首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alterations occur in the normal content of total and individual flavonoids with P, Mn and B deficiencies, in tomato leaves.

P and Mn deficiencies do not alter the total flavonoid level. Nevertheless, these deficiencies lead to different contributions of each flavonoid group (flavonols, flavones and flavanones) to the whole content.

B deficiency produces a very significant increase in total flavonoid content. Compounds that contribute the most to this accumulation are flavones.  相似文献   


2.
Tomatoes (Solanum lycopersicum L.), the second most important vegetable crop worldwide, are a key component in the so-called "Mediterranean diet", which is strongly associated with a reduced risk of chronic degenerative diseases. In this work, we evaluate the differences in the total and individual polyphenol content and hydrophilic antioxidant capacity of seven varieties of tomato cultivated in Vegas Bajas del Guadiana, Badajoz (Spain), which were collected from two consecutive harvests (2008-2009). Hydrophilic antioxidant capacity was evaluated using the TEAC assay, while the Folin-Ciocalteau assay with a previous cleanup was used to establish total polyphenol content. The method was optimized and validated. Individual polyphenols were quantified using liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) on a triple quadrupole. All compounds were found to be significantly different when analysis of variance was performed. Results from the principal component analysis show that phenolic compounds and hydrophilic antioxidant capacity were responsible for the differences among tomato samples according to variety.  相似文献   

3.
为探究杂粮品种及加工方式对杂粮酸奶体外抗氧化活性的影响,选择小米、黄米、燕麦、藜麦、糙米、荞麦、高粱米7种杂粮为原料,经过蒸制、煮制、打浆3种常见加工方式,比较其多酚含量及抗氧化活性,对特性较好的杂粮经恰当处理后与牛奶共发酵制备酸奶,研究该杂粮酸奶的多酚含量及抗氧化活性,开发具备抗氧化活性的杂粮酸奶。结果表明,7种杂粮的之间的抗氧化能力存在显著(P<0.05)差异,采用抗氧化综合(antioxidant potency composite,APC)指数法评定杂粮的抗氧化活性,发现抗氧化活性最高的杂粮为荞麦。进一步对荞麦进行加工处理,发现蒸制处理后其抗氧化活性优于煮制和打浆。将蒸制的荞麦与牛奶混合制备酸奶,制成的荞麦酸奶总酚含量为52.85 mg/100g,是普通酸奶的5.16倍;且其抗氧化能力显著高于普通酸奶(P<0.05)。该研究为功能性杂粮酸奶的开发提供借鉴。  相似文献   

4.
Phosphorus (P) deficiency is one of the major constraints to crop yield worldwide, and genotypes or cultivars with high phosphate use efficiency (PUE) sustain growth when exposed to phosphate stress. Therefore, it is imperative to develop the genotypes or cultivars with high PUE. A pot experiment was conducted to evaluate the PUE among 150 barley (Hordeum vulgare L.) genotypes. Two high-tolerant and -sensitive accessions were selected. These two candidate materials were used to investigate the differences among the root morphology characteristics, antioxidant enzyme activity, inorganic phosphate (Pi) content and gene expression of HvPT5 under P-deficiency and P-sufficiency conditions. The values of these parameters were higher in the low-P-tolerant genotype than in the sensitive one. In pot experiment 1, all genotypes showed a significant difference in low-P tolerance, with variety GN121 achieving the highest tolerance, and GN42 being most sensitive. The results of this study may provide elite genetic germplasms for future work on isolation of P-related genes, and the improvement of PUE in barley.

Abbreviations: PUE: phosphate use efficiency; CAT: catalase; POD: peroxidase; SOD: superoxide dismutase; DMSO: dimethyl sulphoxide; MDA: malondialdehyde; TOPSIS: technique for order preference by similarity to an ideal solution; MCDM/MADM: multi-criteria (or attribute) decision making  相似文献   


