首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four ruminally and duodenally cannulated Suffolk wether lambs (34.5 +/- 2 kg initial BW) were used in a 4 x 4 Latin square designed experiment to compare effects of supplemental ruminally degradable protein (RDP) vs. increasing amounts of supplemental ruminally undegradable protein (RUP) on ruminal characteristics and site and extent of digestion in lambs. Lambs were fed a basal diet of crested wheatgrass hay (4.2% CP) for ad libitum consumption, plus 1 of 4 protein supplements: isolated soy protein (RDP source) fed to meet estimated RDP requirements assuming a microbial efficiency of 11% of TDN (CON) or corn gluten meal (RUP source) fed at 50, 100, or 150% of the supplemental N provided by CON (C50, C100, and C150, respectively). Neither NDF nor ADF intake was affected (P >/= 0.18) by protein degradability, but they increased or tended to increase (P /= 0.26) for CON and C100, but increased (P /= 0.33) by protein degradability. However, true ruminal N digestibility was greater (P = 0.03) for CON compared with C100. Ruminal ammonia concentrations were greater (P = 0.002) for CON compared with C100 lambs, and increased (P = 0.001) with increasing RUP. Microbial N flows were not affected (P >/= 0.12) by protein degradability or increasing RUP. Likewise, neither ruminal urease activity (P >/= 0.11) nor microbial efficiency (P >/= 0.50) were affected by protein degradability or level of RUP. Total tract OM, NDF, and ADF digestibility was greater (P 相似文献   

2.
Our objective was to determine the impact of supplemental energy, N, and protein on feed intake and N metabolism in sheep fed low-quality forage. Six Texel x Dorset wethers (16 mo, 63+/-3.1 kg) fitted with mesenteric, portal, and hepatic venous catheters were used in a Latin square design with five sampling periods. Lambs were fed chopped bromegrass hay (4.3% CP) to appetite, and a mineral mixture was given. Treatments were 1) control (no supplement), 2) energy (cornstarch, molasses, and soybean oil), 3) energy plus urea, 4) energy plus soybean meal (SBM), and 5) energy plus ruminally undegraded protein (RUP; 50:50 mixture of blood and feather meals). Supplements were fed once daily (.3% BW). Forage DMI did not differ (P = .13), but intake of total DM, N, and energy differed (P<.01) among treatments. Apparent digestibilities of DM, OM, and energy were less (P<.01) for control than for other treatments. Apparent N digestibility was least for control and energy and greatest for urea treatments (P<.05). As a result, digested DM, OM, and energy ranked from least to greatest were control, energy, urea, SBM, and RUP, respectively. Apparently digested N was 2.44, 2.24, 11.39, 9.80, and 11.25 g/d for control, energy, urea, SBM, and RUP (P<.01; SE = .10). Hour of sampling x treatment was a significant source of variation for blood concentrations of ammonia N and urea N, net ammonia N release from portal-drained viscera (PDV) and liver, and urea N release from splanchnic tissues. These results were primarily because patterns through time for the urea treatment differed from the other treatments. Net PDV release of alpha-amino N did not differ (P>.05) between control and energy treatments. Values for those treatments were about one-half of values for urea, SBM, and RUP treatments, which did not differ (P>.05). Hepatic net uptake (negative release) of alpha-amino N for control was 53% of values for the other treatments, which did not differ (P>.05). Net release of alpha-amino N from splanchnic tissues did not differ among treatments (P = .34) and did not differ from zero. The data indicate that arterial alpha-amino N concentration, hepatic alpha-amino N uptake, PDV release and hepatic uptake of ammonia N, and hepatic release of urea N were greater in energy than in control treatments. We also found that hepatic uptake of alpha-amino N was 187% of PDV release in energy-supplemented lambs. These results suggest that energy supplementation of a protein-limiting diet stimulated mobilization of body protein.  相似文献   

3.
Two experiments were conducted to determine whether elevating the percentage of ruminally undegradable protein (RUP) in the diet would influence the RUP value of the protein feedstuff. A single-effluent, continuous-culture study was designed to test the effect of RUP inclusion rate in the diet on ruminal degradability of the protein. Treatments consisted (DM basis) of a control diet with no supplemental protein, control + 2.5% bloodmeal (BM-L), control + 5% bloodmeal (BM-H), control + 4.45% soybean meal (SBM-L), and control + 8.89% soybean meal (SBM-H). Proteolytic activity and total VFA concentration were not affected (P = 0.73 and P = 0.13) by treatment. Within protein source, dietary RUP value was not affected (P = 0.94) by level of inclusion. When corrected for control diet RUP flow, the RUP value of the blood meal (BM) protein was higher (P = 0.01) than soybean meal (SBM); however, level of supplementation did not affect (P = 0.07) the RUP value of BM or SBM. In Exp. 2, 32 British x Continental crossbred steers (276 +/- 26.3 kg) were fed for 72 d to examine the effects of balancing the AA:energy ratio, using BM as a RUP source, on ADG, G:F, and lean tissue deposition. Diets were formulated to provide increasing levels of arginine, while ruminally degradable protein and energy were held constant. Four dietary treatments provided 0.5, 1, 1.5, and 2x the required amount of arginine, whereas the control diet had no BM included. Daily DMI averaged 7.6 kg/steer and did not differ (P = 0.71) among treatments. Steers gained an average of 1.9 kg/d and average G:F was 0.260, with no differences (P = 0.60 and P = 0.97, respectively) among treatments. There was no difference (P = 0.48) in the change in 12th-rib fat depth during the study; however, change in LM area was affected quadratically as the level of BM increased in the diet, with the greatest increase in LM area occurring in steers fed the 1x and 1.5x required arginine treatments. Balancing the AA:energy ratio did not affect G:F, DMI, or ADG; however, it increased deposition of lean in the LM quadratically. Level of dietary inclusion of BM as an RUP source does not affect its RUP value or efficacy of providing postruminal AA in growing steers.  相似文献   

