首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This study was carried out to examine the survival of infective Ostertagia ostertagi larvae (L(3)) on pasture under different simulated conditions of grazing, i.e. mixed grazing of cattle and nose-ringed sows, or grazing by cattle alone. Standardised pats of cattle faeces containing O. ostertagi eggs were deposited on three types of herbage plots, which were divided into zone 1: faecal pat; zone 2: a circle extending 25cm from the edge of the faecal pat; zone 3: a circle extending 25cm from the edge of zone 2. For "tall herbage" (TH) plots, the herbage in zone 2 was allowed to grow naturally, while the herbage in zone 3 was cut down to 5-7cm fortnightly, imitating a cattle-only pasture. For "short herbage" (SH) plots, the herbage in both zones 2 and 3 were cut down to 5-7cm fortnightly, imitating mixed grazing of cattle and sows. The grass in the "short herbage and scattered faeces" (SH/SF) plots were cut as for SH plots, and the faeces were broken down 3 weeks after deposition and scattered within zone 2, imitating the rooting behaviour of co-grazing sows. Five faecal pats from each plot group were collected on monthly basis, along with the herbage from zones 2 and 3 cut down to the ground. Infective larvae were then recovered from both faeces and herbage. The numbers of L(3) recovered from zone 1 were higher in the TH plots than in the other two groups and, furthermore, the larval counts from SH plots were always higher than from SH/SF plots. The three groups followed a similar pattern during the season regarding numbers of L(3) in zone 2, and no clear patterns between plot types were obtained. The presence of L(3) in zone 3 was almost negligible. Important differences were seen throughout the study from the biological point of view; more L(3) were able to survive in faeces on the TH plots, presumably reflecting a better protection from heat and desiccation compared to those in the other plots. The overall results support the idea that mixed grazing of cattle and pigs favour the reduction of O. ostertagi larval levels in pasture. This reduction is mainly due to the grazing behaviour of pigs, which by grazing up to the very edge of the cattle faeces, will either expose the larvae in faeces to adverse environmental summer conditions or ingest cattle parasite larvae, or both.  相似文献   

2.
A 4-year study on the free-living stages of cattle gastrointestinal nematodes was conducted to determine (a) the development time from egg to infective larvae (L3) inside the faecal pats, (b) the pasture infectivity levels over time, and (c) the survival of L3 on pasture. Naturally infected calves were allowed to contaminate 16 plots on monthly basis. Weekly monitoring of eggs per gram of faeces (epg) values and faecal cultures from these animals provided data for the contamination patterns and the relative nematode population composition. At the same time, faecal pats were shaped and deposited monthly onto herbage and sampled weekly to determine the development time from egg to L3. Herbage samples were collected fortnightly over a 16-month period after deposition to evaluate the pasture larval infectivity and survival of L3 over time. The development time from egg to L3 was 1-2 weeks in summer, 3-5 weeks in autumn, 4-6 weeks in winter, and 1-4 weeks in spring. The levels of contamination and pasture infectivity showed a clear seasonality during autumn-winter and spring, whilst a high mortality of larvae on pasture occurred in summer. Ostertagia spp., Cooperia spp. and Trichostrongylus spp. were predominant and a survival of L3 on pasture over a 1-year period was recorded in this study.  相似文献   

3.
Observations were made on the abundance and survival of Haemonchus placei, Cooperia punctata and Oesophagostomum radiatum infective larvae from cattle faecal pats exposed at various times of the year in north Queensland wet tropics. Pats exposed in the hot, wet season yielded abundant larvae on herbage. In the dry season, although low numbers of infective larvae were usual, considerable numbers were produced under conditions of heavy dews on dense herbage. Irrespective of season of deposition of pats, the resulting larvae persisted generally for not longer than 10 to 12 weeks, and in large numbers for only 2 to 6 weeks. The findings suggest that prevention of contamination in the wet season, and in the dry season when light rainfalls are accompanied by heavy dews on dense herbage, will result in low levels of larval infestation on herbage. Rotational grazing in the area is suggested as a means of worm control.  相似文献   

