首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 390 毫秒
1.
DEM提取坡度·坡向算法的对比研究   总被引:4,自引:1,他引:3  
以1∶1万地形图数字化所生成的DEM为研究对象,采用6种算法分别提取坡度、坡向。通过比较不同算法所提取坡度的平均值、最大值、标准差、中误差以及坡向的标准差、变异系数、坡向余弦中误差及标准差、不同坡向面积数据,定量地分析中误差与地形变化的关系,找到研究区较合理的坡度、坡向的提取算法,进一步分析不同水平分辨率DEM所提取的坡度、坡向的面积误差变化规律。运用面积百分比加权总体误差和面积百分比平均总体误差的指标,获取2项指标与水平分辨率的线性函数关系,为实际工作选取适宜的水平分辨率提供依据。  相似文献   

2.
以1:1万地形图数字化所生成的DEM为研究对象,采用6种算法分别提取坡度、坡向。通过比较不同算法所提取坡度的平均值、最大值、标准差、中误差以及坡向的标准差、变异系数、坡向余弦中误差及标准差、不同坡向面积数据,定量地分析中误差与地形变化的关系,找到研究区较合理的坡度、坡向的提取算法,进一步分析不同水平分辨率DEM所提取的坡度、坡向的面积误差变化规律。运用面积百分比加权总体误差和面积百分比平均总体误差的指标,获取2项指标与水平分辨率的线性函数关系,为实际工作选取适宜的水平分辨率提供依据。  相似文献   

3.
【目的】研究坡面微地形DEM最佳分辨率的选择方法。【方法】以2种不同复杂程度的坡面微地形(微地形简单的裸坡小区、微地形复杂的翻耕小区)DEM作为研究对象,分析不同微地形DEM分辨率下坡度中误差(mS)、地表糙度(Cr)和微地形DEM生成时间3个参数的变化,从而确定坡面微地形DEM的最佳分辨率。【结果】采用坡度中误差法可以快速缩小分辨率的选择范围,增强了后续研究的目的性;随着分辨率的变化,2种微地形DEM地表糙度的变化趋势相似,并与分辨率呈幂函数关系;综合考量地表糙度和DEM生成时间,可以确定2种微地形DEM的最佳分辨率,且在源数据相同的情况下,最佳分辨率与微地形复杂程度并不相关。【结论】裸坡小区和翻耕小区DEM的最佳分辨率均为4mm,运用所建立方法选择微地形DEM的最佳分辨率是可行的。  相似文献   

4.
利用中低分辨率DEM提取坡耕地坡度信息的误差分析(英文)   总被引:1,自引:0,他引:1  
利用数字高程模型(DEM)实现坡耕地数据的自动提取和侵蚀状况调查,并与实地勘察及相关研究结果进行对比,分析利用中低分辨率DEM提取坡耕地坡度信息误差的来源及其对水土流失调查结果的影响。结果表明:利用忠县1∶50000地形图生成分辨率为25m的DEM,基于该分辨率DEM自动提取的坡耕地信息在评价其水土流失现状时与实地勘察和相关研究结果存在一定差异,其主要原因为:①该地区地貌特殊,平行岭谷地貌和出露的侏罗纪紫色泥(页)岩与砂岩互层结构共同作用形成的地形较为复杂,造成该区土地利用多以小地块为主的镶嵌结构,而分辨率较低的DEM对地形起伏的描述误差较大;②人为修建的梯田(水田)、坎田以及垄沟整地措施对坡耕地微观地形改变的影响较大。因此,在坡耕地水土流失现状评价中,单从中低分辨率DEM获取坡度信息来判断水土流失程度,将会产生较大误差。DEM分辨率越高,对与坡度有关的地貌和水文参数的描述越精确,提取的坡度信息越准确。中低分辨率坡度可以通过变换,使其接近较高分辨率坡度对地形起伏的反映能力。此外,还应加强实地勘察力度,并与计算机自动提取技术相结合,才是正确评价坡耕地水土流失的方法。  相似文献   

