首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

The main objective of this case study was to explore the possible influence of forest management on the levels and distribution of biomass and carbon (C) in even-aged stands of Norway spruce [Picea abies (L.) Karst.] in Denmark. Data originated from a long-term thinning experiment and an adjacent spacing experiment at stand ages of 58 and 41 years, respectively. Biomass of 16 trees from different thinning and spacing treatments was measured or partly estimated, and soils were sampled for determination of C stocks. All trees in each plot were measured for stem diameter and some for total height, to allow for scaling-up results to stand-level estimates. For trees of similar size, foliage biomass tended to be higher in the spacing experiment, which was located on slightly more fertile land. Foliage biomass increased with increasing thinning grade, but the effect could not be separated from that of tree size. At stand level, foliage biomass tended to increase with increasing spacing as well as with increasing thinning grade. For branchwood, stems and roots (including below-ground stump), the biomass increased with increasing tree size and stand volume at tree and stand level, respectively, but no differences between stands, spacings or thinning grades were observed, apart from that expressed by tree size or stand volume. At stand level, C stocks of all biomass compartments decreased with increasing thinning grade, while the distribution between compartments was hardly influenced. The ratio between above-ground and stem biomass was about 1.21 at stand level, while the ratio between below- and above-ground biomass was about 0.17. Thinning influenced the C stock of the forest floor and mineral soil oppositely, resulting in no effect of thinning on total soil C.  相似文献   

2.
Altogether 82 plots (261 estimations) of Picea abies (L.) Karst, and 193 plots (360 estimations) of Pinus sylvestris (L.) stands were estimated by a vertical tube. The “crown free projection”, CFP, of stands thinned in three methods with different thinning grades was measured: unthinned, heavily and very heavily thinned, heavily thinned delayed first thinning, extra heavily thinned and thinned from the top. Basal area (m2ha?1) density (stems ha?1) and diameter sum (m ha?1) were plotted against CFP. Basal area was the best practical measure of stand in this study. Generally Scots pine stands have higher CFP and the curves are steeper than in Norway spruce stands. Depending on the grade of thinning, heavily and very heavily thinned spruce stands, delayed first thinning included, have CFP values of 10–15% and stands thinned from the top, 20–40%, compared with 30–80% and 30–60% respectively in pine stands. Extra heavily thinned stands have the highest CFP, 20–80% in spruce and 50–90% in pine stands. The CFP levels after thinning are too high in pine stands for avoidance of sucker and sprout production of aspen and birch. In dense Norway spruce stands thinned from the top or heavily and very heavily thinned, the CFP values are low enough (≤30%) to diminish the production of suckers.  相似文献   

3.
On the basis of nine Norway spruce (Picea abies (L.) Karst.) and ten European beech (Fagus sylvatica L.) thinning experiments in Germany, for which both residual and removed stock had been registered first during 1870, I scrutinize how moderate and heavy thinning from below (B-, C-grade) affects the production of merchantable volume compared with light thinning (A-grade). In relation to A-grade, cumulative merchantable volume (CV) of B- and C-grade amounts in average to 103–107% in juvenile and to 97–102% in mature Norway spruce stands. The corresponding findings for European beech are 101–106% and 94–102%. CV of individual stands varies between 89% and 130% for Norway spruce and 73% and 155% for European beech (CV of A-grade = 100%). These findings are substantiated by the relation between stand density (SDI) and periodic annual increment (PAI). On the B- and C-grade plots of spruce and beech, respectively, SDI was reduced down to 41–91% and 31–83% of the A-grade. When SDI is reduced in young stands, PAI follows a unimodal curve. Norway spruce’s PAI culminates in 109% if SDI is reduced to 59%; European beech’s PAI culminates in 123% when density is reduced to 50%. Whereas Norway spruce’s growth reacts most positively on thinning under poor site conditions and with increment reduction on favourable sites, European beech behaves oppositely. With stand development the culmination point of the unimodal relation moves towards maximum density, so that in older stands PAI follows the increasing pattern, which is the left portion of a unimodal curve. A model is presented which apparently unifies contradictory patterns of stand density–growth reactions by integrating relative stand density, average tree size and site fertility effects, and makes the findings operable for forest management.  相似文献   