4.
The survival of Haemonchus contortus infective larvae on pasture and soil was studied over a period of 12 months in the Baghdad area. Infective larvae were found on herbage and soil at all times except in the summer months. During autumn and winter infective larvae in pasture survived for periods of up to 32 weeks. Little larval migration into soil was observed during this study and larvae did not survive for long in the faecal pellets during the summer.  相似文献   

5.
The dynamics of pasture populations of infective larvae (L3) of Cooperia, Haemonchus and Trichostrongylus species were studied at Nsukka, eastern Nigeria, during April to November 1984. Six paddocks were contaminated artificially and one was contaminated naturally. Five of the paddocks, P1-P5, were sequentially contaminated with faeces of naturally infected cattle at approximately 4-6-weekly intervals. Paddocks P6 and P7 were repeatedly contaminated every 4-6 weeks artificially and by the naturally infected cattle, respectively. Larval development and survival occurred very readily during the wet season (April-October) but apparently ceased in November at the start of the dry season. Larval migration, however, occurred not only during the rains but also during the first 4 weeks of the dry season. Single contaminations during the rains quickly gave rise to single waves of infestation which also declined rapidly, in spite of the continuously favourable conditions for larval development and survival. The repeated contaminations produced three and four distinct and relatively short-lived larval peaks, respectively, with the first three peaks on both paddocks, namely the May, July and September/October peaks, being coincident. The four waves of herbage infestation on P7, which occurred at approximately 4-5 weekly intervals, were considered to have originated from four separate generations of the three trichostrongylids. However, Trichostrongylus sp. predominated in the first (May) peak while Cooperia and Haemonchus dominated the later peaks.  相似文献   

6.
SUMMARY Development of the free-living stages of strongylid nematodes of the horse to the infective stage occurred in faeces in all months of the year in southern Queensland, at a rate which depended on the season. Most rapid development to the infective stage occurred in the warmer months, with the hatching of strongyle eggs being completed in 2 days in summer. During the winter, egg hatching continued for over 2 weeks. Larval moults proceeded at a faster rate in summer—all larvae were infective in 7 days during the hottest months, but it was as long as 5 weeks before all were infective in winter. However, even though development was rapid in summer, survival rates varied from 1 to 10%, in contrast to the spring and autumn, when over 80% reached the infective stage. One percent of larvae in faeces survived for up to 20 weeks in autumn and winter, but for only 4 weeks in summer. These results highlight the inadequacy of short-term pasture spelling for all but the hottest months. Infective larvae were found on herbage in all months of the year, but greatest numbers were recovered in spring and early summer, and in autumn and early winter. The relationship of pasture infestation to migration of larvae from Paecal reservoirs in response to rain was clearly shown. Most infective larvae were found within 30 cm of faecal masses, and in fact 89% of all larvae isolated from herbage in this study were found within 15 cm of faeces. Migration of larvae from faeces to herbage occurred with falls of rain as small as 25 mm. Horse faecal masses dried out completely in 6–8 days in summer and in 14–16 days in winter. Strongyle larvae developed to the infective stage in faeces in the absence of rain, although many remained in the pre-infective stage and completed their development when rain fell. This study shows that massive contamination of pastures with the eggs of strongylid nematodes must be prevented in spring and autumn if susceptible young horses are not to be at serious risk.  相似文献   

7.
The development of the free-living stages and yields of infective third stage strongyle larvae in faeces from a horse with a mixed natural infection deposited on pasture plots were studied over a 2-year period in a coastal area in tropical north Queensland. Two sets of faecal masses (one exposed to, and the other protected from the action of a natural population of dung beetles) were deposited monthly and after 7 days faecal samples were taken for larval recovery and counts. Hatching and development of the free-living stages occurred in faeces on pasture throughout the year. Development was rapid as infective stages were reached within a week of faecal deposition in all months. Yields of infective larvae were affected by the season and the action of dung beetles on the faecal masses. Highest yields were obtained from both beetle-exposed and protected faeces during winter (June to August) and lowest yields were in spring (September to November). High temperatures in spring and summer resulted in low yields of larvae, however, the dry conditions in spring made this season the most unfavourable period. In autumn and winter the temperatures were never low enough to stop or markedly slow down the rate of development, and allowed the development of large numbers of infective larvae. Dung beetle activity was observed throughout the year, and exposed faeces were usually completely dispersed within 24 h of deposition. This resulted in lower yields of infective larvae from these than from protected faeces. Though larval yields were lower, the actual numbers were still substantial so as to cast doubt on the usefulness of these beetles as biological control agents for equine strongylosis in the dry tropics.  相似文献   

