首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

2.
Zonate leaf spot (Gloeocercospora sorghi) is a common disease in Sorghum bicolor producing areas of the U.S., but little is known about its biology, virulence and severity on S. bicolor, Zea mays, and related crop grassweeds. Greenhouse studies were conducted to determine and compare the virulence and severity of G. sorghi on 10 commercially available sorghum hybrids, four Z. mays hybrids and selected grassweed species including Sorghum bicolor (grain sorghum and shattercane biotypes) and Sorghum halepense (Johnsongrass), two of the most problematic arable weeds. Plants from the respective species were inoculated with a local G. sorghi isolate and maintained in a dew-chamber at 24 °C for 24 h and then incubated under greenhouse conditions for 4 weeks. Plants were observed for lesion expression and rated using a modified Horsfall-Barrett scale (0–10). The first symptoms of infection were visible within 24 h following inoculation on shattercane and S. bicolor hybrids. Symptoms consisted of small, non-diagnostic purple lesions on the leaves. Results showed that S. bicolor, S. halepense and shattercane were susceptible to G. sorghi. All other species tested in this study were not infected. More particularly, disease severity, increased from a rating of 3 to 10 on sorghum and from 2 to 7 on S. halepense between 2 and 23 days after inoculation, respectively. However, disease severity on shattercane increased rapidly from 3.5 to 10 between 2 and 8 days after inoculation, respectively. Among the sorghum hybrids tested, FFR-322 appeared to be the most resistant to G. sorghi while Pioneer 83G66 appeared to be the most susceptible. Z. mays hybrids were not infected by the fungus used in this study. G. sorghi could be used effectively to manage shattercane and S. halepense infestations occurring in Z. mays and S. bicolor fields consisting of specific G. sorghi-resistant hybrids.  相似文献   

3.
The vector competence of Frankliniella occidentalis for Chrysanthemum stem necrosis virus (CSNV) was evaluated. Three vector strains with distinct competences for Tomato spotted wilt virus (TSWV) transmission were investigated, including an artificially selected strain (TsH) that has a particularly high competence (>90 %). Newly hatched larvae of F. occidentalis were given an acquisition access period of 5 days on CSNV-infected D. stramonium leaves, and reared to maturity. Their transmission efficiencies were examined using a leaf disk assay using Petunia x hybrida leaves. Following the leaf disk assay, the virus accumulation in the vectors was examined via a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) of their bodies. The results showed that the CSNV acquisition and transmission efficiency of the TsH strain did not differ from those of the others, indicating that the competence of F. occidentalis as a vector for CSNV is not related to that for TSWV. The CSNV transmission and acquisition efficiencies of two F. intonsa strains (Hiroshima and Fukuoka) were also evaluated. In Hiroshima strain, 35 % of adults were viruliferous, but only two transmitters (3 %) were observed. In Fukuoka strain, 6 % were viruliferous, and no transmitters were observed. These results indicate that F. intonsa cannot be a major vector for CSNV. The accumulation of CSNV in the adults of F. occidentalis and F. intonsa evaluated using DAS-ELISA showed a significant difference in ELISA values among transmitter, viruliferous non-transmitter, and non-viruliferous individuals. These results clearly demonstrated that only transmitters that accumulated a threshold quantity of virus can transmit CSNV to plants.  相似文献   

4.
Xanthomonas perforans is the causal agent of bacterial spot, one of the most devastating diseases of tomato that results in considerable yield losses worldwide. Rutin, as a polyphenolic substance, was used to induce resistance in tomato against X. perforans. Rutin at concentration of 2 mM had ability to reduce the disease severity of bacterial spot. On the other hand, 2 mM rutin had no antibacterial activity in vitro. Expression profiling of pathogenesis-related gene 5 (PR-5), Phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) was probed during the enhanced resistance by rutin. Pretreatment with rutin (rutin/ X. perforans) led to induction of PR-5, PAL and LOX compared to controls (water/ X. perforans). Our results suggest that rutin-induced resistance against X. perforans in tomato might be mediated through stimulation of some defense genes such as PR-5, PAL and LOX.  相似文献   