4.
Abstract

This study analysed the effects of young stand characteristics on optimal thinning regime and length of rotation periods for even-aged Norway spruce [Picea abies (L.) Karst.] stands. Stand development was based on a distance-independent, individual-tree growth model. The young stand data were collected from 12 well-stocked Norway spruce stands in southern Finland. Results showed that optimal thinning regimes and rotation period depend on site quality and initial stand characteristics. At the first thinning, optimal thinning type depended on initial density. Thinning from both ends of the diameter distribution turned out to be optimal for initially dense stands. At the second and subsequent thinnings, thinning from above was clearly superior. At a low interest rate, thinning from below was optimal for the first thinning regardless of stocking level. For the study data, optimal rotation periods varied from 61 to 92 years at 3% interest rate. The high variation in length of rotation period was due to the sensitivity of optimal length of rotation period to site qualities, initial stand structure and density.  相似文献   

5.
Three stand types on drained wetlands, all 31 years old, were studied. The stands were: (1) Scots pine, unfertilized; (2) Scots pine, fertilized; and (3) Norway spruce, fertilized. Amounts of nutrients (N, K, Ca, Mg, P, S, B, Fe, Mn, Zn, Cu) in above-ground biomass for all three stand types could be simulated precisely by a curvilinear regression model, with stand volume on bark as regressor. Net H+ production of the fertilized pine was estimated to be 661 mol H+ ha−1 year−1 from establishment to 31 years of age. The corresponding value for spruce was 1232 mol H+ ha−1 year−1. Atmospheric inputs to the pine and spruce sites were 695 and 516 mol H+ ha−1 year−1, respectively. Atmospheric input of N was 2.3 and 1.3 times the accumulation in the biomass of unfertilized and fertilized pine, whereas the value for spruce was 0.7. The corresponding ratios for S were 43, 19, and 11.  相似文献   

6.
Specific leaf area (SLA) and leaf area index (LAI) were estimated using site-specific allometric equations for a boreal black spruce (Picea mariana (Mill.) BSP) fire chronosequence in northern Manitoba, Canada. Stands ranged from 3 to 131 years in age and had soils that were categorized as well or poorly drained. The goals of the study were to: (i) measure SLA for the dominant tree and understory species of boreal black spruce-dominated stands, and examine the effect of various biophysical conditions on SLA; and (ii) examine leaf area dynamics of both understory and overstory for well- and poorly drained stands in the chronosequence. Overall, average SLA values for black spruce (n = 215), jack pine (Pinus banksiana Lamb., n = 72) and trembling aspen (Populus tremuloides Michx., n = 27) were 5.82 +/- 1.91, 5.76 +/- 1.91 and 17.42 +/- 2.21 m2 x kg-1, respectively. Foliage age, stand age, vertical position in the canopy and soil drainage had significant effects on SLA. Black spruce dominated overstory LAI in the older stands. Well-drained stands had significantly higher overstory LAI (P < 0.001), but lower understory LAI (P = 0.022), than poorly drained stands. Overstory LAI was negligible in the recent (3-12 years old) burn sites and highest in the 70-year-old burn site (6.8 and 3.0 in the well- and poorly drained stands, respectively), declining significantly (by 30-50%) from this peak in the oldest stands. Understory leaf area represented a significant portion (> 40%) of total leaf area in all stands except the oldest.  相似文献   

