首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the incorporation of nanoscale germanium (Ge) and silicon dioxide (SiO2) particles into poly(vinyl alcohol) (PVA) nanofibers with the aim of developing nanostructures with far-infrared radiation effects and antimicrobial properties for biomedical applications. Composite fibers containing Ge and SiO2 were fabricated at various concentrations of Ge and/or SiO2 using electrospinning and layered on polypropylene nonwoven. The morphological properties of the nanocomposite fibers were characterized using a field-emission scanning electron microscope and a transmission electron microscope. The far-infrared emissivity and emissive power of the nanocomposite fibers were examined in the wavelength range of 5-20 μm at 37 °C. The antibacterial properties were quantitatively assessed by measuring the bacterial reductions of Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli. Multi-component composite fibers electrospun from 11 wt% PVA solutions containing 0.5 wt% Ge and 1 wt% SiO2 nanoparticles exhibited a far-infrared emissivity of 0.891 and an emissive power of 3.44·102 W m?2 with a web area density of 5.55 g m?2. The same system exhibited a 99.9 % bacterial reduction against both Staphylococcus aureus and Escherichia coli, and showed a 34.8 % reduction of Klebsiella pneumoniae. These results demonstrate that PVA nanofibrous membranes containing Ge and SiO2 have potential in medical and healthcare applications such as wound healing dressings, skin care masks, and medical textile products.  相似文献   

2.
The nanofiber membrane prepared by electrospinning has been widely applied in lithium-ion batteries. A powerful strategy for designing, fabricating and evaluating Poly-m-phenylene isophthalamide (PMIA) nanofiber membrane with SiO2 nanoparticles was developed by electrospinning in this paper. The morphology, crystallinity, thermal shrinkage, porosity and electrolyte uptake, and electrochemical performance of the SiO2/PMIA nanofiber membranes were investigated. It was demonstrated that the nanofiber membrane with 6 wt% SiO2 possessed notable properties, such as better thermal stability, higher porosity and electrolyte uptake, resulting in higher ionic conductivity (3.23×10-3 S·cm-1) when compared with pure PMIA nanofiber membrane. Significantly, the SiO2/PMIA nanofiber membrane based Li/LiCoO2 cell exhibited more excellent cycling stability with capacity retention of 95 % after 50 cycles. The results indicated that the SiO2-doped PMIA nanofiber membranes had a potential application as separator in high temperature resistance lithium-ion batteries.  相似文献   

3.
Treatment of polyacrylonitrile (PAN) onto m-aramid fabric was carried out by pad-dry-cure method using dimethylformamide (DMF) dissolved acrylic fiber solution. The obtained PAN treated m-aramid fabric was dyed using exhaustion method with basic dyes. The effect of PAN treatment on fabric stiffness property was acceptable with acrylic fiber solutions ranging from 1 wt% to 4 wt%. Whilst, more than 4 wt% PAN treated fabrics exhibited undesirable stiffness. The dyeing results showed that PAN treated m-aramid fabrics exhibited a significant increase in color strength when compared to untreated fabric, arising from an increase in anionic dye sites (styrene SO3 ? group). Wash fastness was comparable to that of untreated fabric, indicating the strong interaction between dye molecules and the PAN. Rubbing fastness of treated fabrics was not affected by treatments with PAN concentrations lower than 4 wt%. Further increase in PAN concentration led to poorer rubbing fastness property due to the problem of surface dyeing. For light fastness, the PAN treatment failed to improve the light fastness property which is the main disadvantage of basic dyeing of aramid fabric. Finally, in case of PAN treatments with the range of 1 wt% to 4 wt%, the flame retardancy property of PAN treated m-aramid fabrics was found not affected by the percent add-on. However, above 4 wt% PAN treatment, the flame retardancy performance became deteriorated.  相似文献   

