首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to preselect or predetermine the sex of offspring prior to conception is a highly desired technological tool for assisted female breeding programs specifically for milk production, and in males, for meat production and increasing livestock numbers. The current technology is based on the well-known differences in X- and Y-sperm in the amount of DNA. The technology uses modified flow cytometric instrumentation for sorting X- and Y-bearing sperm. The method can be validated on the basis of live births, laboratory reanalysis of sorted sperm for DNA content, and embryo biopsy for sex determination. Currently, the sex of animals has been predetermined with 90 % accuracy by sexing spermatozoa. In the bovine breeding industry, flow cytometric sperm sexing has not fulfilled its original promise. Sexed sperm doses are too expensive for widespread application while the fertility of sexed sperm doses is lower than unsexed ones. Essentially all bovine sexed semen is frozen and then applied through artificial insemination (AI) or in vitro fertilization. There is still a need in the animal breeding industry to develop a technique for sperm sexing that provides sufficient spermatozoa for AI doses, does not compromise sperm fertility, and is widely applicable to a range of species. In this review, we will summarize the current state-of-the-art in sex preselection in domestic animals and some wildlife species using flow cytometric sperm-sorting of X from Y sperm based on DNA differences.  相似文献   

2.
The aim of our study was to diagnose aneuploidy in equine spermatozoa by multicolour fluorescence in situ hybridization (FISH) technique using specific molecular probes for equine sex chromosomes and autosome pair four (EGFR probe) labeled by different fluorochromes. These were applied on decondensed spermatozoa of four stallions. In total, more than 8800 sperm cells were examined. The total frequency of aberrant cells was 0.496%: aneuploidy of XX (0.135%), YY (0.023%), XY (0.102%), diploidy (0.057%), lack of sex chromosome (0.18%). In one stallion the ratio of normal X‐ and Y‐bearing cells was different from the expected 1 : 1 ratio (p = 0.0002), in all three other stallions this ratio was close to 1 : 1. The present study demonstrated that the FISH technique is a powerful method to identify sex chromosome aberrations in equine spermatozoa and allows for the determination of the ratio between X–Y‐spermatozoa.  相似文献   

3.
Flow cytometry is considered the only reliable method for the separation of X and Y chromosome bearing spermatozoa in equines. The MoFlo SX DP sorter is highly efficient, allowing the production of foals of the desired sex. However, to achieve acceptable pregnancy rates the currently used protocol requires working with fresh semen obtained close to, or at, the sorting facility. An alternative protocol was tested during two consecutive breeding seasons. Fresh stallion semen was cooled for 20 h, during which staining with Hoechst 33342 took place. On the following day, this sample was flow sorted and compared with spermatozoa from the same ejaculate that had been sexed on the previous day. All sperm parameters evaluated remained unchanged when fresh sorted and refrigerated sorted semen were compared. Pre‐sorting storage at 5°C did not alter sperm velocities nor kinetics, viability or membrane permeability, production of reactive oxygen species, mitochondrial membrane potential or DNA fragmentation index of the sorted sample. The findings open for the possibility of using semen from stallions housed far from the sorting facilities. Processed and stained sperm could be shipped refrigerated on the previous day, sorted and inseminated on the next day.  相似文献   

4.
This study was designed to apply the method of discontinuous Percoll gradients for sex preselection in bovine semen by using a current developed molecular technique, fluorescence in situ hybridization (FISH). In addition, we attempted to amplify the level of enrichment of X- or Y-bearing spermatozoa by treating for activating sperm motility performance with 10 mM caffeine. Bovine spermatozoa were fractionated on Percoll gradients into two major subpopulations of motile spermatozoa (bottom fraction) and weak motile spermatozoa (top fraction). The percentage of Y-bearing spermatozoa in the top fraction (52.9%) slightly exceeded and that in the bottom fraction (44.3%) decreased significantly (P<0.001) compared with the theoretical ratio (50:50). Washing sperm with BO medium affected a deviation between the two sex populations, whereas semen activated with caffeine showed no difference in the percentage of X- and Y-bearing spermatozoa in both fractions compared with the theoretical ratio (50:50). These results show that the proportion of X- and Y-bearing bovine spermatozoa can deviate after discontinuous Percoll gradients, although the proportion of X- and Y-bearing bovine spermatozoa was affected by sperm motility of the sample applied.  相似文献   