8.
A field experiment was conducted over two grazing seaons with calves on a permanent pasture in order to follow the pattern of infection with Dictyocaulus viviparus. Infective larvae persisted during the first, but not during the second, winter of observation. By means of the agar-bile herbage technique, a moderate first peak of infection was demonstrated in the pasture 2–3 weeks before the appearance of respiratory signs in the calves. Fluctuations in faecal larval output were reflected in the herbage contamination with infective larvae close to faecal pats. This, as well as the horizontal dispersion of larvae in the pasture, took place in less than a week. The proportion of lungworm larvae recovered away from faeces was low during a period of dry and hot weather while herbage sampling at two-hour intervals during two days showed an increase in herbage contamination with lungworm larvae, but not with trichostrongyle larvae between 10 a.m. and 12 noon.The infectivity of the pasture was monitored by tracer calves and compared with the results of the pasture sampling. The general course of the infection in the calves and in the pasture was the results of interaction between them. In addition, the pasture infection was influenced by climate and the infection in the calves by the development of immunity. The course of infection in individuals appeared to have an influence on the general course of the infection through the contamination of the pasture.  相似文献   

9.
A study was carried out on a ranch in the semi-arid area of Kajiado District in Kenya during the period July 2000 to June 2001 to determine the seasonal patterns of development and survival of gastrointestinal nematodes of sheep on pastures. A series of plots were contaminated with sheep faeces every month and pasture samples were collected weekly for the recovery and identification of larvae. The availability of infective larvae on naturally contaminated pastures was also monitored on the paddocks grazed by sheep and around the night pen and the watering point every month from July 2000 to June 2001. The results from the examination of the pasture samples indicated that rainfall distribution was the major factor governing the development and survival of the pre-parasitic stages. No parasitic larvae were detected from the plots contaminated during the dry months from July to October 2000, but development and translocation of infective larvae on pastures occurred on plots contaminated during the rainy seasons and soon after when relatively high moisture was present in the herbage (November 2000 to June 2001). During this period, peak larval counts occurred between the first and the second week post contamination, then declined to undetectable levels between week 4 and 16 post contamination. The lack of development of infective larvae during the dry season and the relatively rapid decline of their population during the wet season presents an opportunity for the use of pasture spelling as a means of helminth control in the study area. The availability of infective larvae on naturally contaminated pastures, around the night pen and around the watering point also followed the rainfall distribution pattern. Infective larvae were consistently recovered around the watering point throughout the study period. This indicated that the point is an important source of infection for sheep, especially during the dry season when other pastures are non-infective.  相似文献   

10.
Contrasting herbage diets were fed to lambs to evaluate their effect on subsequent development of Trichostrongylus colubriformis larvae in faeces and on pasture. The diets had either no condensed tannin (CT), lucerne (Medicago sativa cv. Otaio), white clover (Trifolium repens cv. Tahora), or had moderate to high concentrations of CT, sulla (Hedysarum coronarium cv. Grassland Aokau), Lotus corniculatus (cv. Grasslands Goldie), L. pedunculatus (cv. Grassland Maku), Dorycnium pentophyllum, and Dorycnium rectum. Trials were carried out in summer (warm) and in autumn (cool and moist). In summer, egg viability was evaluated in vitro with egg hatch and larval development assays. In both seasons faeces were placed on pasture to compare recovery of eggs and larvae from faeces and larvae from herbage on the high and low fertility farmlets on the AgResearch Ballantrae Hill Country Research Station. D. rectum and D. pentophyllum diets decreased (P<0.01) egg hatching and larval development in laboratory assays relative to other diets. In summer, the number of larvae recovered from faeces placed on pasture was far greater (P<0.001) if the lambs had been fed lucerne than any other diet, whereas recovery was always lowest from faeces of sheep fed D. rectum and D. pentophyllum. Although dietary differences were lower in autumn than in summer, larval recoveries were lower (P<0.05) from faeces of lambs fed D. rectum and L. corniculatus than from white clover, lucerne and sulla diets. This study indicates that the diet of the host can have a significant impact on egg hatching and the subsequent development of T. colubriformis larvae in the laboratory and in the field. In particular, D. rectum consistently reduced T. colubriformis development. Effects measured in vitro generally under-estimated effects measured under field conditions.  相似文献   

