首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Andosols often accumulate soil organic matter (SOM) in large amounts. To investigate the factors controlling the stability and lability of organic carbon (OC) in humus horizons of Andosols, we selected 19 A horizon samples (surface and subsurface horizons) from the Field Station of Tohoku University including areas where benchmark soil profiles of non-allophanic Andosols are distributed. We determined the soil properties possibly controlling the OC accumulation, such as pH(H2O), 1 M KCl-extractable aluminum (KCl-Al), pyrophosphate-extractable Al and iron (Alp, Fep), acid oxalate-extractable silicon (Sio), total OC, water-extractable OC, and humified OC. To evaluate the OC mineralization, we measured the soil respiration rates in a laboratory for non-treated, neutralized (CaCO3, Ca(OH)2 and NaOH), and nutrient applied (KH2PO4, (NH4)2SO4) soil samples. Statistical analyses, including a path analysis, showed that the Alp and pH(H2O) values are directly related to the OC concentration (P?<?0.01 and P?<?0.05, respectively). There was a significant negative correlation (P?<?0.01) between the soil respiration rates of the non-treated samples and the ratios of the humified OC to total OC, showing that the humification of the SOM was definitely related to the OC stability. Effects of the chemical treatments to the soil respiration rates were greater in the surface horizon samples with an abundant labile OC than those in the subsurface samples. Neutralization affected the soil respiration rates more significantly than the nutrient application. Among the neutralization treatments, the liming materials more effectively increased the respiration rates. This was probably due to an increase in the lability of the humified OC by liming.  相似文献   

2.
Agricultural soils receive large amounts of anthropogenic nitrogen (N), which directly and indirectly affect soil organic matter (SOM) stocks and CO2 fluxes. However, our current understanding of mechanisms on how N fertilization affects SOM pools of various ages and turnover remains poor. The δ13C values of SOM after wheat (C3)-maize (C4) vegetation change were used to calculate the contribution of C4-derived rhizodeposited C (rhizo-C) and C3-derived SOM pools, i.e., rhizo-C and SOM. Soil (Ap from Haplic Luvisol) sampled from maize rhizosphere was incubated over 56 days with increasing N fertilization (four levels up to 300 kg N ha?1), and CO2 efflux and its δ13C were measured. Nitrogen fertilization decreased CO2 efflux by 27–42% as compared to unfertilized soil. This CO2 decrease was mainly caused by the retardation of SOM (C3) mineralization. Microbial availability of rhizo-C (released by maize roots within 4 weeks) was about 10 times higher than that of SOM (older than 4 weeks). Microbial biomass and dissolved organic C remained at the same level with increasing N. However, N fertilization increased the relative contribution of rhizo-C to microbial biomass by two to five times and to CO2 for about two times. This increased contribution of rhizo-C reflects strongly accelerated microbial biomass turnover by N addition. The decomposition rate of rhizo-C was 3.7 times faster than that of SOM, and it increased additionally by 6.5 times under 300 kg N ha?1 N fertilization. This is the first report estimating the turnover and incorporation of very recent rhizo-C (4 weeks old) into soil C pools and shows that the turnover of rhizo-C was much faster than that of SOM. We conclude that the contribution of rhizo-C to CO2 and to microbial biomass is highly dependent on N fertilization. Despite acceleration of rhizo-C turnover, the increased N fertilization facilitates C sequestration by decreasing SOM decomposition.  相似文献   

