首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Interactions between 10 aroma compounds from different chemical classes and 5 mixtures of milk proteins have been studied using static or dynamic headspace gas chromatography and solid-phase microextraction (SPME). Static headspace analysis allows the quantification of the release of only the most abundant compounds. Dynamic headspace analysis does not allow the discrimination of flavor release from the different protein mixtures, probably due to a displacement of headspace equilibrium. By SPME analysis and quantification by GC-MS (SIM mode) all of the volatiles were quantified. This method was optimized to better discriminate aroma release from the different milk protein mixtures and then from oil/water emulsions made with these proteins. The highest difference between the release in different proteins was observed for ethyl hexanoate, which has a great affinity for beta-lactoglobulin. Ethyl hexanoate is thus less released from models and emulsions containing this protein.  相似文献   

2.
The influence of storage on the aroma release in headspace and rheological properties in strawberry-flavored fatfree stirred yogurts was determined. Three periods of storage at 10 degrees C were chosen for analysis: 7, 14, and 28 days. The headspace composition was assessed in a flask in static mode. The SPME fiber was carefully chosen, and results are presented in detail (choice and degradation). The flow properties of the final product were measured in order to follow n (flow behavior index) and K (consistency index), and the apparent viscosity was determined (eta in Pa.s). The quantity of flavors in the headspace of products at the 28 days of aging was significantly weaker for methyl 2-methyl butanoate, ethyl hexanoate, and hexyl acetate. The decrease was half of that in comparison with the seventh day. It was supposed that modification in rheological parameters can partly explain these results. Indeed, the apparent viscosity of the products significantly increased during the three times of storage. The composition of the flavored yogurt, proteins, exopolysaccharides, and fruit preparation, seemed to have a great impact on the release of aroma compounds. The aroma compound amount in the headspace decreased when the matrix changed from water to yogurt. With the fruit preparation, the headspace amounts for esters were significantly lower than in water alone, respectively, 23, 27, 29, and 17% less for methyl 2-methylbutanoate, ethyl hexanoate, hexyl acetate, and benzyl acetate. In flavored yogurt, the amount of aroma compounds in the headspace decreased again in comparison with the result obtained with the fruit preparation. Ethyl hexanoate and hexyl acetate presented the higher decreases of 48 and 53%, respectively.  相似文献   

3.
Release of aroma compounds in selected iota-carrageenan systems was studied by static headspace analysis. By varying the sodium chloride content, different rheological behaviors were obtained ranging from solution to gel. From the release curves, mass transfer (h(D)) and partition coefficients (K(ga)) of ethyl butanoate, ethyl hexanoate, and linalool were extracted using a mathematical model based on the penetration theory. This model, previously developed for flavor release from stirred solutions, was found to fit well the data obtained from structured systems (nonstirred conditions) at the beginning and at the end of the release curves: this allowed the determination of h(D) and K(ga). Matrix effects appeared to be dependent on the chemical class of the compounds. For the alcohol, the main effect on both equilibrium partitioning and mass transfer across the interface was ascribed to a salting effect. In the opposite, for esters, iota-carrageenan addition induced an increase of aroma retention and also a slower transfer across the interface. The respective effects of an increasing viscosity of the medium and of the formation of a tridimensionnal network are discussed.  相似文献   

4.
The effects of emulsion structure and composition of the matrix on the release of linalool (nonpolar) and diacetyl (polar) were studied using sensory evaluation, static headspace gas chromatography, and an electronic nose. The matrices used were water, rapeseed oil, and eight oil-in-water emulsions differing in oil volume fraction (0.05/0.5), emulsifier type (sucrose stearate/modified potato starch), and homogenization pressure (100/300 bar). Fat content strongly affected the release of linalool, but it was not as critical a factor in the release of the more polar compound, diacetyl. A slight effect of the emulsifier type on the release of aromas was observed with sensory and gas chromatographic methods. The reduced droplet size, resulting from higher homogenization pressure, enhanced the release of linalool but had no effect on diacetyl. Sensory and gas chromatographic methods detected aroma changes quite similarly. The electronic nose was capable of detecting only the effect of fat on linalool.  相似文献   