4.
Our objectives were to determine the influences of supplemental nonprotein N or protein on feed intake, digestibility, and postabsorptive N metabolism in sheep fed a high-concentrate diet for ad libitum consumption. Nine Romanov-sired, crossbred wethers (13 mo old; 52 kg) were fitted with catheters in a mesenteric artery, mesenteric vein, portal vein, and hepatic vein. Wethers consumed a 95% concentrate diet ad libitum. Treatments consisted of control (no supplemental N; 6.6% CP) or supplemental urea (11.4% CP), soybean meal (SBM; 11.2% CP) or ruminally undegradable protein (BFM; 11.2% CP; 50:50 blood meal and feather meal). Intake or apparently digested intake of DM, OM, and energy did not differ between control and N-supplemented (P > 0.40), or between urea- and protein-supplemented (P > 0.40), but were greater (P < 0.05) in SBM- than in BFM-supplemented wethers. Intake and apparently digested intake of N were less (P < 0.01) in wethers fed the control diet than in those receiving N supplementation but were less (P = 0.03) in BFM- than in SBM-supplemented wethers. Neither portal nor hepatic venous blood flows differed (P > 0.15) among treatments. Net portal release and hepatic uptake of alpha-amino N and ammonia N and hepatic release of urea N were greater (P < 0.05) in wethers supplemented with N than in controls, but portal-drained viscera (PDV) uptake of urea N did not differ (P > 0.40) among diets. Splanchnic release of a-amino N and ammonia N did not differ from 0 or among diets (P > 0.10), but net release of urea N was less (P = 0.05) for control than for sheep receiving N supplementation. No differences (P > 0.10) in blood concentration within vessel or net flux across PDV, hepatic, or splanchnic tissues of alpha-amino N, ammonia N, or urea N were observed among wethers receiving supplemental N. Net uptake of oxygen by the PDV did not differ among diets, but hepatic uptake was less (P < 0.05) in control and urea-supplemented sheep than in sheep receiving SBM or BFM. These observations suggest that the source of supplemental N had no large effects on the overall N economy of the animals used in this study.  相似文献   

5.
Seven Meat Animal Research Center (MARC) III heifers (410+/-25 kg) fitted with hepatic portal, mesenteric venous, carotid catheters, and an abomasal cannula were used in a 7 x 5 incomplete Latin square design experiment. The objective was to evaluate the effects of increasing levels of ruminally degradable N (RDN) with or without the addition of abomasally infused casein on portal-drained visceral (PDV) flux of nutrients. Treatments consisted of dietary CP percentage levels of 9.5 (control), control plus .72% dietary urea (11.5U), control plus 1.44% dietary urea (13.5U), control plus abomasally infused casein (250 g/d; 11.5C), or control plus .72% dietary urea and abomasally infused casein (250 g/d; 13.5UC). All diets contained (DM basis) 80% ground corn, 15% corn silage, and 5% dry supplement and were provided for ad libitum consumption. Nitrogen intake increased (linear, P < .001) as CP increased from 9.5 to 13.5%. Portal-drained visceral release of ammonia N increased (linear, P < .10) as RDN increased, and was greater (P < .05) when protein was fed compared with heifers fed control (P < .10). Urea N removal by PDV was not affected ( P > . 10) by level of RDN but was greatest when 11.5C was fed and least when 13.5UC was fed. Net alpha-amino N (AAN) release by PDV was greatest when 13.5UC was fed (309 mmol/h), least when 9.5% CP was fed (112 mmol/h), and intermediate for the other groups (205 to 252 mmol/h). These data suggest that removal of N by the PDV may promote microbial protein synthesis when dietary RDN is low. When RDN needs have been met and amino acids are deficient for the host, escape protein should be fed to increase amino acid absorption.  相似文献   