5.
DEM重采样坡度衰减分析   总被引:1,自引:0,他引:1  
张小诺  王宇  白天路 《湖北农业科学》2012,51(14):3088-3091
通过数字高程模型(DEM)重采样发现,随着水平分辨率的降低,地形也随着趋向平缓,坡度信息不断丢失,地面表达能力逐步下降.利用1∶10 000数字地形图生成5m水平分辨率DEM,以此为基准重采样生成10、20、40m水平分辨率的DEM,提取各水平分辨率DEM的坡度.对提取的5m水平分辨率DEM的坡度进行邻域分析,提取10、20、40m水平分辨率DEM的最大坡度,以此求取其与直接由相对应水平分辨率DEM提取的坡度的差值,并对坡度差值进行频率统计分析,同时分析了剖面曲率在重采样过程中的变化.结果表明,随着DEM水平分辨率的降低,坡度平均值不断降低,较小坡度的频率逐渐增大,较大坡度的频率逐渐减小.DEM水平分辨率较高时,坡度差值分布集中于较小坡度差值处,且范围集中;DEM水平分辨率越低,坡度差值分布曲线愈加分散,且集中于较大坡度差值处.DEM水平分辨率越高,剖面曲率曲线分布越广,DEM水平分辨率越低,曲线分布越窄,且变得集中,其中剖面曲率较高部分损失严重.  相似文献   

6.
【目的】针对中低分辨率数字高程模型(DEM)提取坡度的尺度效应问题,建立一种能够对中低分辨率坡度进行降尺度变换的方法。【方法】利用地形分形特性和半变异函数理论,可知坡度是分辨率和分维数的函数,从而对县南沟流域设立的建模区和检验区的坡度进行降尺度变换,并对变换结果进行精度评价。【结果】在0.2~1.0倍的原始分辨率坡度范围内,100,50和25m分辨率坡度分形变换后,与目标较高分辨率坡度在统计意义上相似,并且空间分布格局基本一致,其中0.2~0.25倍的原始分辨率坡度为最佳变换范围。【结论】分形变换可以为坡度的降尺度变换问题提供理论支持,对坡度变换方法的完善有重要意义。  相似文献   

7.
大面积梯田的修筑,极大地改变了地表微形态,使地表坡度、径流路径和汇流方式发生改变,进而影响到土壤侵蚀强度。基于5 m分辨率的DEM数据,利用真实田坎信息构建梯田DEM,采用AGREE算法对梯田DEM进行预处理,通过比较分析不同集水面积阈值提取的梯田DEM沟道信息,初步探索合适的填洼算法和流向算法应用于梯田DEM的水流路径模拟。结果表明:利用MG算法填洼处理,MFD-md算法确定流向,能够更好的模拟梯田区域的水流路径。  相似文献   

8.
基于DEM的数字地形分析   总被引:29,自引:0,他引:29  
该文在对数字高程模型(DEM)数据来源及结构、数字地形分析及其应用、基于DEM的地形分析中的不确定性和误差分析的基础上,以日本东北地区岩手县早池峰山为研究对象,美国MicroImage公司开发的TNTmips地理信息系统为工具,日本国土地理院发行的“数字地图25000”为基础数据,研究基于DEM的数字地形特征提取与分析方法,以及DEM精度对地形特征的影响. 研究结果表明:①以DEM为基础可提取多种地形特征,如坡度、坡向、坡面形态、流域边界、水流路径等,这些特征在地理信息系统的支持下均可用图形和属性数据来表示;②DEM水平精度对基于DEM提取的数字地形特征影响表现为:低精度的DEM将导致研究区平均坡度变小、坡度标准差变大;同时,DEM精度对不同坡度区域表现为不同的影响,其结果按坡度大致可划分为3种不同类型,即0°~10°、10°~35°以及大于35°; DEM精度对坡向的影响除平坡外变化较小,其中平坡面积随DEM精度的降低而增大;低精度的DEM将导致水文地形信息受损,这将严重影响流域水文模型参数的确立及水文过程模拟分析的精度.   相似文献   

9.
王秀云  陈晔  舒强  张强 《安徽农业科学》2006,34(15):3603-3604,3606
介绍了利用生成的1∶5万3、0 m分辨率溧水县DEM数据和土地利用类型栅格数据,借助于GIS软件,首先对DEM数据提取坡度信息,然后将坡度信息与土地利用类型栅格数据结合进行空间叠加分析,研究了溧水县不同土地利用类型在各个坡度级内的面积大小。  相似文献   

