首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Understanding connectivity patterns in relation to habitat fragmentation is essential to landscape management. However, connectivity is often judged from expert opinion or species occurrence patterns, with very few studies considering the actual movements of individuals. Path selection functions provide a promising tool to infer functional connectivity from animal movement data, but its practical application remains scanty.

Objectives

We aimed to describe functional connectivity patterns in a forest carnivore using path-level analysis, and to explore how connectivity is affected by land cover patterns and road networks.

Methods

We radiotracked 22 common genets in a mixed forest-agricultural landscape of southern Portugal. We developed path selection functions discriminating between observed and random paths in relation to landscape variables. These functions were used together with land cover information to map conductance surfaces.

Results

Genets moved preferentially within forest patches and close to riparian habitats. Functional connectivity declined with increasing road density, but increased with the proximity of culverts, viaducts and bridges. Functional connectivity was favoured by large forest patches, and by the presence of riparian areas providing corridors within open agricultural land. Roads reduced connectivity by dissecting forest patches, but had less effect on riparian corridors due to the presence of crossing structures.

Conclusions

Genet movements were jointly affected by the spatial distribution of suitable habitats, and the presence of a road network dissecting such habitats and creating obstacles in areas otherwise permeable to animal movement. Overall, the study showed the value of path-level analysis to assess functional connectivity patterns in human-modified landscapes.
  相似文献   

2.

Context

Landscape modification is an important driver of biodiversity declines, yet we lack insight into how ongoing landscape change and legacies of historical land use together shape biodiversity.

Objectives

We examined how a history of agricultural land use and current forest fragmentation influence the abundance of red-backed salamanders (Plethodon cinereus). We hypothesized that historical agriculture and fragmentation cause changes in habitat quality and landscape structure that limit abundance.

Methods

We measured salamander abundance at 95 forested sites in New York, USA, and we determined whether sites were agricultural fields within the last five decades. We used a structural equation model to estimate relationships between historical agriculture and salamander abundance mediated by changes in forest vegetation, microclimate, and landscape structure.

Results

Historical agriculture affected salamander abundance by altering forest vegetation at a local scale and forest cover at a landscape scale. Abundance was lowest at post-agricultural sites with low woody vegetation, leaf litter depth, and canopy cover. Post-agricultural sites had limited forest cover in the surrounding landscape historically, and salamander abundance was positively related to historical forest cover, suggesting that connectivity to source populations affects colonization of regenerating forests. Abundance was also negatively related to current forest fragmentation.

Conclusions

Historical land use can have legacy effects on animal abundance on par with effects of ongoing landscape change. We showed that associations between animal abundance and historical land use can be driven by altered site conditions and surrounding habitat area, indicating that restoration efforts should consider local site conditions and landscape context.
  相似文献   

3.

Context

Identifying the drivers shaping biological assemblages in fragmented tropical landscapes is critical for designing effective conservation strategies. It is still unclear, however, whether tropical biodiversity is more strongly affected by forest loss, by its spatial configuration or by matrix composition across different spatial scales.

Objectives

Assessing the relative influence of forest patch and landscape attributes on dung beetle assemblages in the fragmented Lacandona rainforest, Mexico.

Methods

Using a multimodel inference approach we tested the relative impact of forest patch size and landscape forest cover (measures of forest amount at the patch and landscape scales, respectively), patch shape and isolation (forest configuration indices at the patch scale), forest fragmentation (forest configuration index at the landscape scale), and matrix composition on the diversity, abundance and biomass of dung beetles.

Results

Patch size, landscape forest cover and matrix composition were the best predictors of dung beetle assemblages. Species richness, beetle abundance, and biomass decreased in smaller patches surrounded by a lower percentage of forest cover, and in landscapes dominated by open-area matrices. Community evenness also increased under these conditions due to the loss of rare species.