5.
Sixty two rhizospheric and endophytic bacterial strains were evaluated for their biocontrol effect on two aggressive Fusarium culmorum isolates (Fc2 and Fc3). We observed that 35 % and 23 % of the tested strains inhibited the in vitro growth of Fc2 and Fc3 respectively. The observed antagonism was due to inhibition by contact (13–19 % of the strains) or at distance (10–16 % of the strains) for both fungal isolates. Some of the antagonistic bacteria showed the ability to produce diffuse and/or volatile compounds that inhibit the growth, the sporulation and macroconidia germination of F. culmorum. None of the tested antagonistic bacteria showed chitinase activity on synthetic medium. The sequencing of the 16S rDNA genes of some antagonistic bacteria showed that they belong to the genera Bacillus, Pseudomonas and Microbacterium. The double inoculation of durum wheat seeds by the antagonistic bacterial strains (B13, B18, BSE1, BSE3 and B16E) and the two F. culmorum isolates showed that germination and seedling vigor were generally improved in vitro. The percentage of infected seeds was also reduced. In greenhouse trials, the biocontrol effectiveness of F. culmorum was dependant from the virulence of the fungal strain and the specificity of the antagonistic interaction between bacterial and fungal strains. The bacterial strains B18 and B16E reduced F. culmorum infection on durum wheat plants probably due to their antagonistic and plant growth promoting activities and they may be used in a mixture as seed biopriming inoculum for plant growth bio-promoting and Fusarium wheat diseases biocontrol.  相似文献   

6.
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo), remains a major production constraint in rice cultivation especially in irrigated and rainfed lowland ecosystems in India. The pathogen is highly dynamic in nature and knowledge on pathotype composition among the Xoo population is imperative for designing a scientific resistance breeding program. In this study, four hundred isolates of Xoo collected from diverse rice growing regions of India were analyzed for their virulence and genetic composition. Virulence profiling was carried out on a set of differentials consisting of 22 near isogenic lines (NILs) of IR24 possessing different BB resistance genes and their combinations along with the checks. It was observed that different NILs possessing single BB resistance gene were susceptible to about 59–94% of the Xoo isolates except IRBB 13 (containing BB resistance gene xa13), which showed susceptibility to about 35% of the isolates. Based on the reaction of the Xoo isolates on the differentials, they were categorized into 22 pathotypes. Among the 22 pathotypes, IXoPt-1 and IXoPt-2 were least virulent and IXoPt # 18–22 were highly virulent. Pathotype IXoPt-19 which was virulent on all single BB resistance genes except xa13 constituted the major pathotype (22.5% isolates) and was widely distributed throughout India (16 states). This was followed by pathotype IXoPt-22 (17.25%) which was virulent on all the NILs possessing single BB resistance genes. Molecular analysis was carried out using two outwardly directed primers complementary to sequence of IS1112, a repetitive element of Xoo. A high level of genetic polymorphism was detected among these isolates and the isolates were grouped into 12 major clusters. The data indicated complex nature of evolution of the Xoo pathotypes and there was no strong correlation between pathotypes and genetic clusters as each genetic cluster was composed of Xoo isolates belonging to different pathotypes. The study indicated that none of the single BB resistance genes can provide broad spectrum resistance in India. However, two-gene combinations like xa5 + xa13 and different 3 or 4 genes combination like Xa4 + xa5 + xa13, Xa4 + xa13 + Xa21, xa5 + xa13 + Xa21 and Xa4 + xa5 + xa13 + Xa21 are broadly effective throughout India.  相似文献   

7.
A new dagger nematode, Xiphinema tica n. sp., is described and illustrated from several populations extracted from soil associated with several crops and wild plants in Costa Rica. The new dagger nematode is characterised by a moderate body size (3276–4240 μm), a rounded lip region, ca 13.5 μm wide, separated from body contour by a shallow depression, amphidial fovea large, stirrup-shaped, a moderately long odontostyle ca 135 μm long, stylet guiding ring located at ca 122 μm from anterior end, vulva almost equatorial (50–54%), well-developed Z-organ, with heavy muscularised wall containing in the most of specimens observed two moderately refractive inclusions variable in shape (from round to star-shaped), with uterine spines and crystalloid bodies; female tail short, dorsally convex-conoid, with rounded end and a small peg, with a c’ ratio ca 0.8, bearing two or three pairs of caudal pores and male absent. The unique and novel uterine differentiation based on the coexistence of a well-developed Z-organ mixed with uterine spines and crystalloid bodies in Xiphinema prompted us to update and include this combination of characters in the polytomous key of Loof and Luc (1990). Integrative diagnosis was completed with molecular data obtained, using D2-D3 expansion segments of 28S rDNA, ITS1-rDNA, partial 18S–rDNA and the partial mitochondrial gene cytochrome c oxidase subunit 1 (coxI). The phylogenetic relationships of this species with other Xiphinema spp. indicated that X. tica n. sp. was monophyletic to the other species from the morphospecies Group 4, Xiphinema oleae.  相似文献   

