首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
施氮量对不同品种滴灌棉花氮素利用率及产量的影响   总被引:1,自引:1,他引:0  
【目的】研究不同施氮量对不同品种滴灌棉花的氮素利用率及产量的影响,为种植棉花高效合理的施用氮肥和高产量提供理论参考。【方法】供试棉花品种为新陆早50号、新陆早58号、鲁棉研24号,施氮量水平为0、120、240、360 kg/hm2纯氮。【结果】不同品种棉花吐絮期的各器官氮素分配比从大到小分别为:纤维+种子>叶片>铃壳>茎秆;不同施氮处理对不同品种棉花的平均氮累积量为N3>N2>N1>N0,不同品种氮累积量为新陆早58号>新陆早50号>鲁棉研24号;新陆早50号和鲁棉研24号在施氮量240 kg/hm2、新陆早58号在施氮量360 kg/hm2时的氮素利用率和产量达到最优,在获得高产的同时氮素达到有效的利用。【结论】3个品种中以新陆早58号的氮素分配率、氮累积量、生物量和产量达最高,鲁棉研24号的氮素利用率高于另外2个品种;滴灌棉花在360 kg/hm2处理下的生物量、氮素累积量和籽棉产量最高。  相似文献   

2.
盐碱胁迫对不同棉花品种生长及离子组含量分布的影响   总被引:1,自引:0,他引:1  
【目的】 分析盐碱胁迫对棉花生长、生理及离子平衡的影响,从离子平衡角度研究棉花抗盐性的内在机制。【方法】 以鲁棉研24号与新陆早45号棉花为材料,设置无盐(CK)、混盐(SA)2个盐度。【结果】 盐碱胁迫下,鲁棉研24号与新陆早45号的生长及光合作用受明显抑制,相对电导率、丙二醛和脯氨酸含量显著增加。鲁棉研24号叶中P含量显著增加了55.80%,新陆早45号无显著变化。 鲁棉研24号与新陆早45号各器官中的Na含量均显著增加,鲁棉研24号茎、根中K含量分别显著增加了25.20%、26.04%,叶中K及植株总体Ca、Mg含量有所下降。鲁棉研24号与新陆早45号地上部分Zn、Al、Mn、Mo含量显著增加,地下部分显著降低。【结论】 盐碱胁迫下新陆早45号较鲁棉研24号吸收了更多的Na,导致植物对N、P、K、Ca、Mg等离子的选择性吸收能力降低,且鲁棉研24号较新陆早45号具有更强的将各离子向地上部分运输的能力,提高自身在盐碱胁迫下的耐盐性。  相似文献   

3.
【目的】研究棉花盛铃期反射光谱、荧光参数Fv/Fm(PSⅡ最大光化学量子产量)的变化特征,确立叶绿素荧光参数与棉花冠层高光谱植被指数的相关关系。为高光谱遥感监测棉花的水分状况提供理论依据。【方法】选用棉花品种新陆早45号和新陆早62号,采用美国ASD地物高光谱仪测定田间试验条件下,设置4个不同灌水量处理,研究2个棉花品种盛铃期的冠层反射光谱,同期利用PAM-2100叶绿素荧光仪测定棉花叶片的Fv/Fm,并用相关软件对棉花的反射光谱数据及Fv/Fm进行处理并作相关分析,建立相关回归模型。【结果】不同水分处理条件下,棉花冠层反射光谱的变化趋势相似;棉花新陆早62号盛铃期的单叶荧光参数Fv/Fm与棉花冠层高光谱反射率在350~514 nm、612~692 nm和1 945~2 076 nm波段范围内呈极显著正相关,而在708~1 361 nm和1 621~1 740 nm波段范围内呈极显著负相关;采用敏感波段构建植被指数NDVI(归一化植被指数)和RVI(比值植被指数),RVI与Fv/Fm的相关性较高(rRVI-Fv/Fm=-0.721 5**,n=20,P<0.01);建立Fv/Fm与RVI的估算模型方程,Fv/Fm估测值与实测值呈极显著线性正相关(r估测Fv/Fm-实测 Fv/Fm=0.723 0**,n=20,RMSE=1.186×10-2)。【结论】利用荧光参数Fv/Fm与植被指数RVI的相关关系,可以监测棉花盛铃期的水分胁迫状况。  相似文献   