4.
Cellulose/multi-walled carbon nanotubes (MWCNTs)- composite membranes applied in electrochemical and biomedical fields were prepared using 1-ethyl-3-methylimidazolium diethyl phosphate (EmimDEP) as solvent in this study. With the increasing of MWCNTs amount, the membrane conductivity increased, and the conductivity reached 9.1 S/cm as the mass ratio of MWCNTs to cellulose being 2:1. The additions of sodium dodecyl sulfate (SDS), 1-hexadecyl-3-methylimidazolium bromide (C16mimBr) and 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4) efficiently improved the conductivity, mechanical property, and thermal stability by promoting the dispersion of MWCNTs. When the mass ratio of C16mimBr to MWCNTs changed from 0 to 0.3:1, the conductivity increased from 0.08 S/cm to 0.14 S/cm, and the tensile strength increased from 13.3 MPa to 17.0 MPa. These results indicate that the binary ionic liquids (ILs) system can regulate the properties of the composite membranes, and is a feasible approach for preparing cellulose/MWCNTs composite membranes with enhanced properties.  相似文献   

5.
This article reports on a facile route for the preparation of polypyrrole nanospheres with improved water solubility, ordering and conductivity in the presence of a polyelectrolyte, such as phosphorylated polyvinyl alcohol. The phosphorylated polyvinyl alcohol (PPVA) was used as both the stabilizer and the dopant in the chemical oxidative polymerization of pyrrole. The resulting PPVA doped polypyrrole (PPy) nanocomposites (PPy-PPVA) were characterized with FTIR, TGA, SEM and AFM techniques. The electrical conductivity of polymer was measured by four-point probe method. Our observation and results suggest a plausible formation mechanism of PPy nanospheres, PPVA micelle might have functioned as ‘template’ during the polymerization of pyrrole monomers, meanwhile, the PPy chains doped with phosphate group. It was found that the size decreased and their dispersion stability in water increased with the increasing feeding ratio of PPVA. The conductivity of PPy with different morphologies was also measured and compared. When the PPVA: pyrrole feeding ratio ranged from 20 to 50 wt%, the PPy-PPVA nanoparticles showed spherical shape with excellent uniformity, good electrical conductivity (up to 33.1 S·cm?1), and weakly temperature dependent conductivity. It’s worth mentioning that the PPy-PPVA nanocomposite prepared in high PPVA feeding ratio has been well-dispersed for more than 24 months, which indicates its significant dispersion stability.  相似文献   

6.
A series of semi-interpenetrating network (semi-IPN) anion exchange membranes (QCS/St-G8-2-8, Quaternized chitosan/styrene-[maleic alkylene group diethyl bis (octyl dimethyl chloro/bromide), abbreviated as G8-2-8] were prepared via in-situ polymerization by Styrene (St) and G8-2-8 in QCS casting solution. During the process of in-situ polymerization, linear block polymers (St-G8-2-8) of Styrene and G8-2-8 was constructed, then was mixed with QCS casting solution, followed crosslinking the QCS by glutaraldehyde (GA). With the increasing content of linear block polymer, water uptake and swelling ratio of the composite membrane decreased; This kind of linear structure makes an order arrangement of quaternary ammonium groups which improves the OH? migration efficiency. At 70 °C, the M-30 composite membrane performs a high OH? conductivity of 8.20×10-2 S·cm-1, the methanol permeability is 3.23×10-6 cm-2·s-1 which is still lower than Nafion 115 of 2.42×10-6 cm-2·s-1, but M-30 shows a higher selectivity of 25.3 than Nafion 115 of 11.6. Furthermore, the membranes exhibited excellent thermal stability (≥150 °C), the tensile strength of the composite membrane is in the range of 14-25 MPa and elongation at break is in the range of 16-37 % at room temperature, as well as superior chemical stability in 1.0 M KOH solution for 250 h.  相似文献   