8.
Tomato fruits are susceptible to infection by Alternaria species. In addition, Alternaria species may contaminate the fruits with mycotoxins. There is thus interest in control systems to minimise pathogenicity and control toxin production. The objectives of this study were to examine the effect of plant extracts of Eucalyptus globulus and Calendula officinalis on the growth of strains of Alternaria alternata and A. arborescens, on pathogenicity of tomato fruits and mycotoxin production. The growth bioassays showed that the ethanolic and chloroformic fractions of E. globulus were the most effective in reducing growth of A. alternata (66–74 %) and A. arborescens (86–88 %), respectively at 2500 μg/g. The effects of plant extracts on mycotoxin biosynthesis were variable and strain dependent. The most effective fractions in decreasing mycotoxin accumulation were the ethanolic and chloroformic extracts of E. globulus, which reduced tenuazonic acid by 89 %, alternariol by 75–94 % and almost complete inhibition of alternariol monomethyl ether. All the tested fractions reduced percentage of infected tomato fruits when compared to the controls. The ethanolic and chloroformic fractions of E. globulus completely inhibited growth of A. alternata and A. arborescens on unwounded fruits and reduced the aggressiveness on wounded fruits of strains of both species significantly.  相似文献   

9.
Tomato (Solanum lycopersicum L.) ARGINASE2 (ARG2) and THREONINE DEAMINASE2 (TD2) are involved in plant defense. These enzymes act in the midgut of herbivores fed on tomato plants to degrade the essential amino acids Arg and Thr, respectively. Although it has been demonstrated that overexpression of the SlARG2 gene in tomato enhanced its resistance against M. sexta larvae, knock-down the expression of SlTD2 reduced the resistance of tomato to lepidopteran herbivores; it remains unclear whether overexpression of SlTD2 could enhance the resistance of the host plants to herbivores, or whether combined overexpression of SlARG2 and SlTD2 could lead to synergistically enhanced resistance to insects. Here, we generated transgenic Arabidopsis plants overexpressing SlARG2 (SlARG2 OE) and SlTD2 (SlTD2 OE) individually as well as in combination (SlARG2-SlTD2 OE). Overexpression of these genes did not affect Arabidopsis development, seed yield, or Arg and Thr content. Insect-feeding bioassay was performed by feeding diamondback moth (Plutella xylostella L.) larvae on detached leaves of wild-type, SlARG2 OE, SlTD2 OE, and SlARG2-SlTD2 OE plants. Larvae fed on SlARG2 OE leaves showed approximately 31% to 35% reduction in weight and 6% to 10% reduction in survival rate compared to those fed on wild-type leaves. Although larvae fed on SlTD2 OE leaves showed no reduction in survival rate, they gained less weight. Whereas larvae fed on SlARG2-SlTD2 OE leaves showed neither reduction in weight nor reduction in survival rate. We further investigated the arginase enzymatic activity of the SlARG2 OE and SlARG2-SlTD2 OE transgenic plants. The SlARG2 OE line most resistant to diamondback moth larvae displayed the highest arginase activity. Our data indicate that overexpression of SlARG2 or SlTD2 in Arabidopsis can enhance its resistance against diamondback moth, whereas combined overexpression of SlARG2 and SlTD2 did not generate synergistically increased resistance to diamondback moth.  相似文献   

10.
Metarhizium guizhouense PSUM02 treated males of Bactrocera latifrons were investigated for the mating competition among males and mating choice by female flies to develop an auto-dissemination for the control of B. latifrons. In the present study, on day 1–4 of experiment, M. guizhouense–treated male flies were equally competitive with the normal male flies as we did not observe any differences in mating by treated and normal male flies of B. latifrons. Further, mating competitiveness were found low in treated adult male B. latifrons than normal male B. latifrons from 5th days of treatment until death. Kaplan-Meier survival analysis of treated male flies gave average survival times (AST) of 4.3?±?0.1 days, while the healthy female and male flies in the same cage showed AST of 9.3?±?0.3 and 8.3?±?0.4 days, respectively. The AST of untreated flies in control experiment ranged from 14.2–14.5 days. In mating preference experiment, M. guizhouense–treated male flies were chosen by virgin female than gravid female flies for mating. The treated male flies caused mortality in both virgin and gravid female flies in the same cage with AST of 4.4?±?0.1, 5.6?±?0.1 and 7.4?±?0.2 days, respectively, while untreated flies showed AST ranged from 13.9–14.3 days in control. The treated male flies could transmit the fungus infection to both untreated female and male flies as well as in virgin and gravid female flies by mating and contact. Our experiments showed the potentiality of M. guizhouense PSUM02 in management of B. latifrons by auto-dissemination with treated male flies, which transmit the fungus to a healthy population to reduce insect pest infestations.  相似文献   