11.
Two worm-free grass paddocks, P1 and P2, were artificially contaminated in March and April-May, respectively, with bovine faeces containing known numbers of trichostrongyle (mainly Cooperia, Haemonchus and Trichostrongylus spp.) eggs in order to determine the relative contributions of late dry-season and early rains pasture contaminations to the wet-season herbage larval infestation in Nsukka, eastern Nigeria. The resulting herbage infestation was assessed by means of larval counts and tracer studies. A sudden rise in herbage infestation occurred simultaneously in both paddocks in late April, this apparently being determined by the onset of the first substantial rainfall of the wet season. Peak infestations in both paddocks also occurred simultaneously in May. The infestation in P1 was much larger, and the larval population persisted longer, than that in P2 and later gave rise to a second smaller peak in June. No L3 were recovered in herbage samples from either of the paddocks after the third week of July. Both paddocks were infective to goats in May-June, while P2 was also infective in July-August. The results suggest that in the Nigerian derived savanna the initial wet-season herbage infestation in pastures grazed by infected cattle during the dry and wet seasons will consist of L3 from late dry-season and early rains pasture contaminations, the former being the major contributor to the infestation. Consequently, pastures contaminated during the late dry season may not be safe for susceptible animals to graze at the start of the succeeding rainy season.  相似文献   

12.
Four grass plots were sequentially contaminated with goat faeces containing known numbers of unembryonated eggs of predominantly Haemonchus contortus and Trichostrongylus spp. between October 1982 and April 1983. Four other plots were similarly contaminated with sheep faeces between February and May 1987. An additional plot was repeatedly contaminated with sheep faeces from February to April 1987. Populations of free-living stages in faeces and of infective larvae (L3) in the herbage were subsequently monitored until the end of April and June of 1983 and 1987 respectively. During February and May 1987 two control cultures of sheep faeces were incubated in the laboratory at 25°C–30°C and at a constant temperature of 50°C and the free-living development was also monitored. L3 developed very readily in the faeces cultured at 25°C–30°C and in those spread on a grass plot in October, at the end of the wet season, but developed less on the plot contaminated in May at the start of the wet season. Worm eggs in faeces deposited on plots during the hot dry season (December to April) or incubated at 50°C died and disintegrated after 24–48 h exposure to the high environmental temperatures. The results indicate that it is unlikely that gastrointestinal nematodes of sheep and goats can develop or survive on open pasture during the dry season in the Nigerian derived savanna zone.  相似文献   

13.
A study was conducted over 3 years (1998-2000) to investigate larval availability of gastrointestinal nematodes from faeces of cattle reared under different parasite control schemes. These cattle were part of a parallel, but separate grazing trial, and were used as donor animals for the faecal material used in this experiment. At monthly intervals, faeces were collected and pooled from three groups of first-season grazing cattle. These groups were either untreated, ivermectin bolus treated or fed the nematophagous fungus Duddingtonia flagrans. The untreated and fungus treated animals were infected with gastrointestinal nematodes and the number of eggs per gram (epg) pooled faeces ranged between 50 and 700 in the untreated group and between 25 and 525 epg in the fungus treated group. Each year between June and September, artificial 1 kg dung pats were prepared and deposited on pasture and protected from birds. The same treatments, deposition times and locations were repeated throughout the study. Larval recovery from herbage of an entire circular area surrounding the dung pats was made in a sequential fashion. This was achieved by clipping samples in replicate 1/4 sectors around the dung pats 4, 6, 8 and 10 weeks after deposition. In addition, coinciding with the usual time of livestock turn-out in early May of the following year, grass samples were taken from a circular area centred where the dung pats had been located to estimate the number of overwintered larvae, which had not been harvested during the intensive grass sampling the previous year. It was found that recovery and number of infective larvae varied considerably within and between seasons. Although the faecal egg counts in 1999 never exceeded 300 epg of the faecal pats derived from the untreated animals, the abnormally dry conditions of this year generated the highest level of overwintered larvae found on herbage in early May 2000, for the 3 years of the study. Overall, biological control with D. flagrans significantly reduced larval availability on herbage, both during and between the grazing seasons, when compared with the untreated control. However, the fungus did not significantly reduce overwintered larvae derived from early season depositions (June and July), particularly when dung pats disappeared within 2 weeks after deposition. Very low number of larvae (<3 per kg dry herbage) were sporadically recovered from grass samples surrounding the ivermectin bolus faecal pats.  相似文献   