7.
We have manufactured poly(vinylidene fluoride) (PVDF)-based nanocomposite films with different graphene contents of 0.1~10.0 wt% by ultrasonicated solution-mixing and melt-compression. As a reinforcing nanofiller, graphene sheets are prepared by rapid thermal expansion of graphite oxide, which are from the oxidation of natural graphite flakes. Graphene sheets are characterized to be well exfoliated and dispersed in the nanocomposite films. X-ray diffraction data confirm that the α-phase crystals of PVDF are dominantly developed in the nanocomposite films during the meltcrystallization. DSC cooling thermograms show that the graphene sheets serve as nucleating agents for the PVDF α-form crystals. Thermal stability of the nanocomposite films under oxygen gas atmosphere is noticeably improved, specifically for the nanocomposite with 1.0 wt% graphene. Electrical volume resistivity of the nanocomposite films is substantially decreased from ~1014 to ~106 W cm, especially at a critical graphene content between 1.0 and 3.0 wt%. In addition, mechanical storage modulus is highly improved with increasing the graphene content in the nanocomposite films. The increment of the storage modulus for the nanocomposite film at 30 °C with increasing the graphene content is analyzed by adopting the theoretical model proposed by Halpin and Tsai.  相似文献   

8.
We have prepared a series of polypropylene/exfoliated graphene (PP/EG) nanocomposite films via efficient meltcompounding and compression, and investigated their morphology, structures, thermal transition behavior, thermal stability, electrical and mechanical properties as a function of EG content. For the purpose, EG, which is composed of disordered graphene platelets as reinforcing nanoscale fillers, is prepared by the oxidation/exfoliation process of natural graphite flakes. SEM images and X-ray diffraction data confirm that the graphene platelets of EG are well dispersed in PP matrix for the nanocomposites with EG contents less than 1.0 wt%. It is found that thermo-oxidative degradation of PP/EG nanocomposites is noticeably retarded with the increasing of EG content. Electrical resistivity of the nanocomposite films was dramatically changed from ∼1016 to ∼106 Ω·cm by forming electrical percolation threshold at an certain EG content between 1 and 3 wt%. Tensile drawing experiments demonstrate that yielding strength and initial modulus of PP/EG nanocomposite films are highly improved with the increment of EG content.  相似文献   

9.
In this study starch-montmorillonite/polyaniline (St-MMT/PANI) nanocomposite was synthesized by chemical oxidative polymerization of aniline in the presence of starch-montmorillonite nanocomposite dispersion. The prepared ternary nanocomposite was characterized using FT-IR, XRD, SEM, TGA and TEM techniques. XRD patterns combined with TEM results confirmed the intercalation of MMT in the starch matrix. SEM micrographs revealed the growth of polyaniline over the surface of the St-MMT nanocomposite. The St-MMT/PANI nanocomposite was used for the adsorption of a reactive dye. Batch removal experiment results showed complete removal of dye in a very short contact time. Further investigations indicated that the removal mechanism was based on both the adsorption and electrostatic attraction between nanocomposite and dye molecules. The experimental data were well fitted to the Langmuir isotherm and pseudo-second-order kinetic model. The adsorption capacity of reactive dye on St-MMT/PANI nanocomposite was 91.74 mg g?1. All these results demonstrated the effectiveness of the hybrid system as an efficient adsorbent for removal of reactive dyes from textile effluents.  相似文献   