4.
不同抗旱性棉花品种蜡质含量与水分利用效率的关系   总被引:1,自引:1,他引:0  
【目的】在新疆自然生态条件下,研究不同抗旱性棉花品种蜡质含量变化及与水分利用效率(WUE)的关系。【方法】以抗旱性不同的棉花品种新陆早22号(抗旱性强)和新陆早17号(抗旱性弱)为试材,采用膜下滴灌技术设置正常灌溉和干旱处理,测定分析棉花产量形成期叶片蜡质含量、净光合速率(Pn)、蒸腾速率(Tr)、相对含水量(RWC)及籽棉产量。【结果】与正常灌溉相比,干旱处理显著降低了棉花籽棉产量,但盛花至吐絮期叶片蜡质含量提高10.84%、叶片WUE则增加23.96%。不同品种对水分处理响应不同,正常灌溉下新陆早22号与新陆早17号的棉花籽棉产量、RWC、WUE和叶片蜡质含量均无明显差异,干旱条件下新陆早22号的籽棉产量、叶片蜡质、RWC和WUE分别比新陆早17号高41.38%、14.27%、13.1%和3.84%;。相关分析表明,棉花叶片表皮蜡质含量与Tr、Pn呈显著负相关关系,且Tr的负相关系数高于Pn;与RWC呈显著正相关关系。【结论】抗旱性强棉花品种主要通过增加盛花至吐絮期内叶片蜡质含量,降低叶片蒸腾耗水,提高WUE及籽棉产量。  相似文献   

5.
目的】棉花叶色和叶片氮含量在各生育时期的变化规律,研究叶色、叶片氮含量与产量的相关性,基于棉花叶色和叶片氮含量的产量估测。【方法】以新陆早45号、新陆早58号、新陆早62号、新陆早50号、鲁棉研24号为材料,设置4个施氮水平:N0(不施氮对照)、N1(120 kg/hm2)、N2(240 kg/hm2)、N3(360 kg/hm2),采用两因素完全随机区组设计,共20个处理,重复3次。【结果】(1)叶色值在全生育期变化趋势为吐絮期>铃期>花铃期>盛蕾期>现蕾期,叶片氮含量在全生育期变化趋势为花铃期>铃期>吐絮期>现蕾期>蕾期;(2)棉花叶色值、叶片氮含量、产量均呈线性正相关。其中棉花叶色值与叶片氮R2达0.37**,叶色值与产量的R2达0.56**,叶片氮含量与产量的R2达0.61**;(3)通过产量对叶色值和叶片氮含量的响应特征,可基于二者实现棉花测产,产量估测方程为Y=363.48-65.175*S+274.079*N,R2达0.69(S指叶色值,N指叶片氮含量,Y指产量)。【结论】各棉花品种均在N3处理下产量最高,且通过叶色值和叶片氮含量实现棉花产量估测,在棉花测产中是较其它估产更精准的一种方法。  相似文献   

6.
【目的】建立棉花高光谱数据与光合特征参数的相关模型,有效、快速、非破坏的对棉花生长过程进行诊断与监测,为大面积应用高光谱遥感监测棉花的生长状况提供科学依据。【方法】利用ASD高光谱辐射仪和Li-6400光合仪分别获取5水分处理条件下,棉花新陆早13号、新陆早33号两品种关键生育期的高光谱数据和光合特征参数:净光合速率(Pn)和气孔导度(Gs),利用高光谱数据计算得到棉花两品种归一化植被指数(NDVI)、比值植被指数(RVI)和修改型二次土壤调节植被指数(MSAVI2),分别建立与两品种Pn和Gs的线性、对数和幂函数的相关方程。【结果】三种模型方程均达到显著和极显著的相关性,两品种RVI与Pn和Gs的三种相关模型方程的r值较高,其中,利用新陆早33号RVI与Pn,Gs幂函数方程分别对Pn和Gs估算,并将预测Pn、Gs与实测Pn,Gs进行相关分析,R值均达到极显著水平(r_(实测Pn-估测Pn)=0.827**,RMSE=1.089,r_(实测Gs-估测Gs)=0.586**,RMSE=0.138,n=20,P0.01),模型方程的估测精度均大于80%。【结论】不同水分处理下新陆早13号和新陆早33号的光谱植被指数与光合参数间存在着显著的相关性,可以利用相关模型对Pn和Gs进行遥感估测,实时监测棉花的生长状况。  相似文献   