3.
Abstract

Hydroponic studies with soybean (Glycine max [L.] Merr.) have shown that µmol L?1 additions of Mg2+ were as effective in ameliorating Al rhizotoxicity as additions of Ca2+in the mmol L?1 concentration range. The objectives of this study were to assess the ameliorative effects of Mg on soybean root growth in acidic subsoils and to relate the soil solution ionic compositions to soybean root growth. Roots of soybean cultivar Plant Introduction 416937 extending from a limed surface soil compartment grew for 28 days into a subsurface compartment containing acid subsoils from the Cecil (oxidic and kaolinitic), Creedmoor (montmorillonitic) and Norfolk (kaolinitic) series. The three Mg treatments consisted of native equilibrium soil solution concentrations in each soil (50 or 100 µmol L?1) and MgCl2 additions to achieve 150 and 300 µmol L?1 Mg (Mg150 and Mg300, respectively) in the soil solutions. Root elongations into Mg-treated subsoils were compared with a CaCO3 treatment limed to achieve a soil pH value of 6. Subsoil root growth responses to the Mg treatments were less than for the lime treatments. Root length relative to the limed treatments for all subsoils (RRL) was poorly related to the activity of the soil solution Al species (Al3+ and Al-hydroxyl species) and Mg2+. However, the RRL values were more closely related to the parameters associated with soil solution Ca activity, including (Ca2+), (Al3+)/(Ca2+) and (Al3+)/([Ca2+] + [Mg2+]), suggesting that Ca could be a primary factor ameliorating Al and H+ rhizotoxicity in these subsoils. Increased tolerance to Al rhizotoxicity of soybean by micromolar Mg additions to hydroponic solutions, inducing citrate secretion from roots to externally complex toxic Al, may be less important in acid subsoils with low native Ca levels.  相似文献   

4.
Abstract

Two Ferralsols (350 and 600 g kg?1 clay) from the Brazilian Cerrado Region were evaluated for long‐term effects (5 and 8 years) of no tillage on carbon (C) stocks in particulate (>53 µm) and mineral‐associated (<53 µm) soil organic matter (SOM) fractions. Carbon stocks in particulate SOM increased under no tillage compared with conventional tillage, and the rate was higher in the clayey soil (0.62 Mg C ha?1 yr?1) than in the sandy clay loam soil (0.31 Mg C ha?1 yr?1). In contrast, the mineral‐associated SOM in the top soil layer (0–20 cm) was not affected by tillage system. Sequestration of atmospheric C in tropical no‐tillage soils seems to be due to accumulation of C in labile SOM fractions, with highest rates in clayey soils probably due to physical protection.  相似文献   

5.

Purpose

Soil carbon dynamics were studied at four different forest stands developed on bedrocks with contrasting geology in Slovenia: one plot on magmatic granodiorite bedrock (IG), two plots on carbonate bedrock in the karstic-dinaric area (CC and CD), and one situated on Pleistocene coalluvial terraces (FGS).

Materials and methods

Throughfall (TF) and soil water were collected monthly at each location from June to November during 2005–2007. In soil water, the following parameters were determined: T, pH, total alkalinity, concentrations of Ca2+ and Mg2+, dissolved organic carbon (DOC), and Cl? as well as δ13CDIC. On the other hand, in TF, only the Cl? content was measured. Soil and plant samples were also collected at forest stands, and stable isotope measurements were performed in soil and plant organic carbon and total nitrogen and in carbonate rocks. The obtained data were used to calculate the dissolved inorganic carbon (DIC) and DOC fluxes. Statistic analyses were carried out to compare sites of different lithologies, at different spatial and temporal scales.

Results and discussion

Decomposition of soil organic matter (SOM) controlled by the climate can explain the 13C and 15?N enrichment in SOM at CC, CD, and FGS, while the soil microbial biomass makes an important contribution to the SOM at IG. The loss of DOC at a soil depth of 5 cm was estimated at 1 mol m?2 year?1 and shows no significant differences among the study sites. The DOC fluxes were mainly controlled by physical factors, most notably sorption dynamics, and microbial–DOC relationships. The pH and pCO2 of the soil solution controlled the DIC fluxes according to carbonate equilibrium reactions. An increased exchange between DIC and atmospheric air was observed for samples from non-carbonate subsoils (IG and FGS). In addition, higher δ13CDIC values up to ?19.4?‰ in the shallow soil water were recorded during the summer as a consequence of isotopic fractionation induced by molecular diffusion of soil CO2. The δ13CDIC values also suggest that half of the DIC derives from soil CO2 indicating that 2 to 5 mol m?2 year?1 of carbon is lost in the form of dissolved inorganic carbon at CC and CD after carbonate dissolution.

