首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The wild diploid goat grass (Aegilops tauschii Cosson), and the cultivated tetraploid emmer wheat (Triticum turgidum L. subsp. dicoccon (Schrank) Thell.) may be important sources of genetic diversity for improving hexaploid bread wheat (Triticum aestivum L.). Through interspecific hybridization of emmer wheat and Ae. tauschii, followed by chromosome doubling, it is possible to produce homozygous synthetic hexaploid wheat. Fifty-eight such synthetic hexaploids were evaluated for grain quality parameters: grain weight, length, and plumpness, grain hardness, total protein content, and protein quality (SDS-Sedimentation volume, SDS-S). Most synthetics showed semi-hard to hard grain texture. Results showed significant genetic variation among the synthetic hexaploids for protein content, SDS-S values, and grain weight and plumpness. Quality measurement values of synthetic hexaploids were regressed on corresponding values of the emmer wheat parents. With this offspring-parent regression, protein content and SDS-S values explained 8.7 and 28.8%, respectively, of the variation among synthetics, indicating a significant contribution from the emmer wheat parents for these traits. The synthetic hexaploids, in general, had significantly higher protein content (15.5%, on average) and longer grains than ‘Seri M82’, the bread wheat control (13.1% protein content). Synthetics with SDS-S values and grain weights higher than those of ‘Seri M82’ were also identified. Protein content among synthetics showed significantly negative correlations with grain weight and plumpness, but no correlation with SDS-S values. Despite these negative correlations, 10 superior synthetic hexaploid wheats, derived from nine different emmer wheat parents and with above average levels of protein content, SDS-S values, and either grain weight or plumpness, were identified. This study shows that genetic variation for quality in tetraploid emmer wheat can be transferred to synthetic hexaploid wheats and combined with plump grains and high grain weight, to be used for bread wheat breeding.  相似文献   

2.
The contribution of the diploid wheat species Aegilops tauschii (Coss.) Schmall to the technological properties of bread wheat (Triticum aestivum L.) was previously studied by the investigation of synthetic hexaploids derived from tetraploid durum wheat (T. turgidum L.) and three diploid Ae. tauschii lines. The results indicated that bread volume, gluten index, SDS‐sedimentation volume, and maximum resistance of gluten were significantly influenced by the Ae. tauschii lines. To determine the relationship between technological properties and qualitative and quantitative compositions of gluten proteins, the flours of parental and synthetic lines were extracted using a modified Osborne fractionation. Gliadin and glutenin fractions were then characterized by reversed‐phase (RP) HPLC on C8 silica gel. The HPLC patterns revealed typical differences between synthetic and parental lines. The gliadin patterns of three synthetic lines and the glutenin patterns of two synthetic lines were more similar to that of the diploid Ae. tauschii parents involved in the hybrids. In the glutenin pattern of one synthetic line, characteristics from both Ae. tauschii and the durum wheat parents were observed. The amount of total gliadin and gliadin types of the synthetic lines was mostly intermediate between those of the durum and Ae. tauschii parents. The amounts of total glutenin and glutenin types (HMW and LMW subunits) of the synthetic lines were generally higher than those of the parental lines, and the ratio of gliadins to glutenins was significantly decreased. High positive correlations were found between the amount of total glutenins, HMW, and LMW subunits and bread volume, maximum resistance and extension area of gluten, and SDS‐sedimentation volume. The ratio of gliadins to glutenin subunits had a strong negative influence on these properties. The protein content of the flours and the amount of total gluten proteins were not correlated with any of the technological properties. Results on the relationship between biochemical characteristics and the breadmaking properties indicated that wheat prebreeding would benefit from studies on protein types and quantification in the choice of parents. In addition, the potential of the diploid Ae. tauschii for improvement of breadmaking quality should be further exploited.  相似文献   

3.
Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L., 2n=2x=14, DD genome) with its diverse range of accessions and distribution provides a unique opportunity for exploiting novel genetic variability for wheat (T. aestivum L.) improvement associated with biotic/abiotic stress factors. From our working collection of 490 T. tauschii accessions we have so far produced 430 different synthetic hexaploids (2n=6x=42, AABBDD) resulting from the chromosome doubling of Triticum turgidum L. s. lat. x T. tauschii F1 hybrids (each synthetic involving a different T. tauschii accession). We present here our results on hybrid production, plantlet regeneration, cytology, colchicine induced doubling of the 2n=3x=21 chromosome F1 hybrids, seed increase of the doubled progeny and screening for a biotic stress; Cochliobolus sativus Ito and Kuribay (syn. Helminthosporium sativum Pamm. King and Bakke); of 250 of these synthetic hexaploid (2n=6x=42) amphiploids. Application of the direct crossing methodology involving susceptible T. aestivum cultivars with resistant T. tauschii accessions is also alluded to.  相似文献   