5.
Thirteen low-tannin faba bean genotypes grown at two locations in north central Alberta in 2009 were evaluated to investigate the variation in seed characteristics, phenolic and phytate contents, and phytase and antioxidant activities and to elucidate the relationship of these components as a breeding strategy. Seed characteristics including color were predominantly genotype dependent. The faba bean genotypes with total phenolic content ranging from 5.5 to 41.8 mg of catechin equiv/g of sample was linearly related to tannin content and the best predictor of antioxidant activity. Phytic acid content and phytase activity varied significantly among genotypes and between locations, ranging from 5.9 to 15.1 g/kg and from 1606 to 2154 FTU/kg sample, respectively. Multivariate data analysis performed on 19 components analyzed in this study using principal component analysis (PCA) and cluster analysis demonstrate that differences in seed characteristics, phenolic components, phytic acid, and phytase are major factors in segregating faba bean genotypes. The relatively low phytic acid content and high phytase activity of these low-tannin faba bean genotypes are beneficial/essential traits for their use in human and animal nutrition.  相似文献   

6.
Relatively low amounts of the phosphorus (P) added to soils is recovered by plants. Many plants show differences in their ability to take up and use P, but the mechanisms for these differences are not fully understood. The purpose of this study was to determine differences among sorghum [Sorghum bicolor (L.) Moench] genotypes for P uptake rates and distribution in plant parts.

Differences in P uptake rates were determined for six sorghum genotypes at 24, 38, and 52 days of age at three P levels. Larger differences were noted among genotypes in 24‐day‐old plants than for older plants. Uptake rates were 6‐ to 14‐times higher (dependent on genotype) in 24‐day‐old plants than in 52‐day‐old plants. NB9040 which had the highest dry matter yield at each age had the lowest rate of P uptake, and CK60‐Korgi which had the lowest dry matter yield at each age had the highest rate of P uptake.

Only small differences were noted among genotypes for distribution of P within plant parts for younger plants. Older plants showed differences in P distribution, and NB9040 translocated more P from lower to upper leaves, had higher efficiency ratios (dry matter produced/unit P), and had a larger root system than CK60‐Korgi.

The sorghum genotypes that produced more dry matter under low P conditions had lower uptake rates of P and had the ability to distribute P from older to younger developing tissues. When grown in soils, plants that have lower P uptake rates, greater ability to distribute P, and larger root systems may not deplete P from soil solutions as rapidly, could explore more soil, and possibly use P more efficiently than plants that do not possess these traits.  相似文献   


7.
Lucerne was grown in nutrient solutions at adequate and “deficient”; levels of sulphur, nitrogen, phosphorus or potassium. Volatile losses of sulphur were then measured when shoots and roots were oven dried at 80°C for 48 hours.

Small but significant losses of sulphur occurred during oven drying. Losses from shoots ranged from 4.2 to 13.9 μgS/g dry weight, which represented from 0.38 to 0.66% of the total sulphur content of the shoot. Losses from roots ranged from 12.0 to 47.8 μgS/g dry weight, representing 0.82 to 1.77% of the total sulphur content of the root. Decreases in supply of nitrogen, phosphorus, potassium or sulphur generally decreased the amount of volatile sulphur lost by oven drying shoots. Losses from roots generally decreased when supply of sulphur decreased, but increased when nitrogen and potassium supply decreased, and were generally unaffected by phosphorus supply.

The organic sulphur concentration in the tissue was linearly correlated with absolute losses of sulphur (r = 0.799** for shoots; r = 0.822** for roots), the amount of sulphur lost per unit dry weight (r = 0.469* for shoots; r = 0.381* for roots) and the percentage of the total sulphur released as volatile sulphur (r = 0.937** for shoots; r = 0.970** for roots). By contrast, the total sulphur concentration in the tissue was linearly correlated only with the amount of sulphur lost per unit dry weight ( r = 0.704** for shoots; r = 0.723** for roots).  相似文献   