Conclusions

Major difference in soil carbon dynamics between the four forest ecosystems is a result of the combined influence of bedrock geology, soil texture, and the sources of SOM. Water flux was a critical parameter in quantifying carbon depletion rates in dissolved organic and inorganic carbon forms.
  相似文献   

6.
Abstract

In Oxisols, acidity is the principal limiting factor for crop production. In recent years, because of intensive cropping on these soils, deficiency of micronutrients is increasing. A field experiment was conducted on an Oxisol during three consecutive years to assess the response of common bean (Phaseolus vulgaris L.) under a no‐tillage system to varying rates of lime (0, 12, and 24 Mg ha?1) and boron (0, 2, 4, 8, 12, 16, and 24 kg ha?1) application. Both time and boron (B) were applied as broadcast and incorporated into the soil at the beginning of the study. Changes in selected soil chemical properties in the soil profile (0- to 10‐ and 10- to 20‐cm depths) with liming were also determined. During all three years, gain yields increased significantly with the application of lime. However, B application significantly increased common bean yield in only the first crop. Only lime application significantly affected the soil chemical properties [pH; calcium (Ca2+); magnesium (Mg2+); hydrogen (H+)+ aluminum (Al3+); base saturation; acidity saturation; cation exchange capacity (CEC); percent saturation of Ca2+, Mg2+, and potassium (K+); and ratios of exchangeable Ca/Mg, Ca/K, and Mg/K] at both soil depths (0–10 cm and 10–20 cm). A positive significant association was observed between grain yield and soil chemical properties. Averaged across two depths and three crops, common bean produced maximum grain yield at soil pHw of 6.7, exchangeable (cmolc kg?1) of Ca2+ 4.9, Mg2+ 2.2, H++Al3+ 2.6, acidity saturation of 27.6%, CEC of 4.1 cmolc kg?1, base saturation of 72%, Ca saturation of 53.2%, Mg saturation of 17.6%, K saturation of 2.7%, Ca/Mg ratio of 2.8, Ca/K ratio of 25.7, and Mg/K ratio of 8.6. Soil organic matter did not change significantly with addition of lime.  相似文献   

7.
Land‐use change and soil management play a vital role in influencing losses of soil carbon (C) by respiration. The aim of this experiment was to examine the impact of natural vegetation restoration and long‐term fertilization on the seasonal pattern of soil respiration and cumulative carbon dioxide (CO2) emission from a black soil of northeast China. Soil respiration rate fluctuated greatly during the growing season in grassland (GL), ranging from 278 to 1030 mg CO2 m?2 h?1 with an average of 606 mg CO2 m?2 h?1. By contrast, soil CO2 emission did not change in bareland (BL) as much as in GL. For cropland (CL), including three treatments [CK (no fertilizer application), nitrogen, phosphorus and potassium application (NPK), and NPK together with organic manure (OM)], soil CO2 emission gradually increased with the growth of maize after seedling with an increasing order of CK < NPM < OM, reaching a maximum on 17 August and declining thereafter. A highly significant exponential correlation was observed between soil temperature and soil CO2 emission for GL during the late growing season (from 3 August to 28 September) with Q10 = 2.46, which accounted for approximately 75% of emission variability. However, no correlation was found between the two parameters for BL and CL. Seasonal CO2 emission from rhizosphere soil changed in line with the overall soil respiration, which averaged 184, 407, and 584 mg CO2 m?2 h?1, with peaks at 614, 1260, and 1770 mg CO2 m?2 h?1 for CK, NPK, and OM, respectively. SOM‐derived CO2 emission of root free‐soil, including basal soil respiration and plant residue–derived microbial decomposition, averaged 132, 132, and 136 mg CO2 m?2 h?1, respectively, showing no difference for the three CL treatments. Cumulative soil CO2 emissions decreased in the order OM > GL > NPK > CK > BL. The cumulative rhizosphere‐derived CO2 emissions during the growing season of maize in cropland accounted for about 67, 74, and 80% of the overall CO2 emissions for CK, NPK, and OM, respectively. Cumulative CO2 emissions were found to significantly correlate with SOC stocks (r = 0.92, n = 5, P < 0.05) as well as with SOC concentration (r = 0.97, n = 5, P < 0.01). We concluded that natural vegetation restoration and long‐term application of organic manure substantially increased C sequestration into soil rather than C losses for the black soil. These results are of great significance to properly manage black soil as a large C pool in northeast China.  相似文献   