5.
Successful sex‐sorting of goat spermatozoa and subsequent birth of pre‐sexed kids have yet to be reported. As such, a series of experiments were conducted to develop protocols for sperm‐sorting (using a modified flow cytometer, MoFlo SX®) and cryopreservation of goat spermatozoa. Saanen goat spermatozoa (n = 2 males) were (i) collected into Salamon's or Tris catch media post‐sorting and (ii) frozen in Tris–citrate–glucose media supplemented with 5, 10 or 20% egg yolk in (iii) 0.25 ml pellets on dry ice or 0.25 ml straws in a controlled‐rate freezer. Post‐sort and post‐thaw sperm quality were assessed by motility (CASA), viability and acrosome integrity (PI/FITC‐PNA). Sex‐sorted goat spermatozoa frozen in pellets displayed significantly higher post‐thaw motility and viability than spermatozoa frozen in straws. Catch media and differing egg yolk concentration had no effect on the sperm parameters tested. The in vitro and in vivo fertility of sex‐sorted goat spermatozoa produced with this optimum protocol were then tested by means of a heterologous ova binding assay and intrauterine artificial insemination of Saanen goat does, respectively. Sex‐sorted goat spermatozoa bound to sheep ova zona pellucidae in similar numbers (p > 0.05) to non‐sorted goat spermatozoa, non‐sorted ram spermatozoa and sex‐sorted ram spermatozoa. Following intrauterine artificial insemination with sex‐sorted spermatozoa, 38% (5/13) of does kidded with 83% (3/5) of kids being of the expected sex. Does inseminated with non‐sorted spermatozoa achieved a 50% (3/6) kidding rate and a sex ratio of 3 : 1 (F : M). This study demonstrates for the first time that goat spermatozoa can be sex‐sorted by flow cytometry, successfully frozen and used to produce pre‐sexed kids.  相似文献   

6.
Flow cytometric sexing of spermatozoa followed by application in artificial insemination or in vitro fertilization provides a unique opportunity to predetermine the sex of offspring and might enhance the conservation management of endangered species in captivity such as the elephant and rhinoceros. To obtain an indication of the sortability of spermatozoa from these species, the relative DNA differences between X and Y chromosome bearing spermatozoa (fresh, frozen thawed, epididymal) from three rhinoceros species [white ( Ceratotherium simum ), black ( Diceros bicornis ), Indian ( Rhinoceros unicornis )] and both elephant species, the Asian and the African elephant ( Elephas maximus, Loxodonta Africana ), were determined through separation of spermatozoa into X and Y chromosome bearing populations, using a modified high speed flow cytometer. The head profile areas of spermatozoa from all five species were measured using light microscopy. By multiplying the relative DNA differences and the head profile areas, the sperm sorting indices were calculated to be 47, 48 and 51 for white, black and Indian rhinoceros respectively. The calculated sorting index for the Asian elephant was 66. In the African elephant, we determined the highest sorting index of 76. These results indicate the practicability of flow cytometric sex sorting of spermatozoa from the tested rhinoceros species and both elephant species. The lower sorting indices in rhinos indicate that sex sorting of spermatozoa from the rhinoceros will be more challenging than in elephants.  相似文献   

7.
The aim of this study was a cytogenetic analysis of stallions semen to find sex chromosome aberrations and to determine if there was an association between stallion's age and aberration frequency for the sex chromosomes. Sperm samples were collected from 22 stallions of various age from 3 to 23 years. Multicolour FISH was performed on each sample, using probes for the sex chromosomes and EGFR gene, localized on 4p12 in domestic horse. A total of 26199 sperm cells were analysed (from 1 070 to 1 532 per animal). Among the analysed cells, there were 50.318% with X chromosome, 48.543% with Y chromosome and 1.139% with aberrant chromosomes. The frequency of aberrations was: sex chromosomes nullisomy (0.466%), XY aneuploidy (0.454%), XX disomy (0.146%), YY disomy (0.041%), diploidy (0.024%) and trisomy XXY (0.008%). Additionally there was a correlation between the age of an animal and the frequency of sex chromosome aberration and a significant positive correlation between age and disomy of XY, XX, YY, trisomy of XXY, autosomal disomy was seen. A Correlation between the age of a stallion and the level of nullisomy was negative. The present study demonstrated that FISH technique is a powerful method to identify sex chromosome aberrations in equine spermatozoa and might be very helpful for a breeder during a selection for the best stallion.  相似文献   