4.
Genetic diversity among some important Syrian wheat cultivars was estimated using Amplified Fragment Length Polymorphism (AFLP) markers. Five Triticum aestivum L. and 10 Triticum turgidum ssp. durum were analyzed with 11 EcoRI–MseI primer pair combinations. Of the approximately 525 detected AFLP markers, only 46.67% were polymorphic. Cluster analysis with the entire AFLP data divided all cultivars into two major groups reflecting their origins. The first one contained T. aestivum L. cultivars, and the T. turgidum ssp. durum cultivars and landraces were grouped in the second. Narrow genetic diversity among all cultivars was detected with an average genetic similarity of 0.884. The lowest similarity index (0.9) was found between Cham5 and Hamary (durum wheat), whereas this value was 0.93 between Salamony and Bouhouth 4 (T. aestivum L.). The narrow genetic diversity level indicates that these genotypes could be originated from the same source. AFLP analysis provides crucial information for studying genetic variation among wheat cultivars and provides important information for plant improvement.  相似文献   

5.
A collection of 164 Aegilops tauschii accessions, obtained from Gatersleben, Germany, was screened for reaction to leaf rust under controlled greenhouse conditions. We have also evaluated a selection of synthetic hexaploid wheats, produced by hybridizing Ae. tauschii with tetraploid durum wheats, as well as the first and second generation of hybrids between some of these resistant synthetic hexaploid wheats and susceptible Triticum aestivum cultivars. Eighteen (11%) accessions of Ae. tauschii were resistant to leaf rust among which 1 was immune, 13 were highly resistant and 4 were moderately resistant. Six of the synthetic hexaploid wheats expressed a high level of leaf rust resistance while four exhibited either a reduced or complete susceptibility compared to their corresponding diploid parent. This suppression of resistance at the hexaploid level suggests the presence of suppressor genes in the A and/or B genomes of the T. turgidum parent. Inheritance of leaf rust resistance from the intercrosses with susceptible bread wheats revealed that resistance was dominant over susceptibility. Leaf rust resistance from the three synthetics (syn 101, syn 701 and syn 901) was effectively transmitted as a single dominant gene and one synthetic (syn 301) possessed two different dominant genes for resistance.  相似文献   

6.
Aegilops tauschii Coss., the D-genome progenitor of common wheat (Triticum aestivum L.) includes two subspecies, tauschii and strangulata (Eig) Tzvel. Subspecies tauschii has a wide geographic distribution spreading westwards to Turkey and eastwards to Afghanistan and China, while ssp. strangulata has a narrower distribution occurring only in two disjoined regions, southeastern Caspian Iran and Transcaucasia. A collection of 56 Ae. tauschii accessions was screened at adult stage against a mixture of pathotypes of stripe rust prevalent in the current wheat production in China. The results for three crop seasons indicated that among the 38 ssp. tauschii accessions, 37 were susceptible and only one was resistant, while all the 18 ssp. strangulata accessions were resistant. These results indicated that stripe rust resistance was related to taxonomic origin. Further genetic analysis revealed the resistance of stripe rust in ssp. strangulata accession AS2388 was conferred by a single dominant gene.  相似文献   

7.
Portuguese wheat landraces, ‘Arrancada’ were collected from the Aveiro region, Portugal before the 1950s. We found in eight accessions of `Arrancada' hexaploid wheat with the long glume phenotype. We assessed the comparative genetic diversity among Portuguese `Arrancada' wheat and Triticum petropavlovskyi Udacz. et Migusch. using AFLP assays and discuss the origin of long glumed `Arrancada' wheat. With the four primer pairs a total of 4885 visible bands were scored corresponding to 99 AFLP markers as putative loci, of which 55 markers (54%) were polymorphic. UPGMA clustering and PCO grouping showed that long glumed ‘Arrancada’ wheat and T. petropavlovskyi were genetically diverse. Long glumed ‘Arrancada’ hexaploid wheat separated into two clusters (groups) in both the UPGMA dendrogram and in PCO analysis. Four long glumed accessions fell in the cluster of tetraploid wheat. A similar argument could be made for another four accessions which belong to the cluster of hexaploid wheat. The substantial level of genetic variation indicated that long glumed ‘Arrancada’ wheat and T. petropavlovskyi originated independently. It is most likely that the P-gene of long glumed ‘Arrancada’ hexaploid wheat was introduced from T. turgidum ssp. polonicum (L.) Thell. to T. aestivum via natural introgression or breeding. We suggest that the long glumed ‘Arrancada’ hexaploid wheat did not originate from T. aestivum through spontaneous mutation at the P locus  相似文献   