6.
Four Nili-Ravi buffalo calves (100 ± 4 kg) were used in 4 × 4 Latin Square Design to evaluate the influence of varying ruminally degradable protein (RDP) to ruminally undegradable protein (RUP) ratio on dry matter intake (DMI), digestibility and nitrogen (N) metabolism. Four experimental diets A, B, C and D were formulated to contain RDP:RUP of 70:30, 65:35, 60:40 and 55:45, respectively. The calves were fed ad libitum. Dry matter intake by calves fed C diet was higher (P < 0.05) than those fed D diet and lower (P < 0.05) than calves fed A diet, however, it was similar to those fed B diet. There was a linear decrease (P < 0.01) in DMI with decreasing the RDP to RUP ratio. Similar trend was noticed in crude protein (CP) intake. Neutral detergent fiber (NDF) intake was significantly different across all treatment. The decrease in CP and NDF intake was due to decreasing trend of DMI. Dry matter (DM) digestibility in calves fed A and B diets was higher (P < 0.05) than those fed C and D diets. A linear decrease (P < 0.01) in DM digestibility was observed with decreasing the RDP to RUP ratio. Crude protein digestibility remained unaltered across all treatments. Neutral detergent fiber digestibility was higher in calves fed A and B diets than those fed C and D diets. Higher NDF digestibility in calves fed A and B diets was due to higher level of dietary RDP that might resulted in higher ruminal ammonia concentration which stimulate activity of cellulytic bacteria and ultimately increased NDF digestibility. The N retention (g/d) was similar among the calves fed B, C and D diets, however, it was higher (P < 0.05) than those fed A diet. Decreasing the RDP to RUP ratio resulted in linear increase (P < 0.01) in N retention. The N retention, as percent of N intake was significantly different across all treatments. Decreasing RDP to RUP ratio resulted in linear increase (P < 0.01) in N retention, as percent of N intake. A similar trend was noticed in N retention, as percentage of N digestion. Blood urea nitrogen (BUN) concentration in calves fed B diet was higher (P < 0.05) than those fed D diet and was lower (P < 0.05) than those fed A diet, however, it was not different from calves fed C diet. Decreasing dietary RDP to RUP ratio resulted in linear decrease (P < 0.05) in BUN concentrations. The decrease in BUN concentration was because of decreasing level of dietary RDP. The N retention can be increased by decreasing RDP to RUP ratio in the diet of growing buffalo calves and diet containing RDP to RUP ratio 55:45 is considered optimum regarding N retention in buffalo calves.  相似文献   

7.
试验选用3头体况健康,体重350 kg左右,并安装有瘤胃瘘管的鲁西黄牛,采用3×3拉丁方试验设计,饲喂3种RDP/RUP比例分别为1.00∶1.00(A组)、1.22∶1.00(B组)、1.50∶1.00(C组)的等能等氮日粮,研究其对瘤胃内环境参数的昼夜动态变化规律的影响。结果表明:瘤胃pH受日粮RDP/RUP比值差异的影响不显著(P>0.05),A、B和C组pH变化范围分别为6.53~6.94、6.44~6.84和6.45~7.03。各组瘤胃pH均在饲喂后2~4 h达到最低值,随后逐渐上升;瘤胃液尿素氮以C组最高,A、B 2组差异不显著(P>0.05)。各组瘤胃液尿素氮在08:00饲喂后2 h达到最高值,但20:00饲喂后各组变化趋势不一致。A、B 2组瘤胃液尿素氮浓度白天较低,夜晚较高,而C组正好相反;各组瘤胃液氨氮平均浓度差异不显著(P>0.05),动态变化趋势基本相同,均在饲喂后2 h达到最高值;瘤胃微生物蛋白(MCP)平均浓度随RDP/RUP比值升高而显著提高,C组显著高于A、B 2组(P<0.05)。各组瘤胃液MCP浓度均在饲喂后2 h达到最低值。结果显示,以瘤胃液MCP浓度为衡量指标,日粮适宜的RDP/RUP比例为1.50∶1.00。  相似文献   