8.
At the time of AI following Ovsynch protocol, a total of 51 buffaloes were randomly divided in a first group (n = 30) subjected to conventional AI into the uterine body with 20 million non-sex sorted frozen-thawed spermatozoa, while a second group (n = 21) was inseminated near the utero-tubal junction (UTJ) ipsilateral to the ovary carrying the preovulatory follicle with 2.5 million live (4 million total) sex-sorted frozen-thawed spermatozoa. The semen used for flowcytometric sorting was collected and processed on a farm in Italy, and then shipped to a laboratory in Germany. Eleven buffaloes were inseminated with X-chromosome bearing spermatozoa and 10 with Y-chromosome bearing spermatozoa. Conception rates after conventional and UTJ inseminations were 43.3% (n = 13) and 42.8% (n = 9) respectively (p = 0.97). Eight of the nine foetuses obtained after insemination with sexed spermatozoa corresponded to the sex as predicted by the cell sorting procedure (five male and four female foetuses by ultrasound vs six male and three female foetuses by cell sorting). In conclusion, for the first time buffalo semen has been successfully subjected to procedures for flowcytometric sperm sorting and freezing. Low doses of sexed spermatozoa have been deposited near the UTJ giving conception rates similar to those of conventional AI with full dose.  相似文献   

9.
Flow cytometrically-sorted sperm has been involved in the production of sex preselected offspring. More than 30,000 bovine offspring have been produced using AI and other means using spermatozoa separated by flow cytometer. Flow cytometric sperm sorting based on differences in their DNA content is the best method for separation of X- and Y-chromosome bearing spermatozoa. At first, flow cytometers were modified for DNA confirmation and sorting of sperm with high resolution. The beveled insertion needle can regulate orientation of flat-shaped bull sperm heads. The forward fluorescence detector is essential for measuring the DNA content of sperm. Recently, high-speed sperm sorting with orienting nozzles has resulted in production of 90% pure X- and Y-sperm at rate of 15-20 million sperm per hour. Application of this new technique will enable conduct of more conventional technologies for both artificial insemination and cryopreservation in the bovine and in other farm animals using X- or Y-sperm.  相似文献   

10.
To date, the only repeatable method to select spermatozoa for chromosomal sex is the Beltsville sorting technology using flow cytometry. Improvement of this technology in the equine species requires increasing awareness of the modifications that the sorting procedure induces on sperm intactness. Oxidative stress is regarded as the major damaging phenomenon, and increasing evidence regards handling of spermatozoa – including sex sorting – as basic ground for oxidative damage. The aim of this study was to disclose whether the flow cytometric sorting procedure increases the production of reactive oxygen species (ROS), and to identify if ROS production relates to DNA damage in sorted spermatozoa using specific flow cytometry‐based assays. After sorting, oxidative stress increased from 26% to 33% in pre‐ and post‐incubation controls, to 46% after sex sorting (p < 0.05). Proportions of DNA fragmentation index post‐sorting were approximately 10% higher (31.3%); an effect apparently conduced via oxidative DNA damage as revealed by the oxyDNA assay. The probable origin of this increased oxidative stress owes the removal of enough seminal plasma due to the unphysiological sperm extension, alongside a deleterious effect of high pressure on mitochondria during the sorting procedure.  相似文献   

11.
Flow cytometric sorting technology was used to measure the difference in DNA content between X- and Y-chromosome-bearing spermatozoa in bucks. Spermatozoa were analysed by flow cytometry to characterize X- and Y-chromosome-bearing sperm populations and to quantify the DNA difference between them. Two symmetrical, overlapping and clearly separated peaks, corresponding to X- and Y-bearing spermatozoa, were detected. The difference in fluorescence intensity between the peaks was 4.4 +/- 0.03% without any significant inter- or intra-animal variations. Therefore, the identification and selection of high-purity samples of sperm populations for sex sorting is easier in bucks compared with other domestic species.  相似文献   