7.
8.
An objective of mountain forest management is to increase the ability of forest stands to protect human activities against natural hazards such as rock-falls and snow avalanches in a sustainable way. The challenge is to find a compromise between efficient instantaneous protection, favoured by dense stands, and continuous renewal, minimizing time periods of low protection efficiency. We used a Norway spruce stand dynamics model to compare the respective advantages of individual tree and gap selection silviculture in this context. We simulated stand dynamics over 800 years with either individual tree or gap thinning every 20 years with several thinning intensities. At each time step, we evaluated stand resilience, protection efficiency against rock-falls, protection efficiency against avalanches, and structural complexity with four indicators based on stand structure. Every scenario produced short time periods with low stand resilience and protection efficiency. Such periods can be tolerated if they are sufficiently rare compared to the local disturbance regime. We characterized the permanence of resilience and protection of a forest stand as its ability to remain within boundary values of the different indicators, without going out of them during continuous time periods longer than fixed maximum durations. Permanence of resilience and permanence of protection decreased with thinning intensity. Efficient protection against rock-falls was obtained with gap thinning of intermediate intensity while protection against avalanches was obtained only for very low thinning intensities. For our ecological context, the best compromise between resilience and protection was obtained with three 10 m radius gaps per hectare every 20 years (9.5% of the area of a stand). This strategy led to uneven-aged stand structures with a high diversity of diameters classes. Our results suggest that small gap silviculture may be a good way to combine forest renewal and protection efficiency in mountain regions.  相似文献   

9.
The objectives of our study were to explore the relationship of leaf area and stand density and to find a convenient way to measure stand leaf areas. During the 2004 growing season, from May to October, we used direct and indirect methods to measure the seasonal variation of the leaf areas of tree and shrub species. The trees were from Robinia pseudoacacia stands of four densities (3333 plants/hm2, 1666 plants/hm2, 1111 plants/hm2, and 833 plants/hm2) and Platycladus orientalis stands of three densities (3333 plants/hm2, 1666 plants/hm2, and 1111 plants/hm2). The shrub species were Caragana korshinskii, Hippophae rhamnoides, and Amorpha fruticosa. Based on our survey data, empirical formulas for calculating leaf area were obtained by correlating leaf fresh weight, diameter of base branches, and leaf areas. Our results show the following: 1) in September, the leaf area and leaf area index (LAI) of trees (R. pseudoacacia and P. orientalis) reached their maximum values, with LAI peak values of 10.5 and 3.2, respectively. In August, the leaf area and LAI of shrubs (C. korshinskii, H. rhamnoides, and A. fruticosa) reached their maximum values, with LAI peak values of 1.195, 1.123, and 1.882, respectively. 2) There is a statistically significant power relation between leaf area and leaf fresh weight for R. pseudoacacia. There are significant linear relationships between leaf area and leaf fresh weight for P. orientalis, C. korshinskii, H. rhamnoides, and A. fruticosa. Moreover, there is also a significant power relation between leaf area and diameter of base branches for C. korshinskii. There are significant linear relations between leaf area and diameter of base branches of H. rhamnoides and A. fruticosa. 3) In the hills and gully regions of the Loess Plateau, the LAIs of R. pseudoacacia stand at different densities converged after the planted stands entered their fast growth stage. Their LAI do not seem to be affected by its initial and current density. The same is true for P. orientalis stands. However, the leaf area of individual trees is negatively and linearly related with stand density. We conclude that, in the hills and gully regions of the Loess Plateau, the bearing capacity of R. pseudoacacia and P. orientalis stands we studied have reached their maximum limitation, owing to restricted access to soil water. Therefore, in consideration of improving the quality of single trees, a stand density not exceeding 833 and 1111 plants/hm2 is recommended for R. pseudoacacia and P. orientalis, respectively. In consideration of improving the quality of the entire stands, the density can be reduced even a little more. __________ Translated from Journal of Plant Ecology (Chinese Version), 2008, 32 (2): 440–447 [译自: 植物生态学报]  相似文献   

10.
Whole-tree harvesting (WTH), where logging residues are removed in addition to stems, is widely practised in Fennoscandian boreal forests. WTH increases the export of nutrients from forest ecosystems. The extent of nutrient removals may depend on tree species, harvesting method, and the intensity of harvesting. We developed generalized nutrient equations for Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karsten), and birch (Betula pendula Roth and Betula pubescens Ehrh.) stands to be able to calculate the amounts of nitrogen, phosphorus, potassium, and calcium in stems and above-ground biomass (stem and crown) as a function of stand volume. The equations were based on Fennoscandian literature data from 34 pine, 26 spruce, and 5 birch stands, and they explained, depending on the tree species and nutrient, 61–99% and 56–87% of the variation in the nutrient amounts of stems and above-ground biomass, respectively. The calculations based on the equations showed that nutrient removals caused by stem-only harvesting (SOH) and WTH per harvested stem m3 were smaller in pine than in spruce and birch stands. If the same volume of stem is harvested, nutrient removals are, in general, nearly equal at thinnings and final cuttings in SOH, but larger in thinnings than final cuttings in WTH. If the principal aim is to minimize the nutrient removals per harvested stem m3, the harvesting should be done at mature pine stands. The effect of biomass removal on overall site nutrient status depends on site-specific factors such as atmospheric deposition, weathering of minerals, and the size of the nutrient pools in the soil.  相似文献   