10.
【目的】在对SRTM DEM数据的处理过程中,不同的地貌类型,适用的坡度算法是不一样的。本文拟根据不同的地貌类型采用不同的计算法,通过比较分析,筛选出适合于研究区的坡度计算模型。【方法】对于丘陵、山地、高山等地貌类型,一般采用三阶反距离平方权差分算法精度最高,而对于平原、台地等地貌类型,则采用三阶不带权差分算法精度最高。本文采用太原市的SRTM DEM影像,采用3种算法计算其坡度并进行精度对比。【结果】通过判断3种坡度栅格模型的坡度起伏度值是否在阈值范围内,按照精度评判标准进行评价,表明通过混合算法坡度精度最高,三阶不带权算法精度次之,三阶反距离平方权算法精度最低。【结论】根据区域不同的地貌类型,选择不同的坡度计算方法,再将计算所得的各类型坡度栅格图进行镶嵌处理,才能做出最精确的坡度栅格图。本文根据研究区地形地貌特点,所筛选的混合算法是最适合于研究区地貌类型的计算方法。  相似文献   

11.
通过分析比较不同算法以及不同输入层因子,构建出最佳的黄龙山区油松人工林树高预测BP神经网络模型。以陕西省延安市黄龙县44块油松人工林样地实测数据为数据源,通过对6种BP神经网络的训练方法进行训练,经过反复筛选找出最优模型并与传统胸径-树高模型作比较;最后将BP神经网络中的输入因子从2个增加到6个后,经过反复训练筛选出最优模型与2因子的BP神经网络模型作比较。结果表明:1)贝叶斯归一化(BR)算法在6种算法中表现最佳,R2和MSE分别为0.963 0和1.168;2)不同隐含层节点数的选取会对BP神经网络模型的建立产生一定的影响,BP神经网络模型的决定系数(R2)随着隐含层节点数的增加呈现先上升后下降的趋势;均方误差(MSE)呈现先下降后上升的趋势,两者都在节点数为10时有极值,此时的模型为最优模型;3)当输入因子为胸径和优势树高时,油松人工林的最优模型结构为(输入层节点数:隐含层节点数:输出层节点数为2∶10∶1),此时BP神经网络模型对树高预测的决定系数(R2)和均方误差(MSE)分别为0.761 0和1.984 7;当输入因子为胸径、优势树高、林分密度、竞争指数、坡度和坡向时,最优模型结构为6∶10∶1,此时BP神经网络模型对树高预测的决定系数(R2)和均方误差(MSE)分别为0.844 7和1.955 7。由此得出,在建立油松人工林树高BP神经网络模型方面优化类算法要优于启发式下降算法;BP神经网络模型与传统模型相比,BP神经网络模型不需要目标方程结构,并且模拟和预测的精度均要优于传统模型;在原有BP神经网络模型的基础上再引入林分密度、竞争指数、坡度、坡向这些输入因子后所得到的新的BP神经网络模型对树高模型的建立和预测要优于原有BP神经网络模型。  相似文献   

12.
采用基于GIS的非累计流量的坡长直接提取算法(NCSL)和空间分析提取法(SAC)对陕北省安塞县10个样区的坡长进行提取,并计算相应的坡长因子。对不同DEM分辨率下的坡长提取结果对比,结果表明:NCSL对坡长的提取精度明显好于SAC的提取结果,其中DEM在5、10 m分辨率下的提取精度最好,且二者计算的坡长因子值差异不大,因此,可采用10 m分辨率NCSL方法提取坡长。  相似文献   

13.
[目的]本研究以湖南省石门县为例,采用普通克里格和基于MODIS和DEM数据的回归克里格方法,结合有限个采样数据对该区有机质进行空间预测,并进行对比分析。[方法]运用由地形参数(由DEM派生得到)、归一化植被指数(NDVI)以及由MODIS派生得到的地表温度(LST)等指标进行空间模拟,然后通过平均误差(ME)和均方根误差(RMSE)验证精度,数据的描述性统计及转换均通过软件实现。[结果]结果表明在有限个采样数据下,结合多元遥感数据的回归克里格方法优于普通克里格法,回归克里格法的平均误差和均方根误差均低于普通克里格法,相对提高值为6.03%。[结论]在低山丘陵区,运用MODIS数据及其他遥感数据对土壤有机质进行空间预测具有较好的效果。  相似文献   