12.
利用流式细胞仪分析水牛分离和未分离精液中精子的DNA含量,所得的直方图用高斯曲线拟合,分析计算出样本中X和Y精子的比率。结果表明:未分离的水牛精液中X精子的比率为50%,与正常水牛后代性别比率没有显著差异;而水牛的分离X精液样本中X精子占93%,分离Y精液样本中Y精子占89%。实验结果显示了流式细胞仪DNA分析法鉴定水牛精液中X和Y精子比率的可靠性,而流式细胞仪分离精子程序和方法在水牛上的应用是可靠而有效的。  相似文献   

13.
During mammalian spermatogenesis, spermatogenic cells undergo mitotic division and are subsequently divided into haploid spermatids by meiotic division, but the dynamics of sex chromosomes during spermatogenesis are unclear in vivo. To gain insight into the distribution of sex chromosomes in the testis, we examined the localization of sex chromosomes before and after meiosis in mouse testis sections. Here, we developed a method of fluorescence in situ hybridization (FISH) using specific probes for the X and Y chromosomes to obtain their positional information in histological testis sections. FISH analysis revealed the sex chromosomal position during spermatogenesis in each stage of seminiferous epithelia and in each spermatogenic cell. In the spermatogonia and leptotene spermatocytes, sex chromosomes were distantly positioned in the cell. In the zygotene and pachytene spermatocytes at prophase I, X and Y chromosomes had a random distribution. After meiosis, the X and Y spermatids were random in every seminiferous epithelium. We also detected aneuploidy of sex chromosomes in spermatogenic cells using our developed FISH analysis. Our results provide further insight into the distribution of sex chromosomes during spermatogenesis, which could help to elucidate a specific difference between X and Y spermatids and sex chromosome-specific behavior.  相似文献   

14.
Frozen-thawed sexed semen from six bulls (Holstein) was used for studying their efficiency in an in vitro fertilization (IVF)-programme and to compare their ultrastructure with in vitro produced bovine blastocysts produced with non-sorted sperm. Progressive motility of sorted spermatozoa, their IVF rate, development of produced blastocysts and the ultrastructure of the blastocysts were analysed. The cleavage rates of sexed sperm of bulls (groups S1, S2 and S4) were significantly lower than that of unsorted control sperm (P < 0.01). Blastocyst development at day 7 of the sexed semen groups varied between 3.5% and 28.8% versus 33.6% for non-sexed semen. The individual blastocyst yield with sexed semen of group S5 (28.8%) was similar to the mean blastocyst production of the non-sexed control spermatozoa (C, 33.6%; P > 0.05). The remaining five sexed sperm groups resulted in significantly lower developmental rates of blastocysts on day 7 (S1, 4.9%; S2, 0%; S3, 0%, S4, 3.5%; S6, 25.8%, P < 0.01). Group S2 showed microbiological contamination in 50% (four of eight) and S3 in 100% of the experiments (eight of eight). Progressive motility of sexed sperm was significantly lower than that of unsorted sperm (S1, 48 +/- 12.0%; S2, 41 +/- 11.9%; S3, 39.0 +/- 9.9%; S4, 42 +/- 4.6%; P < 0.01; S5, 72 +/- 7.1% and S6, 64 +/- 9.3; P < 0.05 versus C 82 +/- 4.6%). The percentage of progressive motile spermatozoa showed a good correlation with the developmental capacity of blastocysts (r(2): >0.70), the regression parameter was significant (P < 0.01). Furthermore, with a straw containing 10 x 10(6) sexed spermatozoa significantly lower number oocytes was fertilized than with the same concentration of non-sexed sperm (P < 0.01). Our results demonstrate that the suitability of sperm sorting for in vitro fertilization (IVF) is lower than no sexed sperm. Our ultrastructural studies showed that blastocysts produced with flow-cytometrically sex-sorted spermatozoa possessed deviations in the number and structure of organelles like mitochondria, rough endoplasmic reticulum (ER) and nuclear envelope. These morphological alterations may be responsible for compromised development that observed in embryos produced with sex-sorted spermatozoa. Thus, we conclude that sperm sex sorting can markedly affect the efficiency of an IVF-programme.  相似文献   