7.
陆地棉半矮秆突变体sd株高对外源激素的敏感性   总被引:1,自引:0,他引:1  
【目的】研究外源激素对棉花矮化突变体株高的影响,确定其对激素的敏感性,为利用其分析棉花株高遗传基础与激素调控关系提供依据。【方法】以棉花品种新陆早17号(CK)及其矮化突变体sd为材料,采用GA3、IAA和BR激素分别处理后,研究不同激素和不同浓度处理对棉花株高的影响。【结果】突变体sd的株高约为新陆早17号的四分之三,突变体sd是一份典型的陆地棉半矮秆突变体。不同浓度GA3处理后,新陆早17号的株高变化量高于突变体,50 mg/L的GA3处理能使突变体sd的株高恢复到新陆早17号的株高水平,激素影响棉花株高的主次顺序为GA3>BR>IAA,株高与GA3具有显著的正相关性。【结论】突变体sd是一份典型的陆地棉半矮秆突变体,突变体sd的株高对GA3敏感。  相似文献   

8.
测试了棉花2个品种4水平种植密度的4个关键生育时期冠层反射光谱,应用微分技术处理棉花冠层反射光谱,提取了红边(680~750nm)波段范围的最大一阶微分值(Dr)和红边面积(SDr)参数。分析了棉花冠层红边参数在不同生育期的变化特征和棉花吐絮期的两种生长类型的冠层红边状况,表明红边位置可以指示它们的氮素状况。以新陆早8号的SDr为自变量与对应的LNA为因变量进行相关分析,SDr与冠层LNA达1%极显著相关(R=0.9186**,n=32),利用其构建的模型方程估算新陆早6号的LNA,实测LNA和估测LNA的估计标准差为0.8909g/m2,估算精度为88.1%(R=0.9277**,n=32),说明采用高光谱提取的红边参数信息是无损实时、快捷评价棉花氮素状况的有效方法。  相似文献   

9.
【目的】 研究等行距密植机采模式下不同耐旱性棉花品种冠层特性对滴水量的响应及作用机理,为干旱区棉花节水灌溉和耐旱性品种选择提供理论依据。【方法】 选用耐旱性强的品种新陆早22号和耐旱性弱的品种新陆早17号为试材,设亏缺滴灌(W1)、限量滴灌(W2)、常规滴灌(W3)处理,研究滴水量对耐旱性不同棉花品种棉花冠层结构、光分布、群体光合和呼吸速率以及产量的影响。【结果】 叶绿素含量(Chl)、群体光合(CAP)和呼吸速率(CR)随滴水量的增加呈显著上升趋势,在W3处理下表现为最大值,其中新陆早22号在盛花至盛铃后期上述参数在W2、W3条件下无显著差异,但均显著低于W1处理;冠层开度(DIFN)和冠层PAR透过率则随滴水量的增加呈下降趋势,各处理间均表现为W1>W2、W3;新陆早17号和新陆早22号分别在W3、W2处理下籽棉产量最高,W2处理下水分利用效率最高。品种间,新陆早22号的Chl、叶面积指数(LAI)、CAP和CR在盛花至吐絮期比新陆早17号高0.8%~10.5%、3.4%~15.0%、1.3%~16.7%、2.9%~22.9%,籽棉产量和水分利用效率分别比新陆早17号高8.9%、9.2%。籽棉产量与LAI、CAP、CR、Chl均呈正相关,与DIFN呈负相关。【结论】 在等行距密植条件下,根据棉花品种对水分的敏感性不同,灌水量控制在3 900~4 800 m3/hm2时,可以使棉花在生育中期维持较高的叶绿素含量和叶面积指数、适宜的冠层开度以及均匀的光分布,促进光合速率的提升,在不显著降低棉花产量的前提下提高水利用效率。  相似文献   