8.
Although root crops are widely cultivated in Iran, little is known about soil loss due to crop harvesting (SLCH). We assessed the annual exported soil, soil organic matter (SOM) and nutrients from 47 farms under root crops in southwestern Iran. Soil losses for garlic, potato, sugar beet, radish and beetroot were estimated as 6.27, 2.52, 2.26, 4.10 and 6.95, Mg ha?1, respectively, which on average was of the order of soil losses by water erosion in the watershed basins of Iran. Total N, P2O5 and K2O losses were estimated as 36.61, 1.10 and 31.50 kg ha?1 and their costs as 18.24, 0.74 and 19.93 USAlthough root crops are widely cultivated in Iran, little is known about soil loss due to crop harvesting (SLCH). We assessed the annual exported soil, soil organic matter (SOM) and nutrients from 47 farms under root crops in southwestern Iran. Soil losses for garlic, potato, sugar beet, radish and beetroot were estimated as 6.27, 2.52, 2.26, 4.10 and 6.95, Mg ha?1, respectively, which on average was of the order of soil losses by water erosion in the watershed basins of Iran. Total N, P2O5 and K2O losses were estimated as 36.61, 1.10 and 31.50 kg ha?1 and their costs as 18.24, 0.74 and 19.93 US$ ha?1, respectively. For the whole country, total soil, N, P2O5, K2O and SOM losses for garlic, potato and sugar beet were estimated as 731.7 × 103, 836, 27, 476 and 14.5 × 103 Mg, respectively (radish and beetroot were excluded due to no reliable data on their planted areas). Correlation analysis showed no significant relationship between soil properties and SLCH (except soil moisture content for radish and clay content for beetroot). The findings indicated that the exported soil, SOM and nutrients were at such levels that SLCH should be considered in soil erosion studies.  相似文献   

9.
Risk assessment of cadmium (Cd) contamination in soils requires identifying the bioavailable portion of the total Cd, a portion that is determined by environmental conditions such as pH and calcium (Ca) level in soils and by the physiological processes going on in the plant roots. Growth tests in solutions were conducted to develop a terrestrial biotic ligand model to describe uptake and rhizotoxicity of Cd to pea (Pisum sativum L. cv. Lincoln). Inhibition concentration associated with a 50% reduction in root elongation (IC50) values were found to vary with external Ca2+ and H+ activities. Root-bound Ca was found to reach a plateau of about 63 µmol g?1 (dry weight) although Ca treatment increased from 0.04 to 2 mmol L?1. When experimental treatments (e.g., pH 6, Ca 0.2 to 2 mM) resulted in sufficient Ca supply, dose–response curves relating root elongation to root-bound Cd could be modeled with Weibull equations; IC50 values were expressed in terms of root-bound Cd concentration. When the treatments (e.g., pH 4 or 5, Ca 0.04 mM) suggested a low Ca supply, root elongation was more sensitive to Ca content and root-bound Ca concentration became the dominant predictor variable. Cd accumulation was modeled by treating the pea roots as an assemblage of biotic ligands with known site densities (Q Lj ) and proton binding constants (K HLj ). The logK Ca and logK Cd values were established using measured root-bound ion concentrations and solution chemistry. The logK Ca values were negatively correlated to root Ca contents. The logK Cd values were positively correlated to logK Ca values. Explanations for the changing of constants are discussed.  相似文献   