15.
The Beltsville sperm sexing technology is currently the only effective means of altering the sex ratio of offspring in livestock. The method is based on the flow-cytometric separation of X- and Y-chromosome-bearing sperm based on X/Y DNA content difference. It is an effective means of producing progeny of predetermined sex in cattle, swine, sheep, and laboratory animals. The method involves treating sperm with a DNA-binding fluorochrome, Hoechst 33342, and flow-cytometrically sorting them into separate X and Y populations that can subsequently be used for surgical intratubal or intrauterine insemination, deep-uterine insemination, regular artificial insemination in some cases, in vitro fertilization to produce sexed embryos for transfer, and intracytoplasmic sperm injection of ova. Skewed sex ratios of 85 to 95% of one sex or the other have been repeatably achieved in most species. The method has been used worldwide to produce several hundred morphologically normal animal offspring of the predicted sex. It has also been validated in the laboratory using DNA reanalysis of the sorted sperm populations and by fluorescence in situ hybridization and PCR of individual sperm. We developed a new orienting nozzle that we have fitted to both conventional and high-speed cell sorters that have been modified for sperm sorting. Recently we completed the adaptation of the new orienting nozzle to a Cytomation MoFlo high-speed cell sorter modified for sperm. This adaptation of the nozzle has increased the overall production rate of sorted X and Y sperm from about .35 million/h to 5 or 6 million sperm/h (each population). Calves have been born from cows artificially inseminated using conventional technique and sexed sperm. In addition, numerous litters of pigs have been born after transfer of embryos produced from X or Y sorted sperm.  相似文献   

16.
Little information is available on the quality of stallion spermatozoa after sex sorting. The objectives of the present study were to assess the quality of sex‐sorted stallion spermatozoa and determine its fertilizing ability after hysteroscopic low dose insemination. Ejaculates from four stallions were collected and sorted by a MoFlo SX® flow cytometer/sperm sorter. Before and after sorting, spermatozoa were evaluated for motility by Computer Assisted Sperm Analysis, viability (SYBR 14‐propidium iodide), mitochondrial function (JC‐1) and acrosomal status (fluorescein isothiocyanate Pisum sativum agglutinin conjugated). A fertility trial was carried out on four mares (seven oestrous cycles) by hysteroscopic insemination, depositing 5 × 106 X‐bearing spermatozoa. Sex sorting resulted in a significant decrease (p < 0.001) in all motility characteristics. Sperm viability and percentage of spermatozoa with functional mitochondria were not affected by the sorting process, while the percentage of reacted spermatozoa was higher (p < 0.01) for non‐sorted than sorted spermatozoa. Pregnancy rate was 28.6% (2/7) after low dose hysteroscopic insemination. Only one pregnancy was carried to term with the birth of a healthy filly. In conclusion, despite the reduction in sperm motility, sex sorting did not impair stallion sperm viability and mitochondrial activity immediately post‐thaw; moreover, the sexed spermatozoa retained the ability to fertilize in vivo.  相似文献   

17.
The standard procedure of artificial insemination with fresh equine spermatozoa involves short‐term storage (to 48 h at 5°C). This procedure is accompanied by a gradual loss of sperm viability. The aim of this study was to investigate whether the X/Y ratio of equine spermatozoa is affected by short‐term storage and the swim‐up procedure. We used a standard protocol, for short‐term storage (0, 24 and 48 h at 5°C) of stallion semen diluted in the commercial extender EquiPro? (Minitüb GmbH, Tiefenbach, Germany). After each set‐up storage period, the motile fraction of sperm cells was selected by the swim‐up method. The X/Y ratio was evaluated by fluorescence in situ hybridization (FISH) in the fresh, non‐selected sperm, and in motile spermatozoa selected after each of the storage periods. Molecular probes for the equine chromosomes X and Y were used. The X/Y ratio in all sperm samples analysed in this study (fresh and stored) was not different from the theoretical 1 : 1 value. The incidence of chromosomally abnormal sperm cells in the fresh (0.28%) and motile (0.13%) sperm samples was not significantly different. The two approaches (sperm storage up to 48 h and the swim‐up procedure) applied to this study did not affect the X/Y ratio in the motile fraction of equine spermatozoa. This finding does not conform to phenomena described for human and cattle. For this reason, the finding may imply species‐related differences.  相似文献   