8.
The health benefits associated with tea consumption have resulted in the wide inclusion of green tea extracts in botanical dietary supplements, which are widely consumed as adjuvants for complementary and alternative medicines. Tea contains polyphenols such as catechins or flavan-3-ols including epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate (EGCG), as well as the alkaloid, caffeine. Polyphenols are antioxidants, and EGCG, due to its high levels, is widely accepted as the major antioxidant in green tea. Therefore, commercial green tea dietary supplements (GTDS) may be chemically standardized to EGCG levels and/or biologically standardized to antioxidant capacity. However, label claims on GTDS may not correlate with actual phytochemical content or antioxidant capacity nor provide information about the presence and levels of caffeine. In the current study, 19 commonly available GTDS were evaluated for catechin and caffeine content (using high-performance liquid chromatography) and for antioxidative activity [using trolox equivalent antioxidant capacity (TEAC) and oxygen radical antioxidant capacity (ORAC) assays]. Product labels varied in the information provided and were inconsistent with actual phytochemical contents. Only seven of the GTDS studied made label claims of caffeine content, 11 made claims of EGCG content, and five specified total polyphenol content. Caffeine, EGCG, and total polyphenol contents in the GTDS varied from 28 to 183, 12-143, and 14-36% tablet or capsule weight, respectively. TEAC and ORAC values for GTDS ranged from 187 to 15340 and from 166 to 13690 mumol Trolox/g for tablet or capsule, respectively. The antioxidant activities for GTDS determined by TEAC and ORAC were well-correlated with each other and with the total polyphenol content. Reliable labeling information and standardized manufacturing practices, based on both chemical standardization and biological assays, are recommended for the quality control of botanical dietary supplements.  相似文献   

9.
Purpose: In recent years, interest in plant nutrition research has arisen with a strong focus on organic forms. The aim of this study was to determine the effect of different organic fertilizers on growth, yield, fruit quality and polyphenol content in soilless grown grape tomatoes under greenhouse conditions.

Materials and methods: Tomato plants were subjected to three organic nutrient solutions, which consisted of different mixtures of several OMRI (Organic Materials Review Institute) certified nitrogen fertilizers of industrially processed residues: Treatment I: solid and soluble liquid fertilizers of animal raw materials, natural potassium sulphate-non-synthetic, and calcium chloride; Treatment II: solid and soluble liquid fertilizers of animal raw materials, by-product of marine raw material (soluble liquid), natural potassium sulphate-non-synthetic, and calcium chloride; and Treatment III: solid fertilizers of animal raw materials, natural potassium sulphate-non-synthetic, and calcium chloride to 100% [0-30 days after transplanting (DAT)], 125% [31-80 DAT], and 150% [>81 DAT]. The Steiner solution (SS) was used as a control (Treatment IV).

Results: Yield did not differ between organic and conventional treatments, ranging from 3.04 to 3.35 kg m-2 while fresh weight in organic treatments was 3.14 compared to 3.2 kg m-2 in plants fed with the SS. No significant differences in plant height or fruit quality were found. The application of organic fertilizers positively affected the total hydrolysable and condensed polyphenols of tomato fruits compared to the control. Twelve phenolic compounds were identified, highlighting 3-Caffeoylquinic acid, salvianolic acid and 5,6-Dihydroxy-7,8,3’,4’-tetramethoxyflavone (Treatment I) and Medioresinol (Lignan) (Treatment II).

Conclusions: The results indicated that organic fertilization through animal-based fertilizer application is a feasible alternative for grape tomato production under greenhouse conditions.  相似文献   


10.
The effects of salinity on carbohydrates in leaves and roots of different salt tolerant cotton genotypes Glza 45 (salt tolerant) and Dandara (salt sensitive) during the initial salinity stress are investigated. Changes of starch and sucrose in relation to soluble amylases, phosphorylase and invertase in young leaves are studied. The plants are grown in water culture under controlled conditions.

Starch and sucrose accumulation is rapidly stimulated in leaves of Dandara, particularly due to extreme potassium sulfate supply, while in Giza 45 the amount of starch and sucrose declines except for extreme potassium sulfate treatment. The low sucrose value in roots of Dandara increases extremely, especially as a result of potassium chloride treatment. In contrast, the higher sucrose content in roots of Giza 45 is little affected. Amylase activity changes considerably in positive correlation with the starch content, whereas the low specific activity of phosphorylase is little affected. The sucrose content in the leaves is directly controlled by a high level of invertase activity of both cotton varieties.