8.
We hypothesized that oscillating dietary CP would improve N retention by increasing the uptake of endogenous urea N by portal drained viscera (PDV), compared with static dietary CP regimens. Chronic indwelling catheters were surgically implanted in the abdominal aorta, a mesenteric vein, a hepatic vein, and the portal vein of 18 growing Dorset x Suffolk wethers (44.6 +/- 3.6 kg of BW). Wethers had ad libitum access to the following diets in a completely randomized block design: 1) Low (9.9% CP), 2) Medium (12.5% CP), or 3) Low and High (14.2% CP) diets oscillated on a 48-h interval (Osc). Dry matter intake was greater (P = 0.04) for the Osc diet (1,313 g/d) than the Low diet (987 g/d) and was intermediate for the Medium diet (1,112 g/d). Nitrogen intake was not different between the wethers fed the Osc (25.4 g/d) and Medium diets (22.2 g/d), but was lower (P < 0.01) in wethers fed the Low diet (16.0 g/d). Wethers fed the Osc diet (6.7 g/d) retained more (P < 0.04) N than did those fed the Medium diet (4.0 g/d). Hepatic arterial blood flow was not different (P = 0.81) between wethers fed the Osc (31 L/h) or Medium diet (39 L/h) but was greater (P = 0.05) in wethers fed the Low diet (66 L/h). Net release of alpha-amino N by the PDV did not differ (P = 0.90) between the Low (37.8 mmol/h) and Medium diets (41.5 mmol/h) or between the Osc (53.0 mmol/h) and Medium diets (P = 0.29). Net PDV release of ammonia N was less (P = 0.05) for the Low diet than for the Medium diet, and this was accompanied by a similar decrease (P = 0.04) in hepatic ammonia N uptake. Urea N concentrations tended to be (P = 0.06) less in arterial, portal, and hepatic blood in wethers fed the Low diet compared with those fed the Medium diet. Wethers fed the Osc diet tended (P = 0.06) to have a greater PDV uptake of urea N than did those fed the Medium diet, but there was no difference between the Osc and Medium diets (P = 0.72) in hepatic urea N release. Net PDV uptake of glutamine tended to be greater (P < 0.07) in wethers fed the Low diet (6.7 mmol/h) than those fed the Medium diet (2.7 mmol/h). These data indicate that oscillating dietary protein may improve N retention by increasing endogenous urea N uptake by the gastrointestinal tract.  相似文献   

9.
Two trials were conducted to determine the effect of energy source (ENG) and ruminally degradable protein (RDP) on lactating cow performance and intake and digestion in beef steers. In Trial 1, 78 cow-calf pairs were used in a 2 x 2 factorial design to determine the effect of ENG (corn or soyhulls; SH) and RDP (with our without sunflower meal) to a forage diet for lactating beef cows. The basal diet consisted of 75% grass hay (11.5% CP) and 25% wheat straw (7.4% CP). Supplement treatments and predicted RDP balances were corn (-415 g of RDP/d); SH (-260 g of RDP/d); corn plus RDP (0 g of RDP/d); or SH plus RDP (0 g of RDP/d). Data were analyzed as a split-plot in time, with pen as the experimental unit (two pens per treatment). No interaction between ENG and RDP was present (P > 0.08) for any response variable. No differences (P > 0.39) due to ENG or RDP were noted for BW, BCS, or milk yield; however, final calf weight tended to increase with ENG (P = 0.06). In Trial 2, a 5 x 5 Latin square was used to determine effects of ENG and RDP on intake and digestion in steers (686 +/- 51 kg BW). Treatments were arranged as a 2 x 2 plus one factorial and comprised a control (CON; grass hay, 7% CP), grass hay plus 0.4% BW SH, grass hay plus 0.4% BW SH and 0.15% BW sunflower meal, grass hay plus 0.4% BW corn, and grass hay plus 0.4% BW corn and 0.2% BW sunflower meal. Preplanned contrasts included main effects of ENG and RDP, ENG x RDP interaction, and CON vs. supplemented (SUP) treatments. Supplementation increased total DMI compared with CON (P = 0.001), but forage DMI was greater (P = 0.001) for CON than for SUP. An ENG x RDP interaction occurred for forage DMI (P = 0.02); addition of RDP to corn decreased forage intake, whereas addition of RDP to SH had no effect. There was an ENG x RDP interaction (P = 0.001) for ruminal pH; pH tended to increase with RDP addition to SH (P = 0.07), but decreased with RDP addition to corn (P = 0.001). Supplementation increased ruminal ammonia compared with CON (P = 0.001). Likewise, RDP increased ruminal ammonia (P = 0.001). An interaction occurred for OM disappearance (OMD; P = 0.01). The RDP addition to SH numerically decreased OMD (P = 0.23), whereas RDP addition to corn numerically increased OMD (P = 0.14). Intake and digestion seem to respond differently to RDP addition depending on supplemental energy source. Both corn or SH seem to be suitable supplements for the quality of forage used in this trial. Addition of supplemental protein did not improve cow or calf performance.  相似文献   

10.
Changes in net portal and hepatic nutrient flux and oxygen consumption in response to 3-d abomasal casein infusions were studied in seven multicatheterized beef steers. Steers were fed 4.3 kg DM/d of a high-concentrate diet in 12 equal meals. Blood flow (para-aminohippurate dilution) and net flux (venoarterial concentration difference x blood flow) across portal-drained viscera (PDV) and hepatic tissues were measured on d 3 of the abomasal infusions. In two experiments, the response to 300 (300C) and 150 (150C) g casein/d were compared, respectively, to a control water infusion. The 300C increased (P less than .05) arterial blood concentrations of alpha-amino N (AAN), urea N and ammonia; 150C increased (P less than .05) arterial urea N. Urinary urea N excretion was increased (P less than .01) by 300C and 150C. Although 300C increased net PDV release of AAN (P less than .07) and alanine (P less than .10), there was no net change in total splanchnic (TSP) flux due to an increased net hepatic uptake of AAN (P less than .01) and alanine (P less than .05). Net PDV glucose flux was decreased (P less than .05) by 300C, but net hepatic glucose flux was not affected by either level of casein. The 150C increased TSP oxygen consumption (P less than .05) and hepatic oxygen extraction (P less than .10). Approximately 26 and 30% of the casein N infused abomasally appeared in the portal blood as AAN for 150C and 300C, respectively. The sum of net PDV ammonia and AAN fluxes accounted for 47 and 88% of the N infused for 150C and 300C, respectively. These data emphasize the importance of intestinal and liver tissues in regulating the flux of nitrogenous compounds absorbed from the diet.  相似文献   