18.
The objectives of this study were to determine whether calves produced by sexed sperm differed from controls and to what extent the sex ratio of calves was altered by the sexing procedure. Data were collected from 1,169 calves produced from sperm sexed by flow cytometry/cell sorting after staining with Hoechst 33342, and 793 calves produced from control sperm during breeding trials between 1997 and 2001. Least squares ANOVA were completed using factors of treatment (sexed vs. control sperm), 19 management groups from 13 field trials, and calf sex. Responses analyzed include gestation length, birth weight, calving ease, calf vigor, weaning weight, abortion rate, and death rates (neonatal and through weaning). No significant difference was observed for any response due to treatment or treatment interactions (P > 0.10). Therefore, calves produced from sexed sperm grew and developed normally both pre- and postnatally. A neurological disorder was observed in four control calves and one sexed calf from one farm. No gross anatomical abnormalities were reported for any calves in the study. Differences were observed for all responses among management groups (P < 0.03 for abortions and P < 0.01 for all other responses). Heifer and bull calves differed (P < 0.001) in gestation length (278.4 and 279.6 d), birth weight (32.8 and 35.2 kg), calving ease (1.15 and 1.30), and weaning weight (233 and 247 kg). Gestation length did not affect characteristics of calves. The sex ratio at birth of calves from unsexed control sperm was 49.2% male. Sexing accuracy of X-sorted sperm was 87.8% female calves, and Y-sorted sperm produced 92.1% male calves. Flow cytometry/cell sorting can be used to preselect sex of calves safely with approximately 90% accuracy.  相似文献   

19.
The aim of this study was to evaluate the influence of Hoechst 33342 (H‐42) concentration and of the male donor on the efficiency of sex‐sorting procedure in canine spermatozoa. Semen samples from six dogs (three ejaculates/dog) were diluted to 100 × 106 sperm/ml, split into four aliquots, stained with increasing H‐42 concentrations (5, 7.5, 10 and 12.5 μl, respectively) and sorted by flow cytometry. The rates of non‐viable (FDA+), oriented (OS) and selected spermatozoa (SS), as well as the average sorting rates (SR, sorted spermatozoa/s), were used to determine the sorting efficiency. The effects of the sorting procedure on the quality of sorted spermatozoa were evaluated in terms of total motility (TM), percentage of viable spermatozoa (spermatozoa with membrane and acrosomal integrity) and percentage of spermatozoa with reacted/damaged acrosomes. X‐ and Y‐chromosome‐bearing sperm populations were identified in all of the samples stained with 7.5, 10 and 12.5 μl of H‐42, while these two populations were only identified in 77.5% of samples stained with 5 μl. The values of OS, SS and SR were influenced by the male donor (p < 0.01) but not by the H‐42 concentration used. The quality of sorted sperm samples immediately after sorting was similar to that of fresh samples, while centrifugation resulted in significant reduction (p < 0.05) in TM and in the percentage of viable spermatozoa and a significant increase (p < 0.01) in the percentage of spermatozoa with damage/reacted acrosomes. In conclusion, the sex‐sorting of canine spermatozoa by flow cytometry can be performed successfully using H‐42 concentrations between 7.5 and 12.5 μl. The efficiency of the sorting procedure varies based on the dog from which the sperm sample derives.  相似文献   

20.
奶牛性控冻精人工授精影响因素研究   总被引:2,自引:0,他引:2  
用分离X和Y精子的性控精液进行人工授精是控制家畜性别之最简单可行的方法.然而,低密度性控精液输精效果还不如常规人工授精,许多技术环节都有待改进.以常规冻精和稀释常规冻精为对照,研究解冻方法、输精时间和部位、不同精液来源和输精员以及育成和经产牛等因素对性控冻精人工授精妊娠率的影响.结果显示,精液解冻水浴温度和持续时间对人工授精效果有显著影响,性控精液对解冻水浴温度更敏感;性控冻精和稀释常规冻精比常规冻精对输精时间要求更严格;3种精液输精到排卵卵泡同侧子宫角基部受胎率都显著高于输精于子宫体和同侧子宫角前端;3种精液育成牛受胎率(80%)都显著高于经产牛(50%);于输精同时注射促排卵素3号明显提高性控冻精受胎率;经严格挑选、能够从事胚胎移植操作的技术熟练输精员之间性控冻精受胎率差异不显著;在所设计的不同条件下,性控冻精与稀释同样倍数的常规冻精行为相似,说明精子分离过程没有对精子造成特殊损伤.研究结果说明,精确控制人工授精各个技术环节可以实现消除性控与非性控、低密度与高密度精演之间的差别,获得高妊娠率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号