10.
目的】研究不同棉花品种在新疆塔里木棉区的养分积累量及产量特性。【方法】设置3种基肥用量,采用两因素裂区试验设计,比较6个棉花品种在3种基肥设置下养分积累差异及产量影响。【结果】6个棉花品种中新陆中55号品种的氮素利用率最高(36.11%),具有较高的氮素吸收能力。新陆中22号、新陆中55号、锦棉Z1112品种的磷积累量显著高于新陆中82号、新陆早74号、新陆早77号品种,磷肥利用效率表现为新陆早77号>新陆中22号>新陆中82号>新陆中55号>锦棉Z1112>新陆早74号。新陆中22号、新陆中55号、新陆中82号、锦棉Z1112、新陆早77号品种的钾含量显著高于新陆早74号品种,钾肥利用效率表现为新陆中55号和新陆中82号较高,新陆中22号品种最低,新陆中55号和新陆中82号品种具有较高的钾素吸收能力;锦棉Z1112、新陆早77号品种的单株铃数显著高于新陆中22号、新陆中55号品种,新陆中22号品种的单铃重显著高于其他5个品种。新陆中22号、锦棉Z1112品种的衣分要显著高于新陆中55号、新陆中82号、新陆早77号品种,新陆早74号品种籽棉产量和皮棉产量均显著低于其他品种。【结论】不施基肥处理棉花株养分吸收积累量少、产量偏低。基肥全施处理下产量最高,基肥半施处理下,基肥施用量减少50%,棉花平均产量减少9%,其中新陆中22号品种和新陆中55号品种的减产最少,为5%和1%。  相似文献   

11.
[目的]研究滴灌条件下根区水分对棉花干物质生产、分配及水分利用效率的影响,为制定滴灌棉花水分精确管理制度提供依据.[方法]选用对水分敏感性不同的棉花品种为试材,分别设置常规滴灌和充分滴灌处理,在灌水前后监测土壤水分变化,同时测定棉花根系生长与分布、株高、叶面积指数及生物量等生理指标.[结果]常规滴灌量条件下土壤水分活动层集中在0~60 cm的土层中,且滴水前耕层土壤相对含水率均低于55;、滴水后可保持70;~80;的水分状况,有利于诱导根系纵向生长,维持生育后期较高的叶面积指数,并促进光合产物向产量器官蕾铃分配,从而提高了经济产量水分利用效率.不同品种对根区水分的反应差异较大,新陆早6号常规滴灌条件下皮棉产量低于新陆早8号,经济产量水分利用效率与新陆早8号无明显差异;充分滴灌条件下总生物学产量水分利用效率高于新陆早8号,经济产量水分利用效率显著低于新陆早8号.[结论]滴水总量在4 050~4 275 m3/hm2,依据品种对水分响应的差异,通过协调相关栽培技术,调控干物质生产及其在器官中的分配,可实现滴灌棉花产量与水分利用效率协同提高.  相似文献   

12.
不同机采棉花品种生长发育及光合物质生产的比较   总被引:3,自引:1,他引:2  
【目的】筛选出更适宜新疆北疆地区机采的棉花品种。【方法】以新疆北疆地区代表性的早熟棉花品种为供试材料,通过品种比较试验,评价其在生长发育、光合特性及产量性状差异。【结果】新陆早71号生育期为123 d,株高为80.1 cm、始果节高度为25.6 cm、始果节位6.2节,株型紧凑抗倒伏,主要农艺性状表现较优,更利于后期机采;新陆早71号叶面积指数(LAI)合理,叶片光合速率(Pn)、叶绿素含量(SPAD)在各生育期优于其它品种,有利于干物质的积累,促进了后期单株结铃数、单铃重、衣分和籽棉产量的提高。【结论】新陆早71号综合表现较优,为适宜北疆棉区机械采收的棉花品种。  相似文献   

13.
膜下滴灌条件下不同品种棉花干物质积累变化研究   总被引:2,自引:1,他引:1  
[方法]选用当地主栽棉花品种标杂A1和新陆早33号,设置不同灌水量和氮肥用量.[目的]积累变化及品种间差异.分析膜下滴灌棉花干物质.[结果]两棉花品种在整个生育期干物质积累总量呈现慢-快-慢的增长趋势,随着灌水量和氮肥用量的增加干物质积累总量在增加,最大增长速率增大,快速增长期推后,但过量的灌溉会使干物质积累总量有所减少.[结论]标杂A1在各处理中干物质积累均大于新陆早33号,在低水处理中品种间差异不显著,中高水处理品种间差异显著.  相似文献   