11.
Miscanthus x giganteus is a fast growing, perennial energy crop for temperate climates. Because of its high annual biomass production rates and its characteristics as a low-input crop, an expansion of field cultivation can be anticipated to cover increasing demands for sustainable biomass production. However, knowledge about pathogens that could have an impact on biomass production is still limited for M. giganteus. Here, we report about the isolation of the filamentous fungus Apinisia graminicola from necrotic leaf lesions of M. giganteus grown on a field trial plot in Northern Germany. Inoculation assays with the isolated A. graminicola strain confirmed its capacity to cause a leaf spot disease on M. giganteus. Additional inoculation assays revealed that A. graminicola also caused necrotic lesions on leaves of the model grass Brachypodium distachyon. Generally, symptoms of A. graminicola-caused leaf spot disease were stronger on B. distachyon compared to M. giganteus. Incubation temperatures above 22 °C during A. graminicola infection resulted in stronger disease symptoms on both, M. giganteus and B. distachyon leaves. Microscopic analysis of cross sectioned, infected leaf tissue revealed an epiphytic mycelium formation on the surface and an endophytic colonization of the mesophyll leave tissue, especially in M. giganteus. Our results revealed that the isolated A. graminicola strain is a causal agent of a leaf spot disease on grass leaves. Its potential on endophytic growth in M. giganteus might open new possibilities in studying this type of plant-fungal interaction on a cellular and molecular level in an energy crop.  相似文献   

12.
Gilbertella persicaria is a pathogenic fungus recently reported as a causative agent of soft rot in papaya fruits. Here the interactions between G. persicaria and papaya fruits was analyzed under laboratory conditions using histological techniques and optical microscopy to elucidate the process of pathogenesis. Healthy and disinfested fruits of papaya cv. Maradol were also inoculated with a suspension of sporangiospores of G. persicaria. Tissue sections were cut, which were subjected to differential staining with safranin-fast green for different times. Sporangiospores presumably adhered to the cuticle of the fruit by 3 h post inoculation (hpi) and germinated by 6 hpi; invasive intracellular hyphae were growing in host cells by 9 hpi. By 15 hpi, fruit epidermis was macerated, presumably by enzymatic activity reported for mucoral fungal species and appeared as a wet-looking lesion on the cuticle. Fruit mesocarp was colonized by 30 hpi, and asexual reproduction structures had formed by 48 hpi. This process of infection and disease development of G. persicaria in papaya fruits corresponds to that used by pathogens with a necrotrophic lifestyle.  相似文献   

13.
Potato virus Y (PVY) is the type-species of the genus Potyvirus, family Potyviridae, being reported as a major tomato (Solanum lycopersicum L.) pathogen in several regions of the world. Pepper yellow mosaic virus (PepYMV) was originally described as a resistance-breaking Potato virus Y (PVY) isolate on Capsicum annuum L. cultivars, and afterwards it was also reported infecting tomatoes in Brazil. In the present work, a search for sources of resistance to both PepYMV and PVY was conducted in a collection of 119 accessions belonging to seven Solanum (section Lycopersicon) species. This germplasm was initially evaluated to PepYMV reaction by mechanical inoculation followed by symptom observations and ELISA. Potential PepYMV resistance sources were identified for the first time in S. habrochaites, S. peruvianum, S. corneliomuelleri, S. chilense, S. pimpinellifolium, and one accession derived from an interspecific cross (S. lycopersicum x S. peruvianum). A sub-group of 24 accessions with negative serology for PepYMV was also challenged with a PVY isolate, followed by serological and molecular detection with universal primers. Solanum habrochaites ‘L.03683’ and ‘L.03684’ were the only accessions found with stable resistance to both viruses. These results confirm S. habrochaites as the most important source of multiple resistance factor(s) to distinct Potyvirus species.  相似文献   

14.
15.
Laboratory and nursery experiments were conducted to identify the causal agent of a needle blight of Pinus wallichiana, a species native to the Western Himalayas. The pathogen was identified as Myrothecium verrucaria, on the basis of morphological, cultural and molecular characterization. BLAST analysis of ITS sequences of the pathogen revealed maximum sequence identity of 99% with M. verrucaria. The sequence is the first of this fungus from P. wallichiana. Phylogenetic analysis grouped all M. verrucaria isolates in a single clade; M. roridum and M. inundatum clustered in separate clades. The pathogen grew optimally at 25 ± 1 °C on oat meal agar, pH 5.5. Inoculation experiments with M. verrucaria demonstrated pathogenicity on Pinus halepensis, Cedrus deodara and Cryptomeria japonica, in addition to Pinus wallichiana.  相似文献   