10.
Measurement of soil carbon (C) is important for determining the effects of Everglades restoration projects on C cycling and transformations. Accurate measurement of soil organic C by automated carbon–nitrogen–sulfur (CNS) analysis may be confounded by the presence of calcium carbonate (CaCO3) in Everglades wetlands. The objectives of this study were to compare a loss‐on‐ignition (LOI) method with CNS analysis for assessment of soil C across a diverse group of calcareous Everglades wetlands. More than 3168 samples were taken from three soil depths (floc, 0–10, 10–30 cm) in 14 wetlands and analyzed for LOI, total C, and total calcium (Ca). The LOI method compared favorably to CNS analysis for LOI contents ranging from 0 to 1000 g kg?1 and for soil total Ca levels from 0 to 500 g Ca kg?1. For all wetlands and soil depths, LOI was significantly related to total C (r2 = 0.957). However, LOI was a better predictor of total C when LOI exceeded 400 g kg?1 because of less interference by CaCO3. Total C measurement by CNS analysis was problematic in soils with high total Ca and low LOI, as the presence of CaCO3 confounded C analysis for LOI less than 400 g kg?1. Inclusion of total Ca in regression models with LOI significantly improved the prediction of total C. Estimates of total organic C by CNS analysis were obtained by accounting for C associated with CaCO3 by calculation, with results being similar to total organic C values obtained from LOI analysis. The proportion of C in organic matter measured by the LOI method (51%) was accurate and applicable across wetlands, soil depths, and total Ca levels; thus LOI was a suitable indicator of total organic C in Everglades wetlands.  相似文献   

11.

Purpose

Various soil conditioners, such as biochar (BC) and anionic polyacrylamide (PAM), improve soil fertility and susceptibility to erosion, and may alter microbial accessibility and decomposition of soil organic matter (SOM) and plant residues. To date, no attempts have been made to study the effects of BC in combination with PAM on the decomposition of soil SOM and plant residues. The objective of this study was to evaluate the effects of BC, PAM, and their combination on the decomposition of SOM and alfalfa residues.

Materials and methods

An 80-day incubation experiment was carried out to investigate the effects of oak wood biochar (BC; 10 Mg ha?1), PAM (80 kg ha?1), and their combination (BC?+?PAM) on decomposition of SOM and 14C-labeled alfalfa (Medicago sativa L.) residues by measuring CO2 efflux, microbial biomass, and specific respiration activity.

Results and discussion

No conditioner exerted a significant effect on SOM decomposition over the 80 days of incubation. PAM increased cumulative CO2 efflux at 55–80 days of incubation on average of 6.7 % compared to the soil with plant residue. This was confirmed by the increased MBN and MB14C at 80 days of incubation in PAM-treated soil with plant residue compared to the control. In contrast, BC and BC?+?PAM decreased plant residue decomposition compared to that in PAM-treated soil and the respective control soil during the 80 days. BC and BC?+?PAM decreased MBC in soil at 2 days of incubation indicated that BC suppressed soil microorganisms and, therefore, decreased the decomposition of plant residue.

Conclusions

The addition of oak wood BC alone or in combination with PAM to soil decreased the decomposition of plant residue.
  相似文献   

12.

Purpose

Soil respiration (R s) is controlled by abiotic soil parameters interacting with characteristics of the vegetation and the soil microbial community. Few studies have attempted a comprehensive approach that simultaneously addresses the roles of all the major factors known to influence R s. Our goal was to explore the links between heterogeneity in R s, aboveground plant biomass and belowground properties in three representative land-use types in a dry Mediterranean ecosystem: (1) a 150-year-old mixed Aleppo pine-kermes oak open forest, (2) an abandoned agricultural field, which was cultivated with cereal for several years until abandonment in 1980, when establishment of typical Mediterranean shrubland vegetation started and (3) a rain-fed olive grove, which has been cultivated for 100 years.

Materials and methods

We selected two distinctive sampling periods coinciding with annual minimum or near minimum (December) and maximum (April) rates of R s in this dry Mediterranean ecosystem. In each sampling period, R s, temperature and moisture, aboveground plant biomass, carbon (C) and nitrogen (N) contents in both light and heavy soil organic matter fractions, extractable dissolved organic C (EDOC), as well as microbial and fine root biomass were measured within each land-use type.