11.
The objectives of this experiment were to investigate the effects of two ruminally degradable protein (RDP) levels in diets containing similar ruminally undegradable protein (RUP) and metabolizable protein (MP) concentrations on ruminal fermentation, digestibility, and transfer of ruminal ammonia N into milk protein in dairy cows. Four ruminally and duodenally cannulated Holstein cows were allocated to two dietary treatments in a crossover design. The diets (adequate RDP [ARDP] and high RDP [HRDP]), had similar concentrations of RUP and MP, but differed in CP/RDP content. Ruminal ammonia was labeled with 15N and secretion of tracer in milk protein was determined for a period of 120 h. Ammonia concentration in the rumen tended to be greater (P = 0.06) with HRDP than with ARDP. Microbial N flow to the duodenum, ruminal digestibility of dietary nutrients, DMI, milk yield, fat content, and protein content and yield were not statistically different between diets. There was a tendency (P = 0.07) for increased urinary N excretion, and blood plasma and milk urea N concentrations were greater (P = 0.002 and P = 0.01, respectively) with HRDP compared with ARDP. Milk N efficiency was decreased (P = 0.01) by the HRDP diet. The cumulative secretion of ammonia 15N into milk protein, as a proportion of 15N dosed intraruminally, was greater (P = 0.003) with ARDP than with HRDP. The proportions of bacterial protein originating from ammonia N and milk protein originating from bacterial or ammonia N averaged 43, 61, and 26% and were not affected by diet. This experiment indicated that excess RDP in the diet of lactating dairy cows could not be efficiently utilized for microbial protein synthesis and was largely lost through urinary N excretion. At a similar MP supply, increased CP or RDP concentration of the diet would result in decreased efficiency of conversion of dietary N into milk protein and less efficient use of ruminal ammonia N for milk protein syntheses.  相似文献   

12.
Our objectives were to determine effects of grain processing on splanchnic (gut tissues and liver) N metabolism and whole-body N balance by growing steers and to ascertain the relative contributions of ruminal and intestinal tissues to net absorption and utilization of N-containing nutrients. Seven beef steers (348 kg initial BW), surgically implanted with appropriate catheters, were fed diets containing 77% steam-flaked (SF) or dry-rolled (DR) sorghum grain. Blood flows and net output or uptake of ammonia N, urea N, and alpha-amino N (estimate of amino acids) were measured across portal-drained viscera (PDV or gut tissues) and intestinal, ruminal, hepatic, and splanchnic tissues (PDV + hepatic). The experimental design was a crossover between DR and SF diets, with six samplings of blood at 2-h intervals on 2 d for each steer. Nitrogen intake (139 +/- 3 g/d), output in urine (43 +/- 2 g/d), and retention (40 +/- 3 g/d) were similar for both processing treatments. When steers were fed SF sorghum compared to DR sorghum, N retention as a percentage of N intake was numerically greater (P < 0.12), output of fecal N was numerically lower (P < 0.13), and urinary urea N was lower (P < 0.04). For SF vs DR, net uptake of alpha-amino N by liver was higher (P < 0.04; 20 vs 9 g/d) and was numerically lower (P < 0.16) for ruminal tissues (15 vs 33 g/d). Feeding steers SF compared to DR tended to increase net transfer (cycling) of blood urea N to PDV (57 vs 41 g/d; P < 0.07), increased cycling to intestinal tissues (15 vs 6 g/d; P < 0.05), and numerically increased transfer to ruminal tissues (42 vs 32 g/d; P < 0.12) but did not alter other net output or uptake of N across splanchnic tissues. Total urea N transfer (blood + saliva) was similar for both treatments. Net uptake of alpha-amino N by ruminal tissues was about 30% of the net amount of alpha-amino N absorbed across the intestinal tissues. In summary, most of the blood urea N cycled from the liver to gut tissues was transferred to ruminal tissues for potential microbial protein synthesis, and the net ruminal utilization of alpha-amino N was about 30% of that absorbed from intestinal tissues. Feeding growing steers SF compared to DR sorghum diets numerically increased whole-body N retention (percentage of N intake) by about 15% and tended to increase transfer of blood urea N to the gut by about 40%, which could increase the supply of high-quality microbial protein for absorption.  相似文献   