16.
RNA silencing pathways in filamentous fungi are composed of multiple component proteins and known to be involved in vegetative growth, virulence or sexual reproduction. We found that the tomato wilt fungus, Fusarium oxysporum f. sp. lycopersici (Fol), carries four homologues genes of Qde-2, an argonaute protein gene and one of the main component protein genes in Neurospora crassa. Gene targeting revealed that FoQde-2, one of the Qde-2 homologues in Fol, is involved in virulence to tomato but not in vegetative growth.  相似文献   

17.
18.
Trichoderma spp. are used as antagonists against different pathogens. Despite many possibilities of using Trichoderma as an antagonist, there are gaps in the knowledge of the interaction between Trichoderma, cassava and Scytalidium lignicola. This fungus causes cassava black root rot and is an inhabitant of the soil, so it is difficult to control. Antagonists may contribute to the possible induction of resistance of plants because, when exposed to such pathosystems, plants respond by producing antioxidative enzymes. The test for potential inhibition of growth of S. lignicola CMM 1098 in vitro was performed in potato-dextrose-agar with two Trichoderma strains T. harzianum URM3086 and T. aureoviride URM 5158. We evaluated the effect of the two selected Trichoderma to reduce the severity of cassava black root rot and shoots. Subsequently, the production of enzymes (ascorbate peroxidase, catalase, peroxidase and polyphenol oxidase) was evaluated in cassava plants. All two Trichoderma strains show an inhibition of the growth of S. lignicola CMM 1098. The most efficient was T. harzianum URM 3086, with 80.78% of mycelial growth inhibition. T. aureoviride URM 5158 was considered the best chitinase producer. All treatments were effective in reducing severity, especially treatments using Trichoderma. Cassava plants treated with T. aureoviride URM 5158 had the highest enzyme activity, especially peroxidase and ascorbate peroxidase. Trichoderma harzianum URM3086 and Trichoderma aureoviride URM 5158 were effective in reducing the severity of cassava black root rot caused by S. lignicola CMM 1098.  相似文献   

19.
Trichoderma aggressivum is an aggressive contaminant mould in the cultivation of Agaricus bisporus leading to severe reductions in mushroom yields. Production of fully colonised A. bisporus substrate in Europe is commonly carried out in large tunnels (Phase III), after which the substrate undergoes several bulk handling (mixing) operations before ending up on shelves in mushroom growing facilities. The work presented here studied the effect of Trichoderma aggressivum inoculum, substrate mixing and supplementation on Agaricus bisporus yields and evaluated four methods to detect T. aggressivum in bulk handled substrate. Inoculum dilution level was shown to correlate well with mushroom yield (P < 0.0001) with reductions of 2–6 % at the most dilute level (10?4) and 60–100 % at the most concentrated level (10?1), depending on the experiment. Supplementation, with or without T. aggressivum, had no significant effect on mushroom yield (P ≥ 0.85) but a high degree of substrate mixing was shown to significantly increase (P < 0.0001) T. aggressivum-associated crop losses. Four T. aggressivum detection methods were evaluated and a quantitative polymerase chain reaction (qPCR) method gave the most consistent and least variable results. Cycle threshold (CT) values ranged from 24 to 40, depending on the experiment and the inoculum dilution level, and false negatives (CT = 40) were reported on one occasion with the most dilute samples. The results indicate that Phase III mushroom substrate is vulnerable to infection by T. aggressivum when the fully colonised substrate is broken up and mixed during bulk handling operations, identifying a previously unidentified risk for Phase III substrate producers.  相似文献   

20.
Competitive effects between Fusarium graminearum, causing Fusarium head blight, and the endophyte Epicoccum nigrum, were performed in in vitro competition assays between the two species. Two E. nigrum isolates were isolated from wheat grains and tested as competitors against two F. graminearum isolates. A dual petri dish assay showed that E. nigrum reduced the mycelial growth of F. graminearum and vice versa. A glass slide assay revealed that E. nigrum crude cultural filtrate also had reducing effect on the growth of F. graminearum comparable to that of E. nigrum spore suspensions. Microscopy showed hyphae of F. graminearum and E. nigrum with many side branches when in close proximity, in contrast to pronounced apical hyphal growth when growing alone. Combinations of F. graminearum and E. nigrum on sterilised wheat grains were studied over time by qPCR. F. graminearum biomass was significantly reduced in inoculations applying E. nigrum three days prior to F. graminearum. In conclusion, these results showed competition and mycelial behaviour effects between F. graminearum and E. nigrum and support that E. nigrum may have potential to reduce F. graminearum infections in wheat. Competition experiments should be carried out in planta to study the interaction further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号