5.
The retention of three aroma compounds-isoamyl acetate, ethyl hexanoate, and linalool--from starch-containing model food matrices was measured by headspace analysis, under equilibrium conditions. We studied systems containing standard or waxy corn starch with one or two aroma compounds. The three studied aroma compounds interact differently: ethyl hexanoate and linalool form complexes with amylose, and isoamyl acetate cannot. However, in systems containing one aroma compound, we observed with both starches a significant retention of the three molecules. These results indicate that amylopectin could play a role in the retention of aroma. In systems containing two aroma compounds in a blend, the retentions measured for isoamyl acetate and for linalool were either equal to or less than those in systems where they were added alone. This phenomenon was attributed to competition between aroma compounds to bind with starch. The retention of aroma compounds blended in starch-based systems gave us additional information which confirmed that interactions occur not only with amylose but also with amylopectin.  相似文献   

6.
Temporal release and retention of aroma compounds from structured emulsions (where unsaturated monoglycerides are added to the oil) and conventional oil-in-water emulsions were studied using in vitro dynamic headspace analysis by proton-transfer reaction mass spectrometry and static headspace analysis by gas chromatography-mass spectrometry. Under dynamic conditions, the structured emulsion exhibited delayed release compared to the oil-in-water emulsion containing the same lipid content of 5%. The time to maximum concentration T max of amphiphilic and lipophilic aroma compounds increased by a factor of 1.2 (for 3 E-hexenal) to 1.9 (for octanal). The aroma release profile of the 5% lipid structured emulsion was close to that obtained for the oil-in-water emulsion containing 10% lipid. Under static conditions, the 5% lipid structured emulsion retained more of the most lipophilic aroma compounds than its counterpart 5% oil-in-water nonstructured emulsion. The present study provides potential solutions for modulating aroma release profiles of reduced-fat foods by self-assembly structures.  相似文献   

7.
The gas-liquid partition coefficients of ethyl acetate and ethyl hexanoate have been measured in water and aqueous sucrose solutions from 25 to -10 degrees C by dynamic headspace. Experiments were carried out on sucrose solutions at temperatures where no ice formation was possible. Results showed that when sucrose concentration increased, aroma volatility increased except for ethyl hexanoate and in the highest sucrose concentration solution (57.5%). A quasi-linear temperature decrease on aroma volatility was observed in sucrose solutions from 25 to around 4 and 0 degrees C. Then, from 0 to -10 degrees C, aroma volatility did not decrease: ethyl acetate volatility remained constant but that of ethyl hexanoate increased. Enthalpy of vaporization and activity coefficients of the aroma compounds were calculated.  相似文献   

8.
Parameters determining the partitioning behavior of volatile compounds between a cloud emulsion and the gas phase were measured under static equilibrium headspace conditions, using volatiles (e.g., ethyl hexanoate, cymene, and octanol) representing different volatilities and different degrees of hydrophobicity. The significant factors were the molecular characteristics of the volatile and the concentration of the oil phase. The nature of the lipid (C8 and C12 triglycerides), particle size, and emulsifier type (modified starch and gum arabic) did not significantly alter volatile partitioning. An empirical model based on the partition behavior and physicochemical parameters of 67 volatile compounds was produced. This predicted the partition of volatiles (R(2) = 0.83) in cloud emulsions as a function of lipid content. The significant terms (P < 0.05) in the empirical model were Log P, Log solubility, the dipole vector, and the oil fraction.  相似文献   

9.
Differences in timing of intensity perception of the retronasal aroma of a nonpolar (linalool) vs polar (diacetyl) compound when the matrix (milk) fat content was varied (0%, 1%, 5%, or 10% rapeseed oil) were studied using a time-intensity method. Aromas were also evaluated by orthonasal means and with static headspace gas chromatography (GC). With increasing fat content, linalool was considerably retained in the matrix, while the release of diacetyl was not affected. As little as 1% fat was sufficient to significantly reduce the volatility (GC results) of linalool and orthonasal, but not retronasal, intensity. No effect of fat was found on the rate of linalool release. The linalool perception of the sample containing the greatest amount of fat lasted a shorter time than that of the samples containing less fat; however, the decrease in intensity perception was steeper in lower fat samples. The observed temporal release of linalool partly challenges the often-repeated statement that reduction of fat results in a more rapid and shorter aroma release.  相似文献   