Possible interactions of carbohydrate metabolism and genotyplcal ion regulation in response to the different salt tolerance of the genotypes are discussed. It is concluded that genotypical differences in the carbohydrate metabolism could be effective mechanisms for salt tolerance in cotton.  相似文献   


11.
Six potato cultivars grown in Turkey in boron-prone areas and differing in their tolerance towards high boron were studied to reveal whether boron causes oxidative stress. To assess stress level, chlorophyll fluorescence and growth parameters were measured. Oxidative damage was assessed as malondialdehyde level, and antioxidant protection was evaluated as ascorbate (AA), dehydroascorbate, reduced glutathione (GSH) and oxidized glutathione amounts and superoxide dismutase, catalase, ascorbate peroxidase (APX) and glutathione reductase (GR) activities. High boron stress affected photosynthesis negatively in a threshold-dependent manner and inhibited growth. No pronounced changes in oxidation of lipids occurred in any cultivar. Activation of APX suggested the involvement of an ascorbic acid–reduced glutathione cycle in the protection against oxidative stress caused by high boron. Efficient work of this antioxidant system was probably hindered by boron complexation with NAD(P)+/NAD(P)H and resulted in the inhibition of GR and a decrease in AA and GSH. Hence, oxidative stress associated with high boron is a secondary component of boron toxicity which arises from metabolic changes caused by boron interference with major metabolites. Potato cultivars tolerate excess boron stress well and show damage only in very high boron concentrations. The potato cvs best suited for high boron soils/breeding purposes are cvs Van Gogh and Agria.

Abbreviations: AA: ascorbic acid; APX: ascorbate peroxidase; CAT: catalase; DHA: dehydroascorbic acid; DHAR: dehydroascorbate reductase; DTNB: 5; 5′-dithiobis-2-nitrobenzoic acid; DTT: dithiotreitol; Fv/Fm: photosynthetic efficiency at the dark-adapted state; GR: glutathione reductase; GSH: reduced glutathione; GSSG: oxidized glutathione; MDA: malondialdehyde; ROS: reactive oxygen species; SOD: superoxide dismutase; TCA: trichloroacetic acid  相似文献   


12.
This work was aimed to study the effect of extraction solvent system with varying polarities on polyphenol, flavonoid and proanthocyanidin contents and DPPH scavenging activity. Obtained results showed that phenolic contents and antioxidant activities varied considerably as function of solvent polarity. The extraction with acetone/water (2:8) showed the highest flower polyphenol content (15.09 mg GAE/g DW). Moreover, antiradical capacities against DPPH, chelating power and lipid peroxidation assay were maximal in acetone/water (2:8) of flower extract. Significant variation in antioxidant properties was observed between different development stages of Carthamus tinctorius flowers; the highest antioxidant activity was observed at stage III (full flowering) while phenolic composition reached its maximum at stage II (flower formation). Gallic acid was the most abundant phenolic compound in C. tinctorius orange flowers, accounting for about 102.57 (μg/g DW). Findings underline the potential health benefits as a result of consuming C. tinctorius flowers and suggest that it could be used as valuable flavor with functional properties for food or nutraceutical products on the basis of the high polyphenol contents and antioxidant activities.  相似文献   

13.
The relative response of poppy (Papaver somniferum L.) and eight crop and vegetable species to excess manganese was investigated in a glasshouse, solution culture experiment. Plant yields and manganese concentrations were measured after two and six weeks growth at five levels of manganese (10–800 μM).

Poppies were highly sensitive to manganese toxicity in solution culture and reductions in shoot yield occurred at lower manganese levels in solution and at lower shoot manganese concentrations than that for the following sensitive species, ranked in order of increasing tolerance : brussels sprout, barley, green beans, lucerne and grean pea. In contrast lupins, oats and sugar beet were relatively tolerant producing about 80% or more of maximum shoot yield at the highest solution manganese level (800 μM Mn).

In this study the sensitivity of poppy, and brussels sprout, to manganese excess was attributed to their low shoot manganese “toxicity threshold values”; and their capacity to partition a high proportion of total plant manganese and dry matter to the shoot at solution manganese levels ≥ 100 μM.