8.
Carbon isotope discrimination (Δ) has been proposed as physiological criterion to select C3 crops for yield and water use efficiency. The relationships between carbon isotope discrimination (Δ), water use efficiency for grain and biomass production (WUEG and WUEB, respectively) and plant and leaf traits were examined in 20 Iranian wheat genotypes including einkorn wheat (Triticum monococcum L. subsp. monococcum) accessions, durum wheat (T. turgidum L. subsp. durum (Desf.) Husn.) landraces and bread wheat (T. aestivum L. subsp. aestivum) landraces and improved cultivars, grown in pots under well-watered conditions. Carbon isotope discrimination was higher in diploid than in hexaploid and tetraploid wheats and was negatively associated with grain yield across species as well as within bread wheat. It was also positively correlated to stomatal frequency. The highest WUEG and grain yield were noted in bread wheat and the lowest in einkorn wheat. Einkorn and bread wheat had higher WUEB and biomass than durum wheat. WUEG and WUEB were significantly negatively associated to Δ across species as well as within bread and durum wheat. The variation for WUEG was mainly driven by the variation for harvest index across species and by the variation for Δ within species. The quantity of water extracted by the crop, that was closely correlated to root mass, poorly influenced WUEG. Environmental conditions and genetic variation for water use efficiency related traits appear to highly determine the relationships between WUEG and its different components (water consumed, transpiration efficiency and carbon partitioning).  相似文献   

9.
The diploid goatgrass Aegilops tauschii is considered the D-genome donor of bread wheat and has probably a centre of diversity in north of Iran. In order to measure the genetic diversity of and the relationships among different populations, varieties and subspecies belonging to Ae. tauschii in Iran, DNA was extracted from 48 accessions of Ae. tauschii collected across the geographic range of the species in the Country and the genetic diversity was assessed using AFLPs based on eight PstI/MseI +3 primer pairs resulted in 277 bands, 198 of which were polymorphic. High level polymorphism was detected, with an average of polymorphism rate of 0.715; relatively low genetic similarity (0.455) between accessions and significant difference between the lowest (0.179) and the highest genetic similarity (0.817). The Iranian Ae. tauschii populations showed high level of genetic diversity. The populations studied were divided into two groups: one group was mainly representing Northern populations collected from Southern Caspian Sea shore and the other group was mainly representing Northeast and Northwest populations. Based on the results of this study, it can be suggested that Ae. tauschii possesses two separate gene-pools in Iran: Northern and Northeastern–Northwestern. Considering the needs for introducing new characteristics and alleles for wheat improvement purposes, Ae. tauschii Iranian gene-pool is assumed to be of high importance for more investigation in the future.  相似文献   

10.
Fifteen accessions of Aegilops tauschii (DD), 10 of Ae. speltoides (SS) and 8 of the tetraploid Aegilops species sharing the U genome were used to study the influence of varied zinc (Zn) supply on development of Zn-deficiency symptoms, and on shoot dry weight and Zn concentration. Plants were grown in a Zn-deficient calcareous soil under greenhouse conditions with (+Zn = 5 mg kg—1 soil) and without (—Zn) Zn supply. Four accessions of wild tetraploid wheat, Triticum turgidum var. dicoccoides (BBAA), a group known for its high sensitivity to Zn-deficiency, were used in the experiments for comparison. As expected, the accessions of wild T. turgidum var. dicoccoides showed the highest sensitivity to Zn deficiency, and had more severe leaf symptoms of Zn deficiency (whitish-brown necrotic patches). Among the Aegilops species, leaf symptoms of Zn deficiency were, in general, more distinct in Ae. tauschii (DD) and least in Ae. speltoides (SS). Zinc efficiency, expressed as the percentage of shoot dry weight produced under conditions of Zn deficiency compared to Zn supply, averaged, 15% for T. turgidum, 32% for Ae. tauschii, 52% for Ae. speltoides and 61% for the tetraploid Aegilops species carrying the U genome. Differences in Zn efficiency among and within Aegilops species and T. turgidum were significantly correlated with the Zn amount per shoot, but not with the Zn amount per unit dry weight of shoots. The results show that Aegilops species can be exploited as an important genetic source for Zn efficiency genes, particularly Ae. speltoides var. ligustica (SS) and Ae. triuncialis (UUCC). Transfer of these genes to cultivated modern wheat may bring about a greater variation in Zn efficiency in wheat, and facilitate production of Zn-efficient modern wheat cultivars for Zn-deficient soil conditions.  相似文献   