10.
Copper is thought to influence aroma perception by affecting volatility of aroma compounds in the mouth through interaction with salivary components, especially proteins. Our objective was to identify the effect of copper on the volatility of aroma compounds and the role of copper-protein interaction in volatile chemistry in the mouth. Copper (2.5 mg/L) and four aroma compounds (hexanal, butyl acetate, 2-heptanone, and ethyl hexanoate, 0.5 microL/L each) were added to model systems containing water, electrolytes, and artificial saliva at different pH levels. Headspace concentration of each volatile was measured using SPME-GC analysis. Copper in the model systems increased headspace concentration of volatiles at pH 6.5, but no change in volatility was observed at pH 7.0. At pH 7.5, the presence of copper in the artificial saliva system containing mucin and alpha-amylase decreased headspace volatile concentration, whereas histatin did not cause any changes in volatility. Effect of copper on volatiles at pH 6.5 may be due to increased solubility of copper at lower pH. Salivary proteins seem to interact with copper at pH 7.5. The interaction may change configuration of binding sites for aroma compounds in mucin.  相似文献   

11.
Retention of aldehydes by whey proteins in solutions buffered at a range of pH values was studied under static and dynamic headspace conditions and in vivo in exhaled air. Static headspace measurements showed a clear increase in retention in the presence of whey proteins for aldehydes with longer carbon chains and for buffer solutions with higher pH values. For in vivo aldehyde release measurements, these effects were much less pronounced. The presence of saliva or the binding of aldehydes to the surface of the oral cavity was not responsible for this effect. This difference can be explained by the highly dynamic conditions of in vivo aroma release of liquid products, due to the relatively large flow of air during exhalation. After swallowing, a thin film of aldehyde solution remains in the pharynx; subsequent exhalation will release both the free aldehydes present in this film and those reversibly bound to the whey protein.  相似文献   

12.
To better understand aroma release in relation to yogurt structure and perception, the apparent diffusivity of aroma compounds within complex dairy gels was determined using an experimental diffusion cell. Apparent diffusion coefficients of four aroma compounds (diacetyl, ethyl acetate, ethyl hexanoate, and linalool) at 7 degrees C in yogurts (varying in composition and structure) ranged from 0.07 x 10 (-10) to 8.91 x 10 (-10) m (2) s (-1), depending on aroma compounds and on product structure. The strong effect of yogurt fat content on the apparent diffusivity of hydrophobic compounds was revealed (15-fold and 50-fold decreases in the apparent diffusion coefficient of linalool and ethyl hexanoate, respectively). Protein composition seemed to have a greater effect than that of mechanical treatment. However, variations in the apparent diffusion coefficient for the considered products remained limited and cannot completely explain differences in flavor release and in perception that were previously observed.  相似文献   

13.
The influence of compositional and structural properties of oil-in-water emulsions on aroma release was examined under mouth conditions. The lipid (0.40 and 0.65) and emulsifier fractions (0.007, 0.010, and 0.014) were varied, as well as the mean particle diameter of the dispersed phase (0.60, 0.73, 0.85, and 1.10 microm). Aroma compounds were isolated in a model mouth system and quantified by gas chromatography-mass spectrometry. Studies were carried out to separate effects on the thermodynamic and the kinetic components of aroma release using equilibrium headspace analysis to distinguish the thermodynamic component. The lipid phase of the emulsions was composed of sunflower oil and the emulsifier phase was Tween 20. The release of 20 aroma compounds was evaluated; the compounds included alcohols (1-propanol, 1-butanol, 3-methyl-1-butanol, 2-pentanol, 1-hexanol, and 2-nonanol), ketones (diacetyl, 2-butanone, 2-heptanone, 2-octanone, and 2-decanone), esters (ethyl acetate, propyl acetate, butyl acetate, and ethyl butyrate), aldehydes (hexanal, heptanal, and octanal), a terpene (alpha-pinene), and a sulfur compound (dimethyl sulfide). Decrease in lipid fraction and emulsifier fraction, as well as increase in particle diameter, increased aroma release under mouth conditions. Differences between groups of compounds and between compounds of homologous series with varying chain lengths were found. Changes in particle diameter had a considerable effect on the thermodynamic component of aroma release, whereas hardly any influence of the lipid fraction and emulsifier fraction was observed. Lipid fraction, emulsifier fraction, and particle diameter affected the kinetic component of aroma release, which could partially be attributed to changes in viscosity.  相似文献   