Results and discussion

Across sites, R s rates were significantly higher in April (3.07?±?0.1 μmol?m?2?s?1) than in December (1.30?±?0.1 μmol?m?2?s?1). The labile soil organic matter fractions (light fraction C and N contents, microbial biomass C and EDOC) were consistently and strongly related to one another, and to a lesser extent, to the C and N contents in the heavy fraction across sites and seasons. Linear models adequately explained a large proportion of the within-site variability in R s (R 2 values ranged from 41 to 91 % depending on land use and season) but major controls on R s differed considerably between sites and seasons. Primary controls on spatial patterns in R s were linked to recent plant-derived C inputs in both forest and olive grove sites. However, in the abandoned agricultural field site R s appeared to be mainly driven by microbial activity, which could be sustained by intermediate or recalcitrant C and N pools derived from previous land use.

Conclusions

Conversion of native woodland to agricultural land and subsequent land abandonment leads to profound changes in the relationships between R s, aboveground biomass and belowground properties in this dry Mediterranean ecosystem. While above- and belowground vegetation are the primary controls on spatial variability in labile soil C pools and R s in the open forest and olive grove sites, a complete lack of influence of current vegetation patterns on soil C pools and respiration rates in the abandoned agricultural field was observed.  相似文献   

13.
Mining activities generate spoils and effluents with extremely high metal concentrations of heavy metals that might have adverse effects on ecosystems and human health. Therefore, information on soil and plant metal concentrations is needed to assess the severity of the pollution and develop a strategy for soil reclamation such as phytoremediation. Here, we studied soils and vegetation in three heavily contaminated sites with potential toxic metals and metalloids (Zn, Pb, Cd, As, TI) in the mining district of Les Malines in the Languedoc region (southern France). Extremely high concentrations were found at different places such as the Les Aviniéres tailing basins (up to 160,000 mg kg?C1 Zn, 90,000 mg kg?C1 Pb, 9,700 mg kg?C1 of As and 245 mg kg?C1 of Tl) near a former furnace. Metal contamination extended several kilometres away from the mine sites probably because of the transport of toxic mining residues by wind and water. Spontaneous vegetation growing on the three mine sites was highly diversified and included 116 plant species. The vegetation cover consisted of species also found in non-contaminated soils, some of which have been shown to be metal-tolerant ecotypes (Festuca arvernensis, Koeleria vallesiana and Armeria arenaria) and several Zn, Cd and Tl hyperaccumulators such as Anthyllis vulneraria, Thlaspi caerulescens, Iberis intermedia and Silene latifolia. This latter species was highlighted as a new thallium hyperaccumulator, accumulating nearly 1,500 mg kg?C1. These species represent a patrimonial interest for their potential use for the phytoremediation of toxic metal-polluted areas.  相似文献   

14.

Purpose

Occlusion of carbon in phytoliths is an important biogeochemical carbon sequestration mechanism and plays a significant role in the global biogeochemical carbon cycle and atmospheric carbon dioxide (CO2) concentration regulation at a millennial scale. However, few studies have focused on the storage of phytolith and phytolith-occluded carbon (PhytOC) in subtropical forest soils.

Materials and methods

Soil profiles with 100-cm depth were sampled from subtropical bamboo forest, fir forest, and chestnut forest in China to investigate the variation of phytoliths and PhytOC storage in the soil profiles based on amass-balance assessment.

Results and discussion

The storage of phytoliths in the top 100 cm of the bamboo forest soil (198.13?±?25.08 t ha?1) was much higher than that in the fir forest (146.76?±?4.53 t ha?1) and chestnut forest (170.87?±?9.59 t ha?1). Similarly, the storage of PhytOC in the bamboo forest soil (3.91?±?0.64 t ha?1) was much higher than that in the fir forest soil (1.18?±?0.22 t ha?1) and chestnut forest soil (2.67?±?0.23 t ha?1). The PhytOC percentage in the soil organic carbon pool increased with soil depth and was the highest (4.29 %) in the bamboo forest soil. Our study demonstrated that PhytOC in soil was significantly influenced by forest type and the bamboo forest ecosystem contributed more significantly to phytolith carbon sequestration than other forest ecosystems.