13.
Abstract

Fifteen multiparous dairy cows were used in a five replicated 3×3 Latin square design to study the effects of ratio of rumendegradable-protein (RDP) and rumen-undegradable-protein (RUP) on nitrogen (N) conversion in Chinese Holstein dairy cows. Three diets were formulated isonitrogenously with varying ratio of RDP/RUP. High ratio of RDP/RUP resulted in high urinary N excretion and total N excretion, but no significant dietary effects were observed on milk yield, milk composition, and nitrogen excretion in faeces. Different protein degradability changed the partitioning of the N excretion between urine and faeces. Results indicated that reduction in ratio of RDP/RUP could improve the efficiency of N utilization in lactating dairy cows by reduced N excretion in urine and faeces without impairing milk production.  相似文献   

14.
We hypothesized that providing dried distillers grains with solubles (DDGS) would improve the N retention and use of nutrients by wethers fed a moderate-quality bromegrass hay. Additionally, we hypothesized that treatment effects on nutrient fluxes would be similar after 3, 6, or 9 wk on treatment. Chronic indwelling catheters were surgically implanted in a mesenteric artery, mesenteric vein, hepatic vein, and portal vein of 9 Suffolk x Dorset wethers (initial BW +/- SD = 57.4 +/- 6.1 kg). Wethers had ad libitum access to moderate-quality bromegrass hay (8.44% CP, DM basis) and received 100 g/d of either a corn-based (Corn, n = 4) or a DDGS-based (n = 5) supplement. There was no difference in DMI (P = 0.85) or DM digestibility (P = 0.46) between the 2 groups. There was a numerically greater N intake (21.5 vs. 18.4 g/d; P = 0.14) and N retention (4.4 vs. 2.5 g/d; P = 0.15) when wethers were supplemented with DDGS instead of Corn. Wethers fed DDGS had a greater (P = 0.008) release of alpha-amino N from the portal-drained viscera (PDV, 37.9 mmol/h) than those fed Corn (14.1 mmol/h). Similarly, there was a shift (P = 0.004) from a net splanchnic uptake to a net release of alpha-amino N in wethers fed DDGS (9.1 mmol/h) compared with those fed Corn (-9.6 mmol/h). However, there was no difference in ammonia release from the PDV (P = 0.49) or hepatic release of urea-N (P = 0.19) between the 2 treatments. There were very limited interactions between nutrient fluxes and the length of time after the initiation of treatments. However, there was a tendency (interaction, P = 0.07) for the PDV release of alpha-amino N to be greater at 6 and 9 wk after the initiation of the treatments than after 3 wk on treatment for wethers fed DDGS, although there was no difference over time for wethers fed the Corn supplement. Additionally, there were changes in numerous nutrient fluxes between 3 and 6 wk after the initiation of treatments regardless of treatment. These data indicate that DDGS is a viable supplement to enhance the nutriture of ruminants consuming moderate-quality forages. Additionally, these data indicate that the effects are discernible after 3 wk on treatment, with modest alterations in nutrient flux after additional time on treatment.  相似文献   

15.
The objective of this study was to determine the pattern of nutrient flux across portal-drained viscera (PDV) and liver in ewes with varying numbers of fetuses. Catheters were placed in the hepatic portal vein, a branch of the hepatic vein, a mesenteric vein, and the abdominal aorta of each ewe. Plasma flow and net cholesterol, nonesterified fatty acids (NEFA), and glycerol release across the PDV and liver were determined prior to exposure to rams. Ewes were subsequently mated. Two ewes were not pregnant, six ewes gave birth to singles, and 11 ewes gave birth to twins. Additional measurements were taken 103, 82, 61, 39, 19, and 6 d before parturition. There was a net PDV uptake of nonesterified cholesterol in the nonpregnant ewes and a net release in the ewes with singles and twins. Net nonesterified cholesterol hepatic release did not differ with days from parturition (P = .77). There was a net hepatic release of nonesterified cholesterol in the ewes with twins and a net hepatic uptake in the ewes with singles and in nonpregnant ewes (P = .03). There was a net PDV release of NEFA; however, it did not differ with litter size (P = .59) or days from parturition (P = .63). Hepatic NEFA uptake increased with litter size (P = .03) and increased as gestation progressed (P = .006). There was an interaction (P = .04) between litter size and days from parturition for net PDV glycerol release. Net PDV glycerol release in the nonpregnant ewes decreased over time, but release in pregnant ewes tended to increase over time. Hepatic glycerol uptake increased with litter size and increased as gestation progressed. There was a net PDV uptake of triacylglycerol, but it did not differ with litter size (P = .11) or with days from parturition (P = .06). There was a net hepatic release of triacylglycerol, but it did not differ with litter size (P = .59) or with days from parturition (P = .67). Liver utilization of glycerol and NEFA as substrates for metabolism increases as pregnancy progresses. In the nonpregnant ewe, the combined contribution of glycerol and NEFA carbon accounted for 10% of the carbon taken up by the liver, and in ewes pregnant with twins, the combined contribution accounted for 42% of the carbon uptake 19 d before parturition. In conclusion, these data demonstrate NEFA are an important metabolite when determining carbon balance across the liver and their relative contribution to carbon balance increases as pregnancy progresses.  相似文献   