Conclusions

Forest loss at the patch and landscape levels and matrix composition show a larger impact on dung beetles than forest spatial configuration. To preserve dung beetle assemblages, and their key functional roles in the ecosystem, conservation initiatives should prioritize a reduction in deforestation and an increase in the heterogeneity of the matrix surrounding forest remnants.
  相似文献   

4.

Context

Species distributions are a function of an individual’s ability to disperse to and colonize habitat patches. These processes depend upon landscape configuration and composition.

Objectives

Using Blanchard’s cricket frogs (Acris blanchardi), we assessed which land cover types were predictive of (1) presence at three spatial scales (pond-shed, 500 and 2500 m) and (2) genetic structure. We predicted that forested, urban, and road land covers would negatively affect cricket frogs. We also predicted that agricultural, field, and aquatic land covers would positively affect cricket frogs.

Methods

We surveyed for cricket frogs at 28 sites in southwestern Ohio, USA to determine presence across different habitats and analyze genetic structure among populations. For our first objective, we examined if land use (crop, field, forest, and urban habitat) and landscape features (ponds, streams, and roads) explained presence; for our second objective, we assessed whether these land cover types explained genetic distance between populations.

Results

Land cover did not have a strong influence on cricket frog presence. However, multiple competing models suggested effects of roads, streams, and land use. We found genetic structuring: populations were grouped into five major clusters and nine finer-scale clusters. Highways were predictive of increased genetic distance.

Conclusions

By combining a focal-patch study with landscape genetics, our study suggests that major roads and waterways are key features affecting species distributions in agricultural landscapes. We demonstrate that cricket frogs may respond to landscape features at larger spatial scales, and that presence and movement may be affected by different environmental factors.
  相似文献   

5.

Context

Loss and fragmentation of semi-natural grasslands has critically affected many butterfly species in Europe. Habitat area and isolation can have strong effects on the local biodiversity but species may also be strongly affected by the surrounding matrix.

Objectives

We explored how different land cover types in the landscape explained the occurrence of butterfly species in semi-natural grasslands.

Methods

Using data from 476 semi-natural grasslands in Sweden, we analysed the effect of matrix composition on species richness and occurrence. Additionally, we analysed at which spatial scales butterflies responded to matrix types (forests, semi-natural grasslands, arable land and water).

Results

Forest cover showed the strongest positive effect on species richness, followed by semi-natural grasslands. Forest also had a positive effect on red-listed species at local scales. Responses to matrix composition were highly species-specific. The majority of the 30 most common species showed strong positive responses to the amount of forest cover within 200–500 m. There was a smaller group of species showing a positive response to arable land cover within 500–2000 m. Thirteen species showed positive responses to the amount of semi-natural grasslands, generally at larger scales (10–30 km).

Conclusions

Our study showed that surrounding forest is beneficial for many grassland butterfly species and that forests might mitigate the negative effects of habitat loss caused by agricultural intensification. Also, semi-natural grasslands were an important factor for species richness at larger spatial scales, indicating that a landscape consisting mainly of supporting habitats (i.e. forests) are insufficient to sustain a rich butterfly fauna.
  相似文献   

6.

Context

The conversion of agricultural landscapes to tree plantations is a major form of landscape transformation worldwide, but its effects on biodiversity, particularly key population processes like reproductive success, are poorly understood.

Objectives

We compared bird breeding success between woodland remnants surrounded by maturing stands of plantation Radiata Pine and a matched set of woodland remnants in semi-cleared grazing land.

Methods

Our study was conducted in the Nanangroe region in south-eastern New South Wales, Australia. Using repeated field measurements, we quantified bird breeding success in 23 woodland remnants; 13 surrounded by Radiata Pine plantations and 10 on farms where remnants were surrounded by semi-cleared grazing land. We matched the attributes of native remnant patches between two types of matrix.

Results

We found that: (1) rates of nesting success of smaller-bodied birds in woodland remnants surrounded by grazing land were significantly higher than in woodland remnants surrounded by pine plantations; and (2) taxa with domed nests were more successful at nesting than species that constructed open cup/bowl nests in woodland remnants within farmlands.