Conclusions

Different forest types have a significant influence on the soil PhytOC storage. Optimization of bamboo afforestation/reforestation in future forest management plans may significantly enhance the biogeochemical carbon sink in the following centuries.
  相似文献   

15.
Abstract: Soil quality indicators and nematode abundance were characterized in a loessial soil under long‐term conservation tillage to evaluate the effects of no‐till, double‐disk, chisel, and moldboard plow treatments. Indicators included soil electrical conductivity (EC), soil texture, soil organic matter (SOM), and total particulate organic matter (tPOM). Nematode abundance was positively correlated with EC, silt content, and total POM and negatively correlated with clay content. Clay content was the main source of variation among soil quality indicators and was negatively correlated with nematode abundance and most indicators. The gain in SOM in the no‐till system amounted to 10887 kg over the 24 years or 454 kg ha?1 year?1, about half of this difference (45%) resulting from soil erosion in plowed soils. The balance of gain in SOM with no till (249 kg ha?1 year?1) was due to SOM sequestration with no till. No‐till management reduced soil erosion, increased SOM, and enhanced soil physical characteristics.  相似文献   

16.
Abstract

Local humus stocks (= contents of soil organic matter, SOM in kg · m?2) of arable soils were investigated in several regions of the seemingly uniform ground moraine-landscape. Depending on relief position, quantifiable effects of humus removal or enrichment are evident, caused by denudation or colluviation. The depth (thickness) of the investigated humus-bearing topsoil horizons varies between 15 and 150 cm overall and amounts on average to 67 cm. Extreme values of SOM (resp. Corg) stocks are 2.73 (1.58) and 137.41 (79.70) kg · m?2. The average values of all found SOM (resp. Corg) stocks in the investigated arable soils amount to 10.78 (6.25) kg · m?2. Humus stocks are not only of importance for the agricultural yield potential but also because of their function as a sink for, or a source of, atmospheric CO2, which is of special current interest due to its influence on menacing climate change. The total carbon content of the corresponding column of atmosphere, 1.60 kg · m?2, amounts to only one quarter of the average in our arable soils.  相似文献   

17.
Two processes contribute to changes of the δ13C signature in soil pools: 13C fractionation per se and preferential microbial utilization of various substrates with different δ13C signature. These two processes were disentangled by simultaneously tracking δ13C in three pools - soil organic matter (SOM), microbial biomass, dissolved organic carbon (DOC) - and in CO2 efflux during incubation of 1) soil after C3-C4 vegetation change, and 2) the reference C3 soil.The study was done on the Ap horizon of a loamy Gleyic Cambisol developed under C3 vegetation. Miscanthus giganteus - a perennial C4 plant - was grown for 12 years, and the δ13C signature was used to distinguish between ‘old’ SOM (>12 years) and ‘recent’ Miscanthus-derived C (<12 years). The differences in δ13C signature of the three C pools and of CO2 in the reference C3 soil were less than 1‰, and only δ13C of microbial biomass was significantly different compared to other pools. Nontheless, the neglecting of isotopic fractionation can cause up to 10% of errors in calculations. In contrast to the reference soil, the δ13C of all pools in the soil after C3-C4 vegetation change was significantly different. Old C contributed only 20% to the microbial biomass but 60% to CO2. This indicates that most of the old C was decomposed by microorganisms catabolically, without being utilized for growth. Based on δ13C changes in DOC, CO2 and microbial biomass during 54 days of incubation in Miscanthus and reference soils, we concluded that the main process contributing to changes of the δ13C signature in soil pools was preferential utilization of recent versus old C (causing an up to 9.1‰ shift in δ13C values) and not 13C fractionation per se.Based on the δ13C changes in SOM, we showed that the estimated turnover time of old SOM increased by two years per year in 9 years after the vegetation change. The relative increase in the turnover rate of recent microbial C was 3 times faster than that of old C indicating preferential utilization of available recent C versus the old C.Combining long-term field observations with soil incubation reveals that the turnover time of C in microbial biomass was 200 times faster than in total SOM. Our study clearly showed that estimating the residence time of easily degradable microbial compounds and biomarkers should be done at time scales reflecting microbial turnover times (days) and not those of bulk SOM turnover (years and decades). This is necessary because the absence of C reutilization is a prerequisite for correct estimation of SOM turnover. We conclude that comparing the δ13C signature of linked pools helps calculate the relative turnover of old and recent pools.  相似文献   