16.
Two experiments were conducted to evaluate the effects of slow-release urea (SRU) versus feed-grade urea on portal-drained visceral (PDV) nutrient flux, nutrient digestibility, and total N balance in beef steers. Multi-catheterized steers were used to determine effects of intraruminal dosing (Exp. 1; n = 4; 319 +/- 5 kg of BW) or feeding (Exp. 2; n = 10; 4 Holstein steers 236 +/- 43 kg of BW and 6 Angus steers 367 +/- 46 kg of BW) SRU or urea on PDV nutrient flux and blood variables for 10 h after dosing. Intraruminal dosing of SRU (Exp. 1) prevented the rapid increase in ruminal ammonia concentrations that occurred with urea dosing (treatment x time P = 0.001). Although apparent total tract digestibilities of DM, OM, NDF, and ADF were not affected by treatment (P > 0.53, Exp. 2), SRU increased fecal N excretion (49.6 vs. 45.6 g/d; P = 0.04) and reduced apparent total tract N digestibility (61.7 vs. 66.0%; P = 0.003). Transfer of urea from the blood to the gastrointestinal tract occurred for both treatments in Exp. 1 and 2 at all time points with the exception for 0.5 h after dosing of urea in Exp. 1, when urea was actually transferred from the gastrointestinal tract to the blood. In both Exp. 1 and 2, both urea and SRU treatments increased arterial urea concentrations from 0.5 to 6 h after feeding, but arterial urea concentrations were consistently less with SRU (treatment x time P < 0.001, Exp. 1; P = 0.007, Exp. 2). Net portal ammonia release remained relatively consistent across the entire sampling period with SRU treatment, whereas urea treatment increased portal ammonia release in Exp. 1 and tended to have a similar effect in Exp. 2 (treatment x time P = 0.003 and P = 0.11, respectively). Urea treatment also increased hepatic ammonia uptake within 0.5 h (treatment x time P = 0.02, Exp. 1); however, increased total splanchnic release of ammonia for the 2 h after urea treatment dosing suggests that PDV ammonia flux may have exceeded hepatic capacity for removal. Slow-release urea reduces the rapidity of ammonia-N release and may reduce shifts in N metabolism associated with disposal of ammonia. However, SRU increased fecal N excretion and increased urea transfer to the gastrointestinal tract, possibly by reduced SRU hydrolysis or effects on digestion patterns. Despite this, the ability of SRU to protect against the negative effects of urea feeding may be efficacious in some feeding applications.  相似文献   

17.
We determined the effect of processing method (dry-rolled [DR] vs steam-flaked [SF]) and degree of processing (flake density; FD) of SF sorghum grain on splanchnic (gut and liver) metabolism of energy-yielding nutrients by growing steers. Diets contained 77% sorghum grain, either DR or SF, with SF at densities of 437, 360, or 283 g/L (SF34, SF28, or SF22). Eight multicatheterized steers (340 kg initial BW) were used in a randomized complete block design. Net output or uptake of glucose, L-lactate, VFA, and beta-hydroxybutyrate (BHBA) were measured across portal-drained viscera (PDV), liver, and splanchnic (PDV plus liver) tissues. Net absorption of glucose across PDV was negative and similar for all treatments (average of -104 g/d). Decreasing FD of SF sorghum grain linearly increased (P < or = .04) net absorption and splanchnic output of L-lactate by 20 and 130%, respectively, and hepatic synthesis (P = .06) and splanchnic output (P = .01) of glucose by 50%. Reducing FD did not alter output or uptake of acetate or n-butyrate by gut and liver tissues, but linearly decreased (P = .06) splanchnic output of BHBA by 40%. Net absorption (P = .18) and splanchnic output (P = .15) of propionate tended to be increased linearly by 50% with decreasing FD. Neither processing method (SF vs DR) nor degree of processing (varying FD) altered hepatic nutrient extraction ratios or estimated net absorption and splanchnic output of energy. Maximal contribution of propionate, L-lactate, and amino acids (alpha-amino N) to gluconeogenesis averaged 49, 11, and 20%, respectively. Feeding steers SF compared to DR diets did not alter net output or uptake of energy-yielding nutrients across splanchnic tissues, except net absorption of acetate tended to be greater (P = .13) for steers fed DR. Increasing degree of grain processing in the present study, by incrementally decreasing FD, tended to linearly increase the net absorption of glucose precursors (propionate and lactate), resulting in linear increases in synthesis and output of glucose by the liver to extrasplanchnic tissues (e.g., muscle).  相似文献   