14.
 【目的】研究膜下滴灌条件下土壤水分对棉花光合物质生产、分配的调节效应,揭示不同土壤水分对棉花对产量形成的影响机制,为干旱区发展节水高产高效农业提供依据。【方法】在新疆气候生态条件下,选用对水分反应敏感性不同的新陆早10号和新陆早13号为试验材料。控制0~60 cm土壤相对含水量滴水下限分别为田间持水量55%、70%和85%,滴水上限均为田间持水量,采用气体交换和同位素示踪技术,研究花铃期不同土壤水分对叶片光合速率、14C光合产物运转和分配及产量的影响。【结果】滴水下限为55%处理土壤轻度水分亏缺,叶片光合速率低,地上部光合物质累积量少,14C光合产物输出较快、向蕾铃分配比例增加;滴水下限为70%和85%处理叶片光合速率高,地上部光合物质累积量大,但85%处理14C光合产物向营养器官分配的比例过大,最终籽棉产量以70%处理最高,85%处理次之,55%处理最低。籽棉产量水分利用效率为55%>70%>85%;不同品种对土壤水分的响应不同,新陆早10号在55%和70%条件下籽棉产量和水分利用效率显著低于新陆早13号,85%条件下显著高于新陆早13号。【结论】土壤水分对棉花光合物质生产、分配具有明显的调节效应,花铃期滴水下限在70%~85%有利于实现棉花高产,在55%~70%范围内,棉株能通过适应性调节,有利于提高水分利用效率。依据不同品种对土壤水分响应的差异,结合滴灌棉田土壤水分可控性强的特点,制定相应的灌溉制度,对实现滴灌棉田节水高产高效具有重要意义。  相似文献   

15.
不同灌水量对棉花冠层结构的影响及其调控作用   总被引:4,自引:1,他引:3  
主要讨论了北疆棉区推广品种新陆早6号与新陆早8号在不同灌水量条件下的冠层结构特征的差异性,得出新陆早6号对限量滴灌反应不敏感,而新陆早8号对限量滴灌反应较敏感.因此在限量滴灌条件下选择新陆早6号种植较适宜.叶面积指数低,叶片平均倾斜角度大,群体散射辐射透过系数和群体直射辐射透过系数增加,对光能的截获率降低,由此得出了不同品种对灌水量的反应表现及理想群体冠层结构的合理指标,为增加棉花产量和提高水分利用效率提供了理论依据.  相似文献   

16.
【目的】研究花铃期水分亏缺对不同部位果枝棉铃大小(直径、长度、体积)、各组分干重(铃壳、纤维、棉籽)和产量的变化,以及水分亏缺处理与棉铃指标的关系,为机采棉花铃期供水不足时提供参考滴灌量。【方法】以新陆早50号和新陆早73号为材料,花铃期设3个滴灌量:2 450 m3/hm2(CK)、2 050 m3/hm2(D1)、1 650 m3/hm2(D2),于花后17 d开始,每隔7 d分别取第2、第5和第7果枝的棉铃,共取5次,测定棉铃大小及各组分干重。【结果】2个品种不同部位果枝棉铃长度、直径和体积均在花后24 d达到最大值。在花后45 d,D1和D2处理中上部果枝棉铃直径与对照差异明显,新陆早50号中部和上部果枝棉铃直径分别降低2.92%~4%和2.21%~5.35%;新陆早73号分别降低2.66%~6.38%和2.77%~8.69%。2个品种棉铃各组分干重棉籽 > 纤维 > 铃壳,铃壳、棉纤维及棉籽重分别在花后24、38和38 d达到最大值。在花后45 d,2个品种D1和D2处理中上部果枝棉籽重与对照差异明显,新陆早50号中部和上部果枝棉籽重分别下降8.9%~20.71%和11.53%~20.73%;新陆早73号分别下降8.96%~16.24%和10.21%~17.06%。单株籽棉产量与棉籽重呈极显著的正相关。2个品种D2处理各部位果枝减产明显,新陆早50号下部、中部和上部果枝籽棉产量分别下降12.5%、13.48%和15.67%;新陆早73号分别下降12.69%、11.9%和18.21%。【结论】中上部果枝棉铃直径是影响棉铃干重的重要因素。水分亏缺不利于棉纤维和棉籽发育,中上部果枝棉籽受影响较大。D1处理与对照各部位果枝成铃数和籽棉产量差异不显著,2 050 m3/hm2(D1)为应对花铃期供水不足时滴灌量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号