14.
On a series of pasture plots, 2 kg pats of bovine faeces containing known numbers of strongylid (Haemonchus, Cooperia, Oesophagostomum and Trichostrongylus) eggs were deposited at intervals of 4 weeks from July 1995 to June 1996. The plots were sampled every 2 weeks after contamination and infective larvae were identified and counted. Larvae of all the genera developed throughout the year, but the pats exposed during the rainy season yielded more abundant larvae on the herbage. Irrespective of the season of deposition of the pats, larvae were found in larger numbers from 2 to 6 weeks after deposition and generally declined to below detectable levels within 12 to 16 weeks of contamination. The comparatively short survival times noted in this experiment may present opportunities for manipulation of the population dynamics of the gastrointestinal nematodes in the tropical environment of Kenya.  相似文献   

15.
During the 1997 Swedish grazing season, faeces were collected every 3 weeks on 7 occasions from young grazing cattle with moderate nematode parasite infections. From this source 12, 400 g dung pats were set up on each sampling occasion on a specially designated area of pasture. Half of these pats were placed on pasture where it was aimed to prevent snow cover during the subsequent winter. During the grazing season, herbage growth was kept at reasonably uniform height by clipping and the dung pats were protected from destruction by animals and birds. At the time of animal turn-out the following year (7th April 1998), it was observed that all dung pats had disappeared. Assessments of the survival of infective larvae, both on pasture and in soil, were made in a circular area encompassing the location of each pat. These sampling procedures were completed within a 3 week period. All faecal deposits yielded infective larvae at turn-out the following year, with proportionally greater numbers developing from nematode eggs deposited in cattle dung during the mid third of the previous grazing season. The surface layer of soil was found to be an important reservoir for infective larvae, with numbers recovered being approximately half those found in the overlying pasture samples. No significant differences were found between the normal pasture and snow excluded pasture in the number of infective larvae recovered from both pasture and soil samples. The epidemiological consequences of these findings are discussed.  相似文献   

16.
As part of a study on the epidemiology of Nematodirus species of sheep in subarctic Greenland, the development and persistence of eggs and larvae were investigated by experimentally contaminating plots of pasture with infected faeces and by placing tubes containing a suspension of eggs on to or into the soil. Despite low ambient temperatures, infective larvae appeared within a month during the summer. The greatest numbers of larvae were recovered from herbage in August and September. Eggs did not develop synchronously as development beyond the morula stage could be delayed for up to two years. Larvae were found on herbage for up to 37 months after faecal deposition. In the sheep rearing area of Greenland, therefore, Nematodirus species larvae can be present on herbage throughout the whole summer but peak numbers occur late in the grazing season.  相似文献   

17.
Development and survival of Haemonchus contortus larvae were studied from December 1987 to November 1988 during three different periods (dry season, first and second rainy seasons) on an experimentally infected pasture at Bunia (Ituri, Za?re). Whatever the season, eggs developed into infective larvae within six days and the largest number of larvae on the herbage occurred between the 12th and the 18th day post deposition. However, the two rainy seasons were the most favourable for transmission because of the high number of larvae on the pasture and the increased survival of these larvae after 4 weeks.  相似文献   