18.
This experiment evaluated the effect of 2 levels of diet concentrate (20 and 40% of DM) and 2 levels of ruminally undegraded protein (RUP: 25 and 40% of CP) on nutrient intake, total and partial apparent nutrient digestibility, microbial protein synthesis, and ruminal and physiological variables. Eight Nellore heifers (233 +/- 14 kg of BW) fitted with ruminal, abomasal, and ileal cannulas were used. The animals were held in individual sheltered pens of approximately 15 m(2) and fed twice daily at 0800 and 1600 h for ad libitum intake. Heifers were allocated in two 4 x 4 Latin square designs, containing 8 heifers, 4 experimental periods, and 4 treatments in a 2 x 2 factorial arrangement. All statistical analyses were performed using PROC MIXED of SAS. Titanium dioxide (TiO(2)) and chromic oxide (Cr(2)O(3)) were used to estimate digesta fluxes and fecal excretion. Purine derivative (PD) excretion and abomasal purine bases were used to estimate the microbial N (MN) synthesis. No significant interaction (P > 0.10) between dietary levels of RUP and concentrate was observed. There was no effect of treatment (P = 0.24) on DMI. Both markers led to the same estimates of fecal, abomasal, and ileal DM fluxes, and digestibilities of DM and individual nutrients. Ruminal pH was affected by sampling time (P < 0.001), but no interaction between treatment and sampling time was observed (P = 0.71). There was an interaction between treatment and sampling time (P < 0.001) for ruminal NH(3)-N concentration. A linear decrease (P = 0.04) over sampling time was observed for the higher level of RUP, whereas a quadratic effect (P < 0.001) of sampling time was observed for the lower level of RUP. The higher level of dietary concentrate led to greater MN yield regardless of the level of RUP. The MN yield and the efficiency of microbial yield estimated from urinary PD excretion produced greater (P < 0.01) values than those estimated by either TiO(2) or Cr(2)O(3), which did not differ (P = 0.63) from each other. However, all methods yielded values that were within the range reported in the literature. In conclusion, no interactions between dietary levels of RUP and concentrate were observed for ruminal and digestive parameters. Neither RUP nor concentrate level affected DMI. Titanium dioxide showed to be similar to Cr(2)O(3) as an external marker to measure digestibility and nutrient fluxes in cattle.  相似文献   

19.
The objective of this experiment was to compare net nutrient absorption and oxygen consumption by portal-drained viscera (PDV) of catheterized Holstein steers (333 kg) when fed alfalfa or orchardgrass silage at two equalized intakes. The design was a 4 X 4 Latin square with a 2 X 2 factorial arrangement of alfalfa or orchardgrass fed at 65 or 90 g dry matter/kg.75 live weight daily. Blood flow through PDV (dilution of p-aminohippurate), net nutrient absorption and oxygen consumption (venoarterial concentration differences times blood flow) were measured hourly for 12 h, followed by measurement of N and energy balance over 7 d. Compared with orchardgrass, steers when fed alfalfa absorbed more NH3-N (P less than .05), branched-chain volatile fatty acids (P less than .10) and n-valerate (P less than .05). Silage type did not affect (P greater than .10) blood flow to or O2 consumption by PDV or net absorption of glucose, L-lactate, acetate, propionate, urea-N, alpha-amino N or most amino acids. Oxygen consumption by PDV as a percentage of whole-animal O2 consumption was not different (P greater than .10) for steers when fed orchardgrass (27.2) or when fed alfalfa (23.6). Interrelationships between N and energy metabolism were responsible for the increased (P less than .05) metabolizable energy/kilogram silage dry matter and increased (P = .10) N retention by steers when fed alfalfa compared with orchardgrass. The PDV accounted for a substantial portion of whole-animal O2 consumption.  相似文献   

20.
日粮营养因素对牛奶尿素氮含量的影响   总被引:1,自引:0,他引:1  
本研究收集了21个(92个处理组,551头奶牛)有关中国荷斯坦牛牛奶尿素氮(MUN)的试验资料分析日粮因素对MUN值的影响。结果为,在单因素回归分析中日粮粗蛋白(CP)含量、产奶净能(NEL)、瘤胃降解蛋白(RDP)含量、能蛋比(NEL与CP的比值,N∶P)和瘤胃未降解蛋白(RUP)含量与MUN值有极显著的回归关系(P0.01),CP含量的决定系数最高,然后依次是NEL、RDP含量、N∶P、RUP含量、酸性洗涤纤维(ADF)含量、RDP∶RUP、干物质采食量(DMI)和中性洗涤纤维(NDF)含量。在多因素回归分析中,每种日粮因素组合都与MUN值有极显著的回归关系(P0.01),同时含有CP含量和RDP∶RUP指标的公式的决定系数最高。结果表明,日粮CP水平是影响MUN值的最主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号