11.
Variations in fine root biomass of trees and understory in 16 stands throughout Finland were examined and relationships to site and stand characteristics determined. Norway spruce fine root biomass varied between 184 and 370 g m(-2), and that of Scots pine ranged between 149 and 386 g m(-2). In northern Finland, understory roots and rhizomes (< 2 mm diameter) accounted for up to 50% of the stand total fine root biomass. Therefore, the fine root biomass of trees plus understory was larger in northern Finland in stands of both tree species, resulting in a negative relationship between fine root biomass and the temperature sum and a positive relationship between fine root biomass and the carbon:nitrogen ratio of the soil organic layer. The foliage:fine root ratio varied between 2.1 and 6.4 for Norway spruce and between 0.8 and 2.2 for Scots pine. The ratio decreased for both Norway spruce and Scots pine from south to north, as well as from fertile to more infertile site types. The foliage:fine root ratio of Norway spruce was related to basal area and stem surface area. The strong positive correlations of these three parameters with fine root nitrogen concentration implies that more fine roots are needed to maintain a certain amount of foliage when nutrient availability is low. No significant relationships were found between stand parameters and fine root biomass at the stand level, but the relationships considerably improved when both fine root biomass and stand parameters were calculated for the mean tree in the stand. When the northern and southern sites were analyzed separately, fine root biomass per tree of both species was significantly correlated with basal area and stem surface area per tree. Basal area, stem surface area and stand density can be estimated accurately and easily. Thus, our results may have value in predicting fine root biomass at the tree and stand level in boreal Norway spruce and Scots pine forests.  相似文献   

12.
Above-ground biomass distribution, leaf area, above-ground net primary productivity and foliage characteristics were determined for 90- and 350-year-oldPinus edulis-Juniperus monosperma ecosystems on the Colorado Plateau of northern Arizona. These ecosystems have low biomass, leaf area and primary productivity compared with forests in wetter environments. Biomass of the 350-year-old pinyon-juniper stand examined in this study was 54.1 mg ha−1; that of the 90-year-old stand was 23.7 mg ha−1. Above-ground net primary production averaged 2.12 mg ha−1 year−1 for the young and 2.88 mg ha−1 year−1 for the mature stand; tree production was about 80% of these values for both stands. Projected ecosystem leaf area (LAI) of the stands was 1.72 m2 m−2 and 1.85 m2 m−2, respectively. Production efficiency (dry matter production per unit leaf area) was 0.129 kg m−2 year−1 for the young, and 0.160 kg m−2 year−1 for the mature stand. Production efficiency of the study sites was below the 0.188 kg m−2 year−1 reported for xeric, pure juniper stands in the northern Great Basin. Biomass of pinyon-juniper ecosystems of northern Arizona is generally below the 60–121 mg ha−1 reported for pinyon-juniper stands of the western Great Basin in Nevada. A climatic gradient with summer precipitation decreasing between southeast Arizona and northwest Nevada occurs in the pinyon-juniper region. Great Basin pinyon-juniper ecosystems lie at the dry-summer end of this gradient while pinyon-juniper ecosystems of the Colorado Plateau lie at about the middle of this gradient. In spite of wetter summers, pinyon-juniper ecosystems of northern Arizona are less productive than those of the Great Basin.  相似文献   

13.
Size and spatial distribution of trees are important for forest stand growth, but the extent to which it matters in thinning operations, in terms of wood production and stand economy, has rarely been documented. Here we investigate how the choice of spatial evenness and tree-size distribution of residual trees impacts wood production and stand economy. A spatially explicit individual-based growth model was used, in conjunction with empirical cost functions for harvesting and forwarding, to calculate net production and net present value for different thinning operations in Norway spruce stands in Northern Sweden. The in silico thinning operations were defined by three variables: (1) spatial evenness after thinning, (2) tree size preference for harvesting, and (3) basal area reduction. We found that thinning that increases spatial evenness increases net production and net present value by around 2.0%, compared to the worst case. When changing the spatial evenness in conjunction with size preference we could observe an improvement of the net production and net present value up to 8.0%. The magnitude of impact differed greatly between the stands (from 1.7% to 8.0%) and was highest in the stand with the lowest stem density.  相似文献   

14.