The application of these results to field grown poppy is discussed in relation to interactions between manganese and other elements which modify plant tolerance to manganese excess.  相似文献   


14.
Previous research showed that the use of plant growth promoting rhizobacteria helped to increase nutrient use efficiency. The individual and combined effects of combined action of humic fertilizer and rhizobacteria Bacillus subtilis No. 2 on the lettuce yield, chlorophyll, total nitrogen and nitrate-(N) contents in lettuce leaves was studied. Traditional biochemical analysis and crop reflectance method were compared. Vegetation Indices and key spectrum characteristics - a median of frequency spectrum and bandwidth of frequency spectrum were used to estimate chlorophyll content in plant leaves.

The synergistic effect of bacteria and humic fertilizer was evidenced by increase in N and chlorophyll contents and in decreased nitrates content in lettuce leaves. Humic fertilizer resulted in decreased nitrates concentration in plants, whereas bacillus (B). subtilis No. 2 increased total N and chlorophyll contents. Results indicated that the application rate of humic fertilizer may be reduced when B. subtilis No. 2 is also applied.  相似文献   


15.
Purpose: Root and root hairs of plants have been intensively studied in solution culture; however, correlation of such measurements in solution culture with development in soil is poorly understood. Therefore, the aim of this study is to study whether root and root hairs grown in solution culture can predict their behavior in soil and their correlation with macro- and micronutrients uptake of wheat genotypes.

Materials and methods: The growth of roots and root hairs as well as uptake of macro- and micronutrients of six spring wheat varieties was compared in solution culture under P stress and P abundance and in a low fertility soil.

Results and conclusions: Root length and surface area under P stress were significantly positively correlated with that in the low fertility soil, while no such correlation was apparent for root hair length and density. In absolute terms, the root length, surface area, root hair length and density of spring wheat varieties were substantially higher in soil than in solution culture, while the concentration and uptake of macro- and micronutrients in soil differed from solution culture in a complex way. The early uptake of macro- and micronutrients was intimately associated with root length and surface area as well as root hair length and density in soil but not in solution culture. Therefore, root length rather than root hair traits in low-P solution may be used to screen early root growth vigor in soil and thereby high nutrient uptake of wheat in low fertility soil.  相似文献   


16.
This paper reports how genotype and growth temperature affect the physical characteristics and polyphenol content in sorghum grains. Two day/night temperature regimes, 32/21 and 38/21°C, were used to grow six sorghum genotypes (CCH1, CCH2, AQL33/QL36, Ai4, PI563516, and IS 8525). The physical characteristics (hardness, weight, and diameter) of sorghum grain and their free, bound, and total polyphenol contents were determined. Grain antioxidant activity was evaluated by 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid) diammonium salt and 2‐2‐diphenyl‐1‐picrylhydrazyl assays. The results indicate that the weight and diameter of the sorghum kernels were significantly increased in all genotypes except for CCH1, under higher temperature, whereas kernel hardness decreased. Genotype had a significant influence polyphenol content (IS 8525 about four times higher than PI563516 under optimum temperature) and antioxidant activity, but temperature did not, with the exception of IS 8525 in which polyphenol content (reduced by about 10%) and antioxidant activity were lower at the high temperature. Polyphenol content was strongly positively correlated with antioxidant activity. This research provides valuable information on the properties of different sorghum genotypes under expected future increased temperatures that may be of value for varietal selection for specific end use.  相似文献   

17.
Greenhouse experiments with alfalfa (Medicago sativa L. cv. ‘Apollo') were performed to evaluate the effect of varied nutrient solution concentrations of S on the yield, nodulation, dinitrogen fixation, N and S concentration, and the partitioning of N and S into shoots and roots.

Sulfur treatments consisted of four levels (0, 1, 2.5, and 25 mg S/L) of added S. The experimental design was a randomized complete block, with three replications. Seeds were inoculated with commercial inoculum, planted in plastic containers of acid‐washed sand, and irrigated with nutrient solution for one minute, at 2 h intervals.

Sulfur application increased the yield of all treatments. The results demonstrated that the addition of 2.5 mg S/L to the nutrient solution, besides providing the highest total dry matter yield (12 g/72 plants), showed the highest percent yield increase (19%), acetylene reduction rate (0.426 umole ethylene/mg nodule dry wt/h), total N content (306 mg/72 plants), percent recovery of S (3.8%), and percent increase in N due to dinitrogen fixation (32%).