11.
Simple sequence repeats (SSRs), highly dispersed nucleotide sequences in genomes, were used for germplasm analysis and estimation of the genetic relationship of the D-genome among 52 accessions of T. aestivum (AABBDD), Ae. tauschii (DtDt), Ae. cylindrica (CCDcDc) and Ae. crassa (MMDcr1Dcr1), collected from 13 different sites in Iran. A set of 21 microsatellite primers, from various locations on the seven D-genome chromosomes, revealed a high level of polymorphism. A total of 273 alleles were detected across all four species and the number of alleles per each microsatellite marker varied from 3 to 27. The highest genetic diversity occurred in Ae. tauschii followed by Ae. crassa, and the genetic distance was the smallest between Ae. tauschii and Ae. cylindrica. Data obtained in this study supports the view that genetic variability in the D-genome of hexaploid wheat is less than in Ae. tauschii. The highest number of unique alleles was observed within Ae. crassa accessions, indicating this species as a great potential source of novel genes for bread wheat improvement. Knowledge of genetic diversity in Aegilops species provides different levels of information which is important in the management of germplasm resources.  相似文献   

12.
Summary During the winters of 1990/91 and 1991/92, 181 accessions of Triticum dicoccon Schrank from the CIMMYT gene-bank were screened in the field for resistance to Russian wheat aphid, Diuraphis noxia (Kurdjumov). Accessions were sown in hill plots of 10 seeds and artificially infested with D. noxia at the two-leaf growth stage. Hills were visually assessed for damage at tillering, booting and heading. Entries differed significantly in their reaction to D. noxia, and severity of symptoms increased with time. Twenty four of the entries were highly resistant to the aphid. In winter 1991/92, 807 accessions of wild and cultivated wheats (26 species) and synthetic hexaploids were screened similarly for resistance to D. noxia. A large number of A-genome species were resistant, while few D-genome species were identified as resistant. These newly discovered sources of resistance can be used to expand the genetic base of resistance to D. noxia in both bread (T. aestivum L.) and durum wheats (T. turgidum L. convar. durum (Desf.) Mackey).  相似文献   

13.
Little is known about genetic diversity and geographic origin of wheat landraces from Oman, an ancient area of wheat cultivation. The objectives of this study were to investigate the genetic relationships and levels of diversity of six wheat landraces collected in Oman with a set of 30 evenly distributed SSR markers. The total gene diversity, (HT), conserved in the three durum wheat (Triticum durum desf.) landraces (HT = 0.46) was higher than in the three bread wheat (Triticum aestivum L.) landraces (HT = 0.37), which were similar to Turkish and Mexican bread wheat landraces calculated in previous studies. Genetic variation partitioning (GST) showed that variation was mainly distributed within rather than among the durum (GST = 0.30) and bread wheat (GST = 0.19) landraces. Based on modified Rogers’ distance (MRD), the durum and bread wheat landraces were distinct from each other except for a few individuals according to principal coordinate analysis (PCoA). One bread wheat landrace (Greda) was separated into two distinct sub-populations. A joint cluster analysis with other landraces of worldwide origin revealed that Omani bread wheat landraces were different from other landraces. However, two landraces from Pakistan were grouped somewhat closer to Omani landraces indicating a possible, previously unknown relationship. Implications of these results for future wheat landrace collection, evaluation and conservation are discussed.  相似文献   