18.
An experiment was carried out in 1997 to test the efficacy of an isolate of the microfungus Duddingtonia flagrans against free-living stages of horse strongyles under conditions in the field and to assess the eventual effect of the fungus on the normal degradation of faeces. Faecal pats were made from faeces of a naturally strongyle infected horse, which had been fed fungal material at a dose level of 106 fungal unit/kg bwt. Control pats without fungi were made from faeces collected from the same animal just before being fed fungi. Faecal cultures set up for both groups of faeces to monitor the activity of the fungus under laboratory conditions showed that the fungus significantly reduced the number of infective third-stage larvae (L3) by an average of 98.4%. Five faecal pats from each batch of faeces were deposited on pasture plots at 3 times during spring-summer. The herbage around each pat was sampled fortnightly to recover L3 transmitted from faeces. The results showed that the herbage infectivity around fungus-treated pats was reduced by 85.8-99.4%. The remaining faecal material at the end of each sampling period was collected, and the surviving L3 were extracted. Significantly fewer larvae were recovered from the fungus-treated pats. Analysis of wet and dry weight of the collected pats, as well as their organic matter content, were performed to compare the degradation of faeces of both groups. The results indicated that the presence of the fungus did not alter the degradation of the faeces.  相似文献   

19.
The seasonal changes in longevity on herbage of the infective larvae of strongylid nematodes of the horse were studied. During the summer months, 1% of the larvae survived on herbage for 2-3 weeks, with 0.2% still viable for a further 2-3 weeks. Equivalent survival periods in winter were 7-11 weeks and over 11 weeks respectively. During spring and autumn, larvae survived for periods varying from 3-8 weeks. On Rhodes grass (Chloris gayana) growing vigorously in the summer of 1976, the majority of larvae remained in the lowest layers of the pasture, within 10 cm of the soil surface. Very few reached the highest fraction of grass sampled, above 40 cm from the soil. More larvae were recovered higher on the pasture in a period when less torrential rain had occurred. It was concluded that the parasitological benefits to be gained from short-term mixed grazing with horses and cattle may be minimal, in view of the tendency of cattle to eat only the upper layers of the pasture initially, with a consequent increase in the number of infective larvae per unit weight of herbage remaining.  相似文献   

20.
Infection with the gastrointestinal nematode Haemonchus contortus causes considerable losses in the sheep industry. In this study, we evaluated the effect that climate has on third-stage larvae (L3) of H. contortus in terms of their migration from sheep feces to Brachiaria decumbens grass, as well as their distribution among the forage plants. Fecal samples containing H. contortus L3 was deposited on the soil among the herbage at an initial height of 30 cm. Sample collection began 24h after contamination and was performed on alternate days over 13 days. The L3 were recovered and quantified in three strata (heights) of grass (0-10 cm, 10-20 cm and >20 cm) as well as in the remaining feces and a superficial layer of soil, collected from beneath the feces. In order to obtain results under different environmental conditions, fecal samples containing H. contortus L3 were deposited on pasture in January (summer), in April (autumn), and July (winter). In all of the periods, the L3 were able to migrate from the feces to the herbage. However, rains, accompanied by high relative humidity and high temperatures, apparently favored migration. The highest L3 recovery rate in the pasture was in the summer observation period, which had the highest number of days with measurable precipitation, high relative humidity (>68.2%), and the highest temperatures at the soil level (minimum and maximum means of 19°C and 42°C, respectively). Under those conditions, larvae began to reach the upper stratum of the grass (>20 cm) by 24h after the deposition of fecal matter, the number of larvae having reached that stratum peaking at seven days after deposition. In the autumn observation period, there was no rainfall in the first five days post-contamination. During that period, high numbers of larvae were found in the fecal samples demonstrating that feces can act as a reservoir of larvae in the absence of rain. Except for two days in the summer observation period, when most of the L3 were recovered from the tops of blades of grass, L3 where located predominantly at the base of the herbage. In conclusion, rainfall favors the migration of L3 from feces to herbage. In addition, larval migration up and along blades of grass can occur relatively rapidly when the temperature is high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号