14.
考虑不同地形和林木竞争对青冈栎树高与胸径关系的影响,构建青冈栎树高与胸径的哑变量模型,为青冈栎次生林的树高预测和可持续经营提供理论依据。以16个青冈栎次生林固定样地为研究对象,通过确定系数(R2)、赤池信息量准则(AIC)、均方根误差(RMSE)和平均预估误差(MPE)4个评价指标,从11个基础模型中筛选出最优的基础模型。利用F统计检验分析了不同坡向和坡度对青冈栎树高与胸径关系的影响,同时对Hegyi简单竞争指标进行了改进。基于坡向、坡度和竞争强度3个哑变量,构建青冈栎树高与胸径的哑变量模型。结果表明,对数模型M2为最优基础模型,其确定系数(R2=0.686)最大,均方根误差(RMSE=1.380)和平均预估误差(MPE=1.242)最小;不同坡向和坡度下,模型的F统计值均大于F临界值;Hegyi改进指标与树高、胸径的相关系数达到-0.452、-0.418,相比Hegyi简单竞争指标有明显提高;基础模型中引入坡向、坡度和竞争强度哑变量后,模型的拟合精度均显著提高,R2提高了0.035,RMSE减少了0.077,MPE减少了0.070%。从林木的水平和垂直空间上构建青冈栎林木竞争指标更加准确,坡向、坡度和林木竞争对青冈栎树高与胸径关系存在显著影响。综合考虑地形与林木竞争的哑变量模型拟合精度更高,能为青冈栎树高生长的预测提供参考。  相似文献   

15.
基于机载LiDAR数据的林下地形提取算法比较与组合分析   总被引:2,自引:2,他引:0  
激光雷达(LiDAR)克服了传统测量技术的缺点, 成为了获取DEM的新型手段。针对不同地形林区,选择合理的点云滤波算法,是提取林下地形的关键步骤。本研究在黑龙江省凉水自然保护区内选择了3块具有代表性的区域,分别为平缓山地林区、陡峭山地林区和复杂地区。以1:10 000地形图矢量化生成的高精度DEM为参考,评价了迭代线性最小二乘法、基于坡度法、不规则三角网法(TIN)点云滤波算法在3种地形的适应性。结果表明:不同算法有不同的适应区域。3种方法在平缓山地林区都具有良好的效果,决定系数(R2)均达到了0.98,均方根误差(RMSE)均低于0.21 m。迭代线性最小二乘法在复杂地区滤波效果最好,R2为0.94,RMSE为0.21 m;不规则三角网法在陡峭山地林区效果最好,R2为0.99,RMSE为1.43 m。但是,单一的方法在复杂区域情况下、陡峭山地林区,有明显的分类误差,会将植被分为地面点。为提高林下地形提取精度,本文提出不同滤波方法的组合双重滤波,结果表明,迭代线性最小二乘法和不规则三角网方法组合可以在减少参数调整情况下得到良好滤波效果,对复杂地区、陡峭山地林区滤波效果大大改善。   相似文献   

16.
地形坡度对星载LiDAR(lightdetection and ranging)估测最大树高具有较大的影响。为了提高坡度条件下树高的反演精度,通过建立坡地条件下5种不同的最大树高估测模型,前3个模型分别使用不同DEM(digital elevation model)数据的地形指数来量化地形坡度的Xing模型,第4个模型使用波形参数-未改进边缘长度来量化地形坡度,第5个模型与第4个模型类似,用改进边缘长度来替换未改进边缘长度。结果可知,波形参数模型的精度要高于使用DEM数据的地形指数的Xing模型的精度,第5个模型的精度要高于第4个模型的精度。表明波形参数量化地形坡度的能力要优于DEM数据的地形指数,而改进边缘长度模型更适合估测坡地的最大树高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号