14.
The new branched spike form of wheat was synthesized from a cross between a complex wheat line 171ACS {[(T. durum Desf. × Ae. tauschii Coss.) × S. cereale L. ssp. segetale Zhuk.] × T. aestivum L. ‘Chinese Spring’} (2n = 6x = 42, AABBDD) and durum wheat variety T. durum Desf. ‘Bereketli-95’ (2n = 4x = 28, AABB). This branched spike form is distinguished significantly from the other branched spike forms known so far. Later on basis of these plants have been developed the branched spike lines. This study was aimed to generate the segregating populations from reciprocal (F1–F3) and backcross (BC1F1–BC1F3) crosses between one of such lines—166-Schakheli (2n = 4x = 28, AABB) and tetraploid wheat species (T. polonicum L., T. turanicum Jakubz., T. durum Desf.) for revealing the inheritance character of this branching trait and study meiotic behavior in reciprocal (F1, F2) and backcross (BC1F1) progenies. Results showed that this trait is controlled by a single recessive gene despite certain irregularity against Mendelian law in F2 generations and does not depend on gene dosage, i.e., number of chromosomes.  相似文献   

15.
Accurate and reliable means for identification are necessary to assess the discrimination between landraces of tetraploid wheat [T.␣turgidum L. subsp. durum (Desf.) Husn.] and hexaploid wheat (T. aestivum L. em. Thell.). In Afghanistan, farmers usually cultivate mixed landraces, and thus distinction between bread and durum is difficult. A set of 18 microsatellites derived from the DuPont EST-database were used to describe genetic diversity in a sample of 82 Afghan wheat landraces. A total of 101 alleles were detected, with allele number per locus ranging from 2 to 13, and a mean allele number of 6.31. The percentage of polymorphic loci was 89%. The EST-SSRs markers showed different level of gene diversity: the highest Polymorphism Information Content value (0.921) was observed with DuPw 221. Our results demonstrated that with a reasonable number of expressed sequences target microsatellites (EST-SSRs) it is possible to discriminate between T. durum and T. aestivum species of wheat germplasm. Our results showed that EST-databases could be a useful source for species-specific markers and have the potential for new genic microsatellites markers that could enhance screening germplasm in gene banks.  相似文献   

16.
N-terminal amino acid sequences and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) molecular weights have been determined for high-performance liquid chromatography (HPLC)-purified high molecular weight (HMW) and low molecular weight (LMW) glutenin subunits (GS) of Triticum tauschii ssp. strangulata, contributor of the D genome to hexaploid bread wheat. The use of three different extraction procedures resulted in similar glutenin preparations. On the basis of N-terminal sequences, the same types of glutenin subunits that have been reported in bread and durum wheats (HMW-GS of both the x and y types and LMW-GS of the LMW-s, LMW-m, α-, and γ-types) were found in T. tauschii. However, the HMW-GS in T. tauschii were in greater proportion relative to LMW-GS when compared to reported values for a bread and durum wheat. Our results support the likelihood that differences in the proportions of the various subunits contributed by the A, B, and D genomes, rather than qualitative differences in the types of subunits, are responsible for the major differences in quality characteristics between bread wheat and durum wheat.  相似文献   

17.
In order to evaluate and compare the germplasm resources of wheat in Tibet, we analyzed the genetic diversity of 136 Triticum aestivum ssp. tibetanum Shao and 119 Tibetan wheat landraces (Triticum aestivum L.) by using Intron-Splice Junction (ISJ) primers. The results showed that polymorphism of PCR products were obtained by 33 primer combinations, which accounted for 11% of the 300 primer combinations produced by 26 ISJ primers. A total of 333 stable bands can be amplified from the T. aestivum ssp. tibetanum Shao and 243 bands were polymorphic, which accounted for 72.9% of the total bands. Tibetan wheat Landraces produced 316 stable bands, of which 197 bands were polymorphic. The polymorphic bands accounted for 62.34% of the total bands produced from Tibetan wheat landraces. The genetic diversity of T. aestivum ssp. tibetanum Shao was higher than that of Tibetan wheat landraces in Tibet, suggesting that T. aestivum ssp. tibetanum Shao can be used as important genetic resource for the breeding and genetic improvement of wheat in Tibet. Matrix (1, 0) was generated according to the presence or absence of the bands produced from a particular wheat accession. Clustering and principle coordinates analysis showed that T. aestivum ssp. tibetanum Shao and Tibetan wheat landraces were divided into two groups. We conclude that high polymorphisms produced by ISJ primers can reflect the genetic diversity between T. aestivum ssp. tibetanum Shao and Tibetan wheat landraces.  相似文献   