N:S ratios obtained were different for shoots and roots, with S application decreasing the N:S ratios. The N:S ratios of 16:1 (shoots), and 9:1 (roots) obtained in the 2.5 mg S/L treatment were found to be adequate for normal growth and development.

These data indicated that the 2.5 mg S/L treatment (2.7 mg total S/L) was optimal for alfalfa seedling development.  相似文献   


18.
Species of Amaranthus are grown extensively as leafy green vegetables in tropical Africa and Asia and as high yielding grain crops in Western South America, Central America, Northern India, Western Nepal, and Pakistan. The crop is often grown on acid, marginal soils, under subsistence conditions, where liming even the soil plow layer may not be economically feasible. Hence, the identification or development of strains with high tolerance to acid soils would be beneficial. Aluminum and Mn toxicities are the most important growth‐limiting factors in many acid soils. The objective of our research was to determine the tolerances of selected Amaranthus strains to high levels of these elements in acid soils.

Fifteen strains, representing five species, were grown in greenhouse pots of an acid, Al‐toxic Tatum soil limed to pH 4.8 and 5.8. Strains differed significantly in tolerance to the acid soil. Relative yields (pH 4.8/pH 5.8%) ranged from 50.1 to 6.3% for tops and from 54.5 to 5.7% for roots. Four strains of A. tricolor L. (vegetable type) were significantly more tolerant than six strains of A. cruentus L. (seed and vegetable type). Strains of A. hypochondriacus L. and A. caudatus L. studied were intermediate in tolerance.

Twelve strains, representing four species, were grown on an acid, Mn‐toxic Zanesville soil at pH 4.6 and 6.3. Strains also differed significantly in tolerance to this acid soil; however, overall growth was better and strain differences were smaller than on Al‐toxic Tatum soil at pH 4.8. On Zanesville soil the relative top yields (pH 4.6/pH 6.3%) ranged from 74.1 to 18.6%. The most tolerant group included three strains of A. tricolor and one strain of A. hypochondriacus, but four strains of A. cruentus were also fairly tolerant. The sensitive end of the scale included one strain of A. cruentus and two strains of A. hypochondriacus.

In general, strains that were most tolerant to the Al‐toxic Tatum soil were also among the most tolerant to the Mn‐toxic Zanesville soil. Likewise, those most sensitive to the high Al soil were most sensitive to the high Mn soil. But some strains that were sensitive to excess Al in Tatum soil were fairly tolerant to high Mn in Zanesville soil.

Results suggest that superior strains of Amaranthus can be selected or developed for use on acid soils.  相似文献   


19.
麦饭石矿物肥施用效果试验   总被引:2,自引:0,他引:2  
通过盆栽种植小白菜及后茬作物苋菜,测定其农艺性状、产量及植株中矿质营养成分含量来研究麦饭石矿物肥肥效。结果表明,麦饭石矿物肥对小白菜和苋菜的茎长、根长、鲜重和矿质元素的积累均有显著影响;当矿物肥的施用量在0~0.87 g.kg-1时,随着矿物肥施用量的增加其作用明显增强,当大于0.87 g.kg-1时,其增效减缓。  相似文献   

20.
Yerba-mate or mate? (Ilex paraguariensis A.St.-Hil., Aquifoliaceae) leaves are typically used for their stimulant, antioxidant, antimicrobial, and diuretic activity, presenting as principal components polyphenolic compounds. In this study, the objective was to develop a yerba-mate dry extract by using spray drying technology and to evaluate the dry extract antioxidant activity and chemical composition. The results obtained by means of the DPPH assay show that the extract presents an IC(50) of 2.52 mg/mL. The yerba-mate spray-dried extract presents high catalase-like activity, suggesting that it is a strong free-radical scavenger. The antioxidant activity as expressed as catalase-like activity was related to total polyphenol content. In addition, the results show that the spray-dried extract presents high polyphenol content, namely, high concentrations of caffeic acid (1.54 mg/g), 5-caffeoylquinic acid (91.40 mg/g), rutin (5.38 mg/g), and total phenolics (178.32 mg/g), which justifies its high antioxidant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号