Conclusions

Our findings suggest that bird breeding success in remnant woodland patches is significantly diminished as a result of the conversion of semi-cleared grazing land to pine plantations.
  相似文献   

7.

Context

Golden-cheeked warblers (Setophaga chrysoparia), an endangered wood-warbler, breed exclusively in woodlands co-dominated by Ashe juniper (Juniperus ashei) in central Texas. Their breeding range is becoming increasingly urbanized and habitat loss and fragmentation are a main threat to the species’ viability.

Objectives

We investigated the effects of remotely sensed local habitat and landscape attributes on point occupancy and density of warblers in an urban preserve and produced a spatially explicit density map for the preserve using model-supported relationships.

Methods

We conducted 1507 point-count surveys during spring 2011–2014 across Balcones Canyonlands Preserve (BCP) to evaluate warbler habitat associations and predict density of males. We used hierarchical Bayesian models to estimate multiple components of detection probability and evaluate covariate effects on detection probability, point occupancy, and density.

Results

Point occupancy was positively related to landscape forest cover and local canopy cover; mean occupancy was 0.83. Density was influenced more by local than landscape factors. Density increased with greater amounts of juniper and mixed forest and decreased with more open edge. There was a weak negative relationship between density and landscape urban land cover.

Conclusions

Landscape composition and habitat structure were important determinants of warbler occupancy and density, and the large intact patches of juniper and mixed forest on BCP (>2100 ha) supported a high density of warblers. Increasing urbanization and fragmentation in the surrounding landscape will likely result in lower breeding density due to loss of juniper and mixed forest and increasing urban land cover and edge.
  相似文献   

8.

Context

In tropical landscapes, dominant land-use changes involve conversion of intact forest to an agricultural matrix with embedded fragments of remnant forest. However, most research to date has focused on how these land-use changes affect species within the fragmented ecosystem, rather than the flux of energy and nutrients within these different landscape elements.

Objectives

We examined how forest fragmentation and conversion to orange fields impact the potential for litter decomposition in a Costa Rican landscape, in particular via effects on macroinvertebrates (MIs) and microclimate.

Methods

We measured mass losses of a standard leaf litter in four habitats: orange fields, small forest fragments, large forest fragments and intact forest. Litter bags were constructed of mesh that either excluded or allowed MIs. Decomposition rates were measured in wet and dry seasons, and at different distances from the forest edge.

Results

Forest fragmentation and forest conversion had divergent effects on decomposition rates. Decomposition rates were 7 % slower in forest fragments during the dry season than in intact forest, and this result was mediated by forest fragmentation effects on MIs. Decomposition rates were 9 % higher in orange fields during the wet season, relative to intact forest, and this pattern was explained by effects of the litter microenvironment on leaching rates or smaller invertebrates. Fragment area and distance from forest edge had minor or undetectable effects on decomposition in fragments.

Conclusions

We conclude that land-use changes affect decomposition processes in both forest and agroecosystems, and these effects can vary in mechanism and direction across disturbed landscapes.
  相似文献   

9.

Context

Urbanization has altered many landscapes around the world and created novel contexts and interactions, such as the rural–urban interface.

Objectives

We sought to address how a forest patch’s location in the rural–urban interface influences which avian species choose to occur within the patch. We predicted a negative relationship between forest bird richness and urbanization surrounding the patch, but that it would be ameliorated by the area of tree cover in the patch and matrix, and that total tree-cover area would be more influential on forest bird species richness than area of tree cover in the focal patch alone.

Methods

We conducted bird surveys in 44 forest patches over 2 years in Southeast Michigan and evaluated bird presence and richness relative to patch and matrix tree cover and development density.

Results

We observed 43 species, comprised of 21 Neotropical migrants, 19 residents, and three short-distance migrants. Focal-patch tree-cover area and the matrix tree-cover area were the predominant contributors to a site’s overall forest-bird species richness at the rural–urban interface, but the addition of percent of over-story vegetation and percentage of deciduous tree cover influenced the ability of the patches to support forest species, especially Neotropical migrants. Development intensity in the matrix was unrelated to species richness and only had an effect in four species models.