10.
Polystyrene (PS) composites with nanofibrous structure consisting of multi-walled carbon nanotubes (MWCNTs) with 0-10 wt.% of nanofiller have been fabricated via electrospinning technique. The surface morphology and thermal properties of the composites were evaluated by scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA). The SEM analysis of the composite nanofibers samples revealed that the average diameter of the nanofibers increases with increasing MWCNTs content. The resultant MWCNTs/PS composite nanofibers diameters were in the range of 391±63 to 586±132 nm. The thermal stability of composites was increased after addition of MWCNTs to PS matrix. The electrical conductivity of the composites with different weight percentage of MWCNTs was investigated at room temperature. Electrical conductivity of MWCNTs/PS composite nanofiber followed percolation theory having a percolation threshold V c= 0.45 vol% (~0.75 wt. %) and critical exponent q=1.21. The electrical conductivity and thermal properties confirmed the presence of good dispersion and alignment MWCNTs encapsulated within the electrospun nanofibers. The electromagnetic interference (EMI) shielding effectiveness of the MWCNTs/PS composites was examined in the measurement frequency range of 8.2-12.4 GHz (X-band). The total EMI shielding efficiency of MWCNTs/PS composite nanofibers increased up to 32 dB. The EMI shielding results for MWCNTs/PS composite nanofibers showed that absorption loss was the major shielding mechanism and reflection was the secondary mechanism. The present study has shown the possibility of utilizing MWCNTs/PS composite nanofibers as EMI shielding/absorption materials.  相似文献   

11.
The multi-walled carbon nanotube (MWNT)/cellulose nanocomposites were prepared by using monohydrated Nmethylmorpholine-N-oxide (NMMO) as a solvent for dispersing the acid-treated MWNTs (A-MWNTs) as well as for dissolving the cellulose. The A-MWNTs were well dispersed in both monohydrated NMMO and the nanocomposite films. The nanocomposite films were prepared by a film-casting method onto a glass plate. The tensile strain at break, Young’s modulus, and toughness of nanocomposite films increased by ~5, ~2 and ~12 times, respectively at ? (A-MWNT content in the nanocomposite)=0.8 wt%, as compared to those of the pure cellulose film. The thermal degradation temperature of the nanocomposite films also increased from 329 to 339 oC by incorporation of 1 wt% A-MENTs. The electric conductivities of the A-MWNT/cellulose nanocomposites at ? =1 and 10 wt% were 2.09×10?5 and 3.68×10?3 S/cm, respectively. The transmittances were 86, 69 and 55 % at 550 nm for 0.4, 0.8 and 1 wt% nanocomposite films, respectively. Thus, these nanocomposites are promising materials in terms of all the properties studied in this paper and can be used for many applications, such as toughened cellulose fibers, transparent electrodes, etc.  相似文献   

12.
The sustainability of white clover in grass/clover swards of an upland sheep system, which included silage making, was studied over 5 years for four nitrogen fertilizer rates [0 (N0), 50 (N50), 100 (N100) and 150 (N150) kg N ha?1]. A common stocking rate of 6 ewes ha?1 was used at all rates of N fertilizer with additional stocking rates at the N0 fertilizer rate of 4 ewes ha?1 and at the N150 fertilizer rate of 10 ewes ha?1. Grazed sward height was controlled, for ewes with their lambs, from spring until weaning in late summer by adjusting the proportions of the total area to be grazed in response to changes in herbage growth; surplus pasture areas were harvested for silage. Thereafter sward height was controlled on separate areas for ewes and weaned lambs. Areas of pasture continuously grazed in one year were used to make silage in the next year. For treatments N0 and N150, white clover stolon densities (s.e.m.) were 7670 (205·4) and 2296 (99·8) cm m?2, growing point densities were 4459 (148·9) and 1584 (76·0) m?2 and growing point densities per unit length of stolon were 0·71 (0·015) and 0·67 (0·026) cm?1 respectively, while grass tiller densities were 13 765 (209·1) and 18 825 (269·9) m?2 for treatments N0 and N150 respectively. White clover stolon density increased over the first year from 780 (91·7) cm m?2 and was maintained thereafter until year 5, reaching 8234 (814·3) and 2787 (570·8) cm m?2 for treatments N0 and N150 respectively. Growing point density of white clover increased on treatment N0 from 705 (123·1) m?2 to 2734 (260·7) m?2 in year 5 and it returned to the initial level on treatment N150 having peaked in the intermediate years. Stolon density of white clover was maintained when the management involved the annual interchange of continuously grazed and ensiled areas. The non‐grazing period during ensiling reduced grass tiller density during the late spring and summer, when white clover has the most competitive advantage in relation to grass. The increase in stolon length of white clover in this period appears to compensate for the loss of stolon during periods when the sward is grazed and over winter when white clover is at a competitive disadvantage in relation to grass. The implications for the management of sheep systems and the sustainability of white clover are discussed.  相似文献   

