates were vegetatively self-incompatible. Pathogenicity, vegetative compatibility, and RAPD were effective in distinguishing isolates of F. oxysporum f. sp. radicis-cucumerinum from those of F. oxysporum f. sp. cucumerinum. Parsimony and bootstrap analysis of the RAPD data placed each of the two formae speciales into a different phylogenetic branch.  相似文献   

16.
ABSTRACT Development of Fusarium wilt in upland cotton (Gossypium hirsutum) usually requires infections of plants by both Meloidogyne incognita and Fusarium oxysporum f. sp. vasinfectum. In this study, the soil densities of M. incognita and F. oxysporum f. sp. vasinfectum and the incidence of Fusarium wilt in three field sites were determined in 1982-1984. Multiple regression analysis of percent incidence of Fusarium wilt symptoms on population densities of M. incognita and F. oxysporum f. sp. vasinfectum yielded a significant fit (R (2) = 0.64) only on F. oxysporum f. sp. vasinfectum. Significant t-values for slope were also obtained for the interaction of M. incognita and F. oxysporum f. sp. vasinfectum, but densities of M. incognita and F. oxysporum f. sp. vasinfectum were also related on a log(10) scale. The physiological time of appearance of first foliar symptoms of Fusarium wilt, based on a degree-days threshold of 11.9 degrees C (53.5 degrees F), was used as a basis for determining disease progress curves and the phenology of cotton plant growth and development. Effects of Fusarium wilt on plant height and boll set were determined in three successive years. Increases in both of these plant characteristics decreased or stopped before foliar symptoms were apparent. Seed cotton yields of plant cohorts that developed foliar wilt symptoms early in the season (before 2,000 F degree-days) were variable but not much different in these years. This contrasted with cohorts of plants that first showed foliar symptoms late in the season (after 2,400 F degree-days) and cohorts of plants that showed no foliar symptoms of wilt. Regression analyses for 1982-1984 indicated moderate to weak correlations (r = 0.16-0.74) of the time of appearance of the first foliar symptoms and seed cotton yields.  相似文献   

17.
ABSTRACT Fusarium wilt of cotton is a serious fungal disease responsible for significant yield losses throughout the world. Evolution of the causal organism Fusarium oxysporum f. sp. vasinfectum, including the eight races described for this specialized form, was studied using multigene genealogies. Partial sequences of translation elongation factor (EF-1alpha), nitrate reductase (NIR), phosphate permase (PHO), and the mitochondrial small subunit (mtSSU) rDNA were sequenced in 28 isolates of F. oxysporum f. sp. vasinfectum selected to represent the global genetic diversity of this forma specialis. Results of a Wilcoxon Signed-Ranks Templeton test indicated that sequences of the four genes could be combined. In addition, using combined data from EF-1alpha and mtSSU rDNA, the phylogenetic origin of F. oxysporum f. sp. vasinfectum within the F. oxysporum complex was evaluated by the Kishino-Hasegawa likelihood test. Results of this test indicated the eight races of F. oxysporum f. sp. vasinfectum appeared to be nonmonophyletic, having at least two independent, or polyphyletic, evolutionary origins. Races 3 and 5 formed a strongly supported clade separate from the other six races. The combined EF-1alpha, NIR, PHO, and mtSSU rDNA sequence data from the 28 isolates of F. oxysporum f. sp. vasinfectum recovered four lineages that correlated with differences in virulence and geographic origin: lineage I contained race 3, mostly from Egypt, and race 5 from Sudan; lineage II contained races 1, 2, and 6 from North and South America and Africa; lineage III contained race 8 from China; and lineage IV contained isolates of races 4 and 7 from India and China, respectively.  相似文献   

18.
香蕉镰刀菌枯萎病是一种由尖孢镰刀菌古巴专化型Fusarium oxysporum f. sp. cubense侵染引起的维管束系统性病害。本试验对从海南省东方、八所、黄流、三亚和广东省湛江、徐闻、海安等香蕉种植地采集的根际土样进行拮抗放线菌的分离纯化,得到放线菌菌株139个。通过纸片扩散法,筛选出对香蕉枯萎病4号生理小种具有拮抗作用的菌株8个。进一步试验表明,其中4个菌株不仅对香蕉枯萎病生理小种4号的菌丝生长有良好稳定的抑制作用,且对另外14个不同专化型病原菌也有一定的抑制作用。另外,分别将这8株放线菌发酵上清液与香蕉枯萎病病原菌孢子悬浮液混合12h后,有6株放线菌发酵上清液对病原菌孢子萌发的抑制率超过85%。盆栽试验结果表明,2株放线菌对香蕉枯萎病防效达86%以上,极显著地高于恶霉灵药剂处理。  相似文献   

19.
香蕉枯萎病拮抗菌的筛选及其作用机制研究   总被引:15,自引:0,他引:15  
通过分离和筛选,从香蕉园或者其他果园的土壤中分离获得13株对香蕉枯萎病菌(Fusarium oxysporum f.sp.cubense)具有抑制作用的拮抗菌,并对部分拮抗菌抑制病菌菌丝生长和孢子萌发进行了试验。结果表明,拮抗菌株d4、d5、B3和p发酵液对香蕉枯萎病菌生长具有显著的抑制作用,在平板上产生的抑菌圈直径为21.75~34.75 mm,抑菌效果具有持续稳定性,对孢子萌发的抑制率为90.49%~97.18%;拮抗菌对病菌的作用表现为对菌丝的消融、菌丝细胞的泡囊化、抑制病菌分生孢子的萌发、孢子芽管的扭曲。  相似文献   

20.
Isolates of Fusarium oxysporum f.sp. gladioli were collected from widely different geographic areas. These isolates were characterized by pathogenicity to two differential gladiolus cultivars, vegetative compatibility, and total genomic DNA restriction fragment length polymorphisms (RFLPs). RFLPs were used to estimate the genetic divergence and relationship among isolates of F. oxysporum. RFLPs were detected by Southern blot hybridization of total genomic DNA with a 3-4 kb DNA probe generated from total DNA off. oxysporum f.sp. dianthi. Cluster analysis allowed the division of pathogenic strains into three main RFLP groups, each group containing strains with similarity coefficients ranging from 78 to 100%. RFLP groups correlated with vegetative compatibility groups, not with races. Two single pathogenic isolates which could not be assigned to any of the three main vegetative compatibility groups also had distinctive RFLP patterns. Little genetic polymorphism was observed within vegetative compatibility groups, whereas the majority of RFLPs occurred between vegetative compatibility groups, suggesting a common ancestry for strains within a specific vegetative compatibility group and a polyphyletic origin for the present special form gladioli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号