18.
The effectiveness of lime-ammonium-nitrate (LAN) as a nitrogen (N) fertilizer in weathered soils depends on the respective selectivity for ammonium (NH4) and calcium (Ca) by the soils. The study assessed Ca2+/NH4+ exchange selectivity of two benchmark soils from Botswana and examined the soil fertility management implications. Surface horizons (0–20 cm) of Pellustert and Haplustalf were equilibrated with 50 ml stock solution containing variable concentrations of Ca2+ and NH4+. The Ca2+/NH4+ exchange data were fitted into the Vanselow (KV), Gaines and Thomas (KGT), Davies (KD), and the regular solution (KRS) equations. The selectivity coefficients for the Ca2+/NH4+ exchange reactions varied widely with the soil exchanger composition except for the relatively stable KRS. The selectivity coefficients indicated strong preference for NH4+ to Ca2+. The thermodynamic exchange constant, Kex, was 5.75 ± 1.24 in the Pellustert, indicating preferential adsorption of NH4+, but not in the Haplustalf with Kex = 0.92 ± 0.27. The free energy for Ca2+/NH4+ exchange (ΔG°ex) was negative (?4.26 ± 0.59 kJ mol?1) in the Pellustert but slightly positive in the Haplustalf (0.34 ± 0.87 kJ mol?1). In conclusion, the soil-NH4 complex was more stable than soil-Ca complex in the Pellustert, indicating LAN as a N fertilizer would have greater potential effectiveness in the Pellustert than in the Haplustalf.  相似文献   

19.
The effects of exogenous calcium (Ca2+) on root growth and lignification-related parameters – phenylalanine ammonia-lyase (PAL) and peroxidases (POD) activities, hydrogen peroxide (H2O2) and lignin contents – in roots of NaCl-stressed soybean seedlings were analyzed. Three-day-old seedlings were cultivated in half-strength Hoagland's solution (pH 6.0) with or without 5 mM calcium nitrate [Ca(NO3)2] and 50 to 200 mM sodium chloride (NaCl) in a growth chamber (25°C, 12/12 h light/dark photoperiod, irradiance of 280 μmol m?2 s?1) for 24 h. In general, results showed that the absence of Ca2+ reduced root growth and increased lignification of soybean seedlings grown in NaCl-free nutrient solution. NaCl reduced the root growth and all lignification-related parameters. Root growth, PAL and POD activities and hydrogen peroxide (H2O2) contents were more affected after NaCl treatments without Ca2+ in the nutrient solution. At 5 mM, Ca2+ did not alleviate the deleterious effects of NaCl on lignification-related parameters.  相似文献   

20.
Two acidic soils (initial pH, 4.6) with contrasting soil organic C (SOC) contents (11.5 and 40 g C kg?1) were incubated with 13C-labelled lime (Ca13CO3) at four different rates (nil, target pH 5, 5.8 and 6.5) and three application depths (0–10, 20–30 and 0–30 cm). We hypothesised that liming would stimulate SOC mineralisation by removing pH constraints on soil microbes and that the increase in mineralisation in limed soil would be greatest in the high-C soil and lowest when the lime was applied in the subsoil. While greater SOC mineralisation was observed during the first 3 days, likely due to lime-induced increases in SOC solubility, this effect was transient. In contrast, SOC mineralisation was lower in limed than in non-limed soils over the 87-day study, although only significant in the Tenosol (70 μg C g?1 soil, 9.15%). We propose that the decrease in SOC mineralisation following liming in the low-C soil was due to increased microbial C-use efficiency, as soil microbial communities used less energy maintaining intracellular pH or community composition changed. A greater reduction in SOC mineralisation in the Tenosol for low rates of lime (0.3 and 0.5 g column?1) or when the high lime rate (0.8 g column?1) was mixed through the entire soil column without changes in microbial biomass C (MBC) could indicate a more pronounced stabilising effect of Ca2+ in the Tenosol than the Chromosol with higher clay content and pH buffer capacity. Our study suggests that liming to ameliorate soil acidity constraints on crop productivity may also help to reduce soil C mineralisation in some soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号