13.
Composite films were prepared by casting the solution of polyacrylonitrile (PAN) and single wall nanotube (SWNT) in DMF subsequent to sonication. The SWNTs in the films are well dispersed as ropes with 20–30 nm thickness. Moreover, AFM surface image of the composite film displays an interwoven fibrous structure of nanotubes which may give rise to conductive passways and lead to high conductivity. The polarized Raman spectroscopy is an ideal characterization technique for identification and the orientation study of SWNT. The well-defined G-peak intensity at 1580 cm−1 shows a dependency on the draw ratio under cross-Nicol. The degree of nanotube orientation in the drawn film was measurable from the sine curve obtained by rotating the drawn film on the plane of cross-Nicol of polarized Raman microscope. The threshold loading of SWNT for electrical conductivity in PAN is found to be lower than 1 wt% in the composite film. The electrical conductivity of the SWNT/PAN composite film decreased with increasing of draw ratio due to the collapse of the interwoven fibrous network of the nanotubes with uniaxial orientation.  相似文献   

14.
A new thermal conductive poly(vinylidene fluoride) (PVDF) composite has been developed via a hybrid functionalized graphene sheets (FGS)-nanodiamonds (NDs) filler by a simple solution method. The PVDF composite showed different thermal conductivities at different proportion of hybrid filler. The thermal conductivity of the composite was up to 0.66 W/m·K for a mixture containing 45 wt% hybrid filler, which is about 2-fold increment in comparison to the PVDF martrix. The PVDF composites consisting of 20 wt% hybrid FGS/ND filler at the weight ratio of 1:3 shows the best thermal stability. The electrical conductivity of composites was increased from 5.1×10?15 S cm?1 (neat PVDF) to 7.1×10?7 S cm?1 of the PVDF composite with 10 wt% hybrid filler.  相似文献   

15.
Five binary perennial grass/white clover (Trifolium repens, cv. Menna) mixtures were evaluated over a 3-year period under continuous sheep stocking together with the imposition of a rest period for either an early or a late conservation cut; the experiment with plot sizes of 0·16 ha was replicated three times. The grass species and cultivars used were Merlinda tetraploid and Magella diploid perennial ryegrass (Lolium perenne), Prairial cocksfoot (Dactylis glomerata), Rossa meadow fescue (Festuca pratensis) and Goliath timothy (Phleum pratense). The greatest total lengths of white clover stolon developed in the meadow fescue (171·6 m m?2) and timothy (151·9 m m?2) associations compared with those in tetraploid perennial ryegrass (98·6 m m?2), diploid perennial ryegrass (91·9 m m?2) and cocksfoot (74·6 m m?2) (s.e.d. 16·4, P < 0·001). On average, the proportion of white clover stolon that was buried was between 0·86 and 0·89 and this was more abundant in late than early season. Whereas timothy persisted, the persistence of meadow fescue was low under any of the managements tested and this was markedly reduced by the third grazing season. In the diploid perennial ryegrass sward, a late June to early August rest period for conservation enhanced white clover stolon length. An early April to late May rest period greatly reduced total white clover stolon length in both diploid perennial ryegrass and tetraploid perennial ryegrass associations (diploid perennial ryegrass-unrested 89 m m?2, early rest 56·1 m m?2, late rest 130·7 m m?2; tetraploid perennial ryegrass - unrested 125·1 m m?2, early rest 71 m m?2, late rest 99·7 m m?2; s.e.d. 19·19, P < 0·001). The numbers of white clover stolon growing points per unit stolon length were greatest when the sward was rested during late June to early August ?55·9 m?1 stolon length compared with 45·7 m?1 for an April to late May rest and 46 m?1 in the absence of a rest (s.e.d. 2·59, P < 0·001). Likewise, the percentage of stolon above ground was greatest with the late June to early August rest ?15·78% compared with 10·61% for the April to late May rest and 7·69% for no rest (s.e.d. 1·569, P < 0·001). The complementary percentages of buried stolon indicate the important role this fraction has and the need to study stolon behaviour in grazing studies generally. It is concluded that, in relation to perennial ryegrass as a companion grass, meadow fescue and timothy allow better white clover development and cocksfoot less. However, other attributes have to be considered, for example the poor persistence of meadow fescue and the slower regrowth of timothy, both of which allow the invasion of weed grasses, or the lower acceptability of cocksfoot to livestock. The timing of the rest period before the conservation cut can influence white clover development considerably, but the effects differed with different companion grasses.  相似文献   