18.
Wheat (Triticum spp.) landrace populations in Ethiopia are mostly species mixtures. However, no quantitative data is available with regard to their species components. We studied here 32 wheat landrace populations originating from two regions (Bale and Wello). A total of 2559 individual plants, 45–110 plants representing each population, were classified into their species components. Five tetraploid (2n = 4x = 28) and one hexaploid (2n = 6x = 42) wheat species were found in mixtures of varying proportions. These included the tetraploids Triticum durum Desf., Triticum turgidum L., Triticum aethiopicum Jakubz., Triticum polonicum L., Triticum dicoccon Schrank and the hexaploid Triticum aestivum L. Also found, however in a rare frequency, in two populations from Wollo was T. durum Desf. convar. durocompactoides Flaksb. (Triticum pyramidale Percival), which is a very dense spiked durum. Discriminant analysis using seven qualitative traits revealed 91.5% correct classification of the wheat species, beak awn and awn length with the most significant importance. Single species were found in eight of the populations; six were for T. durum and two for T. aethiopicum. Two to three species-combinations were the most frequent; a maximum of four species was recorded in one population. The highest diversity index (H′) observed was 0.44. T. durum was the most predominant species. The hexaploid T. aestivum was found in nine of the Wollo populations and, in one population, its frequency reached up to 35.5%. On altitudinal basis, no clear trend of clinal variation was observed both from the frequency distributions and H′ estimates. The results confirmed that Ethiopian wheats, despite the morphological overlaps, could be classified into their species components with high degree of certainty. For the future, therefore, genetic diversity estimations should be dissolved into their species components for more expeditious utilization and conservation of this important genetic resource.  相似文献   

19.
Summary Purple-grain tetraploid wheats (Triticum turgidum L.) are widely cultivated in the Ethiopian highlands despite the claim that they have lower industrial quality properties and market prices than the white or red/brown seed-colour types. In an attempt to find a possible explanation for this, the three seed-colour groups were compared for grain yield, other 11 agronomic traits and protein content. Five traits displayed significant differences between seed colour groups where the purple-seed was superior; earlier maturity, shorter height, and higher fertility, tillering capacity and harvest index. Most of these are important adaptive traits to waterlogging stress on dark-clay soils (pellic vertisols) where the great bulk of the Ethiopian tetraploid wheats have been grown. Furthermore, among the three seed-colour groups, purple-seed wheat has the best malting quality for the preparation of arekie, a locally distilled spirituous liquor. It, therefore, appears that both natural and human selections have been reponsible for their continued cultivation. Hence, the notion that purple-seeded wheat is the “least preferred” should be interpreted carefully not to necessarily address the whole community in Ethiopia. As to their taxonomy, all tetraploid wheat taxa (T. turgidum L. sensu lato, 2n = 4x = 28) that are found in Ethiopia, with the possible exception of T. dicoccon Shrank (locally known as Adja), may possess the purple pericarp-colour, although in varying frequencies; very low inT. polonicum L., and high inT. carthlicum Nevski andT. durum Desf.  相似文献   

20.
Wild crop relatives are of considerable interest in plant breeding and significant efforts have been made to transfer their genetic variation into modern crops. Of the three diploid progenitors of bread wheat (Triticum aestivum L.), only Aegilops tauschii Coss. has been explored and exploited and only for some above ground characteristics. The three wild progenitors (Aegilops speltoides Tausch., Triticum urartu Tumanian ex Gandilyan, and Aegilops tauschii) have never been assayed for root traits. Here we report such a root study, and include Triticum monococcum L. subsp. boeoticum (Boiss.) Hayek and T. turgidum L. subsp. dicoccoides (Koern. ex Asch. et Graebn.) Thell. Fifteen accessions were selected from the above wild species and tested in the presence of one bread wheat cultivar Pavon F76. Significant variation was observed between and within the taxa. Of all accessions tested, cv. Pavon F76 had the smallest root system at maturity while A. speltoides had the largest root system. Moreover, Aegilops spp. had larger mean values for root biomass when compared with Triticum spp. These results suggest there is significant unexplored potential for the use of wheat wild relatives in wheat breeding to improve the root system, or to develop synthetic mapping populations to study root traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号