There are no instructions on the management of stands of Norway spruce [ Picea abies (L.) Karst.] in which butt rot caused by Heterobasidion annosum coll. (Fr.) Bref. was not discovered until the time of first thinning. A stochastic simulation model describing the spread of butt rot in a stand of Norway spruce was used with a new submodel describing the butt rot of young trees. Non-linear stochastic optimization was used to determine the most profitable management schedule of a young Norway spruce stand with butt rot. If the initial level of butt rot was 5% or 10%, or the stand was thinned in summer with stump treatment, one thinning with a rotation of 55 yrs was optimal. Two winter thinnings with a rotation of 61 yrs was optimal in an initially healthy stand. Optimizations indicated that silvicultural measures that decrease the transfer of H. annosum to next generation at clear-cuttings could be economically fulfilled.  相似文献   

15.
Natural mortality in a 30-year period was examined in thinning and fertilisation experiments with 48 blocks in Scots pine (Pinus sylvstris L.) and 23 blocks in Norway spruce (Picea abies (L.) Karst.) with up to 12 different treatments. Of about 90,000 living trees at start of the experiments 18.7% were registered as dead by natural mortality in the 30-year observation period. In non-thinned stands about 20% of the volume growth disappeared by natural mortality, in thinned stands about 10%. In normally thinned pine stands (repeated thinning from below with moderate intensity) the annual mortality of the basal area at start of an average 7-year period was 0.34%. In spruce stands, on more fertile sites, the corresponding figure was about 0.6%. In an effort to model the mortality, severe damage not leading to final felling was identified in 1.7% of the observation periods. It was assumed that this part of the mortality, representing 24% of the total volume mortality, could be recovered by active thinning. The probability for severe damage increased sharply with stand top height, as shown in a logistic regression. The more sparse mortality was expressed as a function of site fertility, stand density, disturbance by thinning and form of treatment (thinned from above or below or non-thinned). The naturally dead trees were approximately of mean size in normally thinned stands while the self-thinning in non-thinned stands tended to occur amongst smaller than average trees. Diagrams were presented for basal area development and stem number reduction in the non-thinned stands.  相似文献   

16.
How to quantify forest management intensity in Central European forests   总被引:1,自引:0,他引:1  
Existing approaches for the assessment of forest management intensity lack a widely accepted, purely quantitative measure for ranking a set of forest stands along a gradient of management intensity. We have developed a silvicultural management intensity indicator (SMI) which combines three main characteristics of a given stand: tree species, stand age and aboveground, living and dead wooden biomass. Data on these three factors are used as input to represent the risk of stand loss, which is a function of tree species and stand age, and stand density, which is a function of the silvicultural regime, stand age and tree species. Consequently, the indicator consists of a risk component (SMIr) and a density component (SMId). We used SMI to rank traditional management of the main Central European tree species: Norway spruce (Picea abies [Karst.] L.), European beech (Fagus sylvatica L.), Scots pine (Pinus sylvestris L.), and oak (Quercus robur L. and Quercus petraea L.). By analysing SMI over their whole rotation period, we found the following ranking of management intensity: oak<beech<pine?spruce. Additionally, we quantified the SMI of actual research plots of the German Biodiversity exploratories, which represent unmanaged and managed forest stands including conifer forests cultivated outside their natural range. SMI not only successfully separate managed from unmanaged forests, but also reflected the variability of forest management and stand properties across the entire sample and within the different management groups. We suggest using SMI to quantify silvicultual management intensity of stands differing in species composition, age, silvicultural system (even-aged vs. uneven-aged), thinning grade and stages of stand conversion from one stand type into another. Using SMI may facilitate the assessment of the impact of forest management intensity on biodiversity in temperate forests.  相似文献   