16.
Polyacrylonitrile (PAN) nanoparticles were successfully prepared by dispersion polymerization of acrylonitrile (AN) in water using 10 and 20 wt% of the poly(ethylene oxide)-b-PAN macromolecular RAFT (PEO-b-PAN macro-RAFT) agent (M n=5,600 g/mol, PDI=1.15). The degrees of polymerization of the PEO and PAN blocks were 113 and 16, respectively. The PAN nanoparticles had a crumpled spherical appearance and their sizes ranged from 50–80 nm. The degree of crystallinity of the PAN particles was 23 %. The M n values of the PAN nanoparticles prepared with 10 and 20 wt% of the PEO-b-PAN macro-RAFT agent were 33,900 and 25,800 g/mol, respectively. The existence of the PEO block on the surface of the PAN nanoparticles was confirmed by 1H NMR spectroscopy and XPS.  相似文献   

17.
We purified as-received CNT fibers (CNTFs) with four different methods and systematically examined effects of various purifications on the morphology, structure, and electrical conductivity of the resultant CNTFs, respectively. The purified CNTFs were characterized by an optical microscope, transmission electron microscope (TEM) coupled with an energy dispersive X-ray spectrometer (EDS), Raman spectroscopy, and multiple source meters. Optical images showed that morphology of CNTFs did not largely change after purification. TEM images and EDS results showed that the Fe impurities, 21.9 wt%, in CNTFs were decreased to 0.17-1.20 wt% and were nearly eliminated by acid and alkali purifications, respectively. Raman results identified the ID/IG ratio of CNTFs was 0.71, while those of HCl treatment after steam with heat (HSCNTFs-HCl), NaOCl treatment after steam with heat (HSCNTFs-NaOCl), and NaOH treatment with heat without steam (NaOH-HCNTFs) were 0.45, 0.49, and 0.57, respectively, which means that purification methods of CNTFs performed in this study are thought to be satisfactory for manufacturing high-purity CNTFs. Electrical conductivity (1.4×104 S/m) of NaOH-HCNTFs (one-step procedure) was twice as high as that (7.3×103 S/m) of CNTFs, but lower than those (2.1-2.3×104 S/m) of HSCNTFs-HCl and HSCNTFs-NaOCl (two-step processes), which demonstrates that two-step processes rather than one-step procedure would have a positive effect on the electrical conductivity of the resultant CNTFs.  相似文献   