14.
The aroma-active compounds in two apple ciders were identified using gas chromatography-olfactometry (GC-O) and GC-mass spectrometry (MS) techniques. The volatile compounds were extracted using solvent-assisted flavor evaporation (SAFE) and headspace solid-phase microextraction (HS-SPME). On the basis of odor intensity, the most important aroma compounds in the two apple cider samples were 2-phenylethanol, butanoic acid, octanoic acid, 2-methylbutanoic acid, 2-phenylethyl acetate, ethyl 2-methylbutanoate, ethyl butanoate, ethyl hexanoate, 4-ethylguaiacol, eugenol, and 4-vinylphenol. Sulfur-containing compounds, terpene derivatives, and lactones were also detected in ciders. Although most of the aroma compounds were common in both ciders, the aroma intensities were different. Comparison of extraction techniques showed that the SAFE technique had a higher recovery for acids and hydroxy-containing compounds, whereas the HS-SPME technique had a higher recovery for esters and highly volatile compounds.  相似文献   

15.
The aroma compounds of young and aged Chinese "Yanghe Daqu" liquor samples were extracted by solid phase microextraction (SPME) and analyzed by gas chromatography (GC)-olfactometry dilution analysis. The original liquor samples were diluted with deionized water to give a final alcohol content of 14% (v/v). The samples were stepwise diluted (1:1) with 14% (by volume) ethanol-water solution and then extracted by headspace SPME. The samples were preequilibrated at 50 degrees C for 15 min and extracted with stirring at the same temperature for 30 min prior to injection into GC. The aroma compounds were identified by both GC-MS and GC-olfactometry using DB-Wax and DB-5 columns. The results suggested that esters were the major contributors to Yanghe Daqu liquor aroma. Ethyl hexanoate, ethyl butanoate, and ethyl pentanoate had very high flavor dilution values in both young and aged liquors (FD > 8192). Methyl hexanoate, ethyl heptanoate, ethyl benzoate, and butyl hexanoate could also be very important because of their high flavor dilution values (FD > or = 256). Moreover, two acetals, 1,1-diethoxyethane and 1,1-diethoxy-3-methylbutane, also were shown high flavor dilution values in Yanghe Daqu liquors (FD > or = 256). Other aroma compounds having moderate flavor dilution values included acetaldehyde, 3-methylbutanol, and 2-pentanol (FD > or = 32). Comparing young and aged liquors, the aroma profiles were similar, but the aroma compounds in the aged sample had higher flavor dilution values than in the young ones.  相似文献   

16.
The effect of process and formulation on sensory perception and flavor release was investigated on salad dressing models. Oil/vinegar emulsions (phi = 0.5, droplet size > 10 microm) with thickeners and a whey protein concentrate were prepared with different fat droplet sizes and different distributions of fat droplet size. The effect of the amount of emulsifier was also tested. Sensory profile analysis was performed by a trained panel and flavor release quantified by dynamic headspace analysis. When the droplet size is increased, the lemon smell and citrus aroma significantly increase, whereas the egg note, mustard, and butter aroma significantly decrease. The concentrations of alcohols and acids significantly increase when droplet size increases, whereas those of other compounds such as limonene or benzaldehyde significantly decrease. The dispersion of the droplet size has a small effect on flavor perception, and the effect of the increase of the amount of emulsifier is noticed only by instrumental analysis.  相似文献   