17.
We present an approach to generate and evaluate different silvicultural development paths and to optimize the development of a Norway spruce stand, using a long-term planning horizon. To generate a silvicultural path, the maximum stand density was applied. At each thinning event, three possible thinning intensities (10, 20, 30% of the stem number per ha) were randomly chosen. A search algorithm known as modified Accelerated Simulated Annealing (mASA) was used to estimate the optimum combination of stand paths for a given forest as a whole. Production and economic management objectives were considered and then compared. The economic criterion was the Expected Stand Value (ESV) with a 4% discount rate. The generated data set of 38 Norway spruce stands (comprising a total of 123.8 ha) was used in the case study. The result with the best combination of paths was presented in a digitized forest map. Forest management simulation was performed using a specially developed computer program, for a planning horizon of 20 years. The mASA proved to be an effective search method for identifying optimum paths.  相似文献   

18.
This paper summarises the results from 35 years-observed thinning experiments on 256 permanent sample plots in 10–60 year-old stands of ash, aspen, birch, oak, pine and spruce in Lithuania. Thinning enhanced crown projection area increment of residual trees. The largest effect was observed in stands of aspen and birch (growth increase by 200%), followed by ash and oak (over 100%), and spruce and pine (about 80%). Thinning also promoted dbh increment, especially in younger stands, and the increase of dbh increment was positively correlated with the thinning intensity. The strongest reaction was exhibited by oak and aspen, while ash, birch and conifers reacted to a lower extent. Low and moderate intensities of thinning stimulated volume production in younger stands while the opposite was observed in older stands with increasing removals. Spruce stands exhibited relatively strongest increase of volume increment and pine, –the weakest, while the effect on deciduous species was intermediate. The results demonstrate that significant increase in volume increment is achievable with thinning of only young forest stands, e.g. 10–20 year-old pine, birch and ash, or 10–30 year-old oak, aspen and spruce.  相似文献   

19.
A series of 15 field experiments was established to quantify the growth response of first‐thinning stands of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst) to whole‐tree harvesting and to estimate the need for nutrient compensation. The experiments were undertaken in Finland, Norway and Sweden and represent a wide range of site conditions. The site index (H 100) of Scots pine stands varied from 19 to 29 m, and that of Norway spruce stands from 28 to 36 m. Total amounts of biomass and nutrients removed were calculated based on data obtained from felled sample trees. During the first 5‐yr period the growth response to the removal of logging residues varied considerably in both pine and spruce stands. Regression analyses did not reveal any functions that explained the variation in results satisfactorily. In cases where whole‐tree harvesting influenced tree growth negatively, this effect was counteracted by compensatory fertilization. It was concluded that to determine the response of remaining trees to harvesting intensity reliably, the post‐harvest period analysed must be longer than 5 yrs.  相似文献   

20.
Variability in short root morphology of the three main tree species of Europe's boreal forest (Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth)) was investigated in four stands along a latitudinal gradient from northern Finland to southern Estonia. Silver birch and Scots pine were present in three stands and Norway spruce was present in all stands. For three fertile Norway spruce stands, fine root biomass and number of root tips per stand area or unit basal area were assessed from north to south. Principal component analysis indicated that short root morphology was significantly affected by tree species and site, which together explained 34.7% of the total variability. The range of variation in mean specific root area (SRA) was 51-74, 60-70 and 84-124 m(2) kg(-1) for Norway spruce, Scots pine and silver birch, respectively, and the corresponding ranges for specific root length were 37-47, 40-48 and 87-97 m g(-1). The range of variation in root tissue density of Norway spruce, Scots pine and silver birch was 113-182, 127-158 and 81-156 kg m(-3), respectively. Sensitivity of short root morphology to site conditions decreased in the order: Norway spruce > silver birch > Scots pine. Short root SRA increased with site fertility in all species. In Norway spruce, fine root biomass and number of root tips per m(2) decreased from north to south. The differences in morphological parameters among sites were significant but smaller than the site differences in fine root biomass and number of root tips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号