18.
In the present study, conducting nanofillers are incorporated in thermoplastic polyurethane (TPU) to produce nanocomposite fibers through melt compounding route using micro twin screw extruder attached to a fiber drawing device. Nanocomposite fibers using bulk graphite, nanographite and carbon nanofiber were produced using varying amounts of these nanofillers. Metal coated nanographite, new hybrid nanoparticle produced in house, were also used to impart conductivity to the TPU fiber. The process parameters such as processing temperature, mixing time and rpm of the screw have been optimized considering minimum change in TPU bulk properties. It has been found that the nanofillers can be melt mixed safely up to 4 min with the TPU at 180 °C and 100 screw rpm. These mixing conditions give reasonable amount of dispersion. The studies on such fibers in differential scanning calorimetry (DSC) and thermomechanical analyzer (TMA) reveals that the metal coated nanographite particles make the nanocomposite fibers more thermally stable. Both the D. C. conductivity and A. C. impedance of the nanocomposite fibers have reduced significantly even at very low loading of nanofillers, although the conductivity of the produced fibers are in antistatic range (D.C. conductivity ~10?4 S/m).  相似文献   

19.
A simple multiplicative model using temperature, foliage nitrogen (N) concentration and water status was developed to predict the maximum photosynthetic rate (Pmax) of field‐grown cocksfoot (Dactylis glomerata L.) leaves when none, one, two or all the factors were limiting. The highest Pmax was 27·4 μmol CO2 m–2 s?1 in non‐limited conditions, which was defined as the standardized Pmax value dimensionless (Pmaxs=1). Pmaxs increased 0·058 units per °C from 10°C to the optimum range (19–23°C) (Pmaxs=1) and then declined 0·077 units of Pmaxs per °C from 23 to 31°C. Pmaxs=1 was also measured from 59 to 52 g N kg?1 dry matter (DM) foliage N. Pmaxs then decreased at the rate of 0·115 units per 10 g N kg?1 DM from 52 to 26 g N kg?1 DM, and 0·409 units of Pmaxs per 10 g N kg?1 DM from 26 to 15 g N kg?1 DM. For predawn leaf water potential (ψlp), Pmaxs=1 was measured from ?0·1 to ?1·2 bar but declined linearly at a rate of 0·078 units per bar of ψlp from ?1·2 to ?14·0 bar because of a linear decrease in stomatal conductance. An interaction between low N content (≤20 g N kg?1 DM) and high temperature (>23°C) was also detected. Together, this multiplicative model accounted for 0·82 of the variation in Pmaxs.  相似文献   

20.
Maximum light‐saturated photosynthetic rate (Pmax) and stomatal conductance (gs) of field‐grown cocksfoot (Dactylis glomerata L.) leaves in a silvopastoral system were measured at different times under moderate (850–950 µmol m?2 s?1 photosynthetic photon flux density, PPFD) and severe shade (85–95 µmol m?2 s?1 PPFD). Also Pmax and gs were measured after 30, 60 and 180 min of severe shade to determine the lag in the rise of photosynthesis rate from low to high irradiance levels (induction state). The highest Pmax and gs values obtained were 26·5 µmol CO2 m?2 s?1 and 0·41 mol H2O m?2 s?1 in non‐limiting conditions with full sunlight (1900 µmol m?2 s?1 PPFD). These values were defined as standardized dimensionless Pmaxs=1 and gss=1 for comparison of treatment effects. The Pmaxs under severe shade decreased by 0·004 units per minute from 1 to 180 min and reached a steady‐state of 0·37 units after 140 min. Under moderate shade, Pmaxs decreased by 0·002 units per minute from 1 to 120 min and reached a steady‐state of 0·76 units. The time required to reach full induction on return to full sun (Pmaxs=1) was 15 min after 30 min of severe shade and 37 min after 180 min of shade. Mathematical equations were derived to describe the changes in Pmaxs and gss under severe and moderate shade and during induction. The rate of change of gss was slower than for Pmaxs on entering shade and also slower during the subsequent induction process. This indicated other factors in addition to gs were operating in the reduction and increment of Pmax and a two‐step model to explain this is proposed. The defined photosynthetic responses of cocksfoot leaves to fluctuating light regimes could be used to develop quantitative predictions of Pmax for inclusion in a canopy photosynthesis model of silvopastoral systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号