17.
Aroma compound properties in food matrices, such as volatility and diffusivity, have to be determined to understand the effect of composition and structure on aroma release and perception. This work illustrates the use of mass transfer modeling to identify diffusion and partition properties of ethyl hexanoate in water and in carrageenan matrices with various degrees of structure. The comparison of results obtained with a diffusive model to those obtained with a convective model highlights the importance of considering the appropriate transfer mechanism. Modeling of the preliminary experimental steps ensures correct estimation of the conditions for the main aroma release step. The obtained values of partition and diffusion coefficients are in agreement with those found in the literature (either experimentally determined or predicted by theoretical equations) and demonstrate that the structure level of carrageenan matrices has little influence on diffusion properties of ethyl hexanoate (less than 20%).  相似文献   

18.
Complex food emulsions containing either hydrogenated palm kernel oil (vegetable fat) or anhydrous milk fat (animal fat) were flavored by using different aroma compounds. The fats differed by their fatty acid and triacylglycerol compositions and by their melting behavior, while the aroma compounds (ethyl butanoate, ethyl hexanoate, methyl hexanoate, mesifurane, linalool, diacetyl, cis-3-hexen-1-ol, and gamma-octalactone) differed by their hydrophobicity. Application of differential scanning calorimetry to fat samples in bulk and emulsified forms indicated differences in the ratio of solid-to-liquid between temperatures ranging from 10 to 35 degrees C. Solid-phase microextraction coupled with GC-MS analysis indicated that flavor release from food emulsions containing animal or vegetable fat differed depending on both the fat nature and flavor compound hydrophobicity. The release of diacetyl was higher for emulsions containing animal fat, whereas the release of esters was higher for emulsions containing vegetable fat. The release of cis-3-hexenol, linalool, gamma-octalactone, and mesifurane (2,5-dimethyl-4-methoxy-(2H)-furan-3-one) was very similar for the two fatty systems. The above results were discussed not only in terms of aroma compound hydrophobicity, but also in terms of structural properties of the emulsions as affected by the lipid source.  相似文献   

19.
This study aims to follow the kinetics of aroma compound release during model cheese consumption in order to clarify the relationships between flavor release and some oral parameters. Eight subjects participated in the study. Breathing, salivation, chewing, and swallowing were monitored during the eating process. Temporal nosespace analyses were performed using on-line atmospheric pressure ionization-mass spectrometry (API-MS) and off-line solid-phase Micro extraction-gas chromatography-mass spectrometry (SPME-GC-MS). Flavor release profiles were obtained only for ethyl hexanoate, heptan-2-one, and heptan-2-ol. Among them, only the concentrations of ethyl hexanoate and heptan-2-one could be determined by API-MS. Absence of competition between the aroma compounds was checked for both techniques. In-nose maximum concentration (C(max)) varied with aroma compounds. However, C(max) was reached at the same time (T(max)) for the three compounds. Interindividual differences were observed for most of the parameters studied and for all of the aroma compounds. They were related to the interindividual differences among the oral parameters. The aroma release parameters C(max) and AUC (area under the curve) could be related to respiratory and masticatory parameters. In most cases, the same relationships were observed whatever the nature of the aroma compound.  相似文献   

20.
The goal of this study was to better understand the correspondence between sensory perception and in-nose compound concentration. Five aroma compounds at three different concentrations increasing by factors of 4 were added to four matrixes (water, skim milk, 2.7% fat milk, and 3.8% fat milk). These were evaluated by nosespace analysis with detection by proton transfer reaction mass spectrometry (PTR-MS), using five panelists. These same panelists evaluated the perceived intensity of each compound in the matrixes at the three concentrations. PTR-MS quantification found that the percent released from an aqueous solution swallowed immediately was between 0.1 and 0.6%, depending on the compound. The nosespace and sensory results showed the expected effect of fat on release, where lipophilic compounds showed reductions in release as fat content increases. The effect is less than that observed in headspace studies. A general correlation between nosespace concentration and sensory intensity ratings was found. However, examples of perceptual masking were found where higher fat milks showed reductions in aroma compound intensity ratings, even if the nosespace concentrations were the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号