Conclusions

Although small forest patches remain an important conservation strategy in developed environments, the influence of matrix tree cover suggests that landscape design decisions in surrounding matrix can contribute conservation value at the rural–urban interface.
  相似文献   

10.

Context

Landscape-scale population dynamics are driven in part by movement within and dispersal among habitat patches. Predicting these processes requires information about how movement behavior varies among land cover types.

Objectives

We investigated how butterfly movement in a heterogeneous landscape varies within and between habitat and matrix land cover types, and the implications of these differences for within-patch residence times and among-patch connectivity.

Methods

We empirically measured movement behavior in the Baltimore checkerspot butterfly (Euphydryas phaeton) in three land cover classes that broadly constitute habitat and two classes that constitute matrix. We also measured habitat preference at boundaries. We predicted patch residence times and interpatch dispersal using movement parameters estimated separately for each habitat and matrix land cover subclass (5 categories), or for combined habitat and combined matrix land cover classes (2 categories). We evaluated the effects of including edge behavior on all metrics.

Results

Overall, movement was slower within habitat land cover types, and faster in matrix cover types. Butterflies at forest edges were biased to remain in open areas, and connectivity and patch residence times were most affected by behavior at structural edges. Differences in movement between matrix subclasses had a greater effect on predictions about connectivity than differences between habitat subclasses. Differences in movement among habitat subclasses had a greater effect on residence times.

Conclusions

Our findings highlight the importance of careful classification of movement and land cover in heterogeneous landscapes, and reveal how subtle differences in behavioral responses to land cover can affect landscape-scale outcomes.
  相似文献   

11.

Context

Habitat loss and fragmentation may alter habitat occupancy patterns, for example through a reduction in regional abundance or in functional connectivity, which in turn may reduce the number of dispersers or their ability to prospect for territories. Yet, the relationship between landscape structure and habitat niche remains poorly known.

Objectives

We hypothesized that changes in landscape structure associated with habitat loss and fragmentation will reduce the habitat niche breadth of forest birds, either through a reduction in density-dependent spillover from optimal habitat or by impeding the colonization of patches.

Methods

We surveyed forest birds with point counts in eastern Ontario, Canada, and analyzed their response to loss and fragmentation of mature woodland. We selected 62 landscapes varying in both forest cover (15–45%) and its degree of fragmentation, and classified them into two categories (high versus low levels of loss and fragmentation). We determined the habitat niche breadth of 12 focal species as a function of 8 habitat structure variables for each landscape category.

Results

Habitat niche breadth was narrower in landscapes with high versus low levels of loss and fragmentation of forest cover. The relative occupancy of marginal habitat appeared to drive this relationship. Species sensitivity to mature forest cover had no apparent influence on relative niche breadth.

Conclusions

Regional abundance and, in turn, density-dependent spillover into suboptimal habitat appeared to be determinants of habitat niche breadth. For a given proportion of forest cover, fragmentation also appeared to alter habitat use, which could exacerbate its other negative effects unless functional connectivity is high enough to allow individuals to saturate optimal habitat.
  相似文献   

12.

Context

The application of regional-level airborne lidar (light detection and ranging) data to characterize habitat patches and model habitat connectivity over large landscapes has not been well explored. Maintaining a connected network of habitat in the presence of anthropogenic disturbances is essential for regional-level conservation planning and the maintenance of biodiversity values.

Objectives

We quantified variation in connectivity following simulated changes in land cover and contrasted outcomes when different conservation priorities were emphasized.

Methods

First, we defined habitat patches using vegetation structural attributes identified via lidar. Second, habitat networks were constructed for different forest types and assessed using network connectivity metrics. And finally, land cover change scenarios were simulated using a series of habitat patch removals, representing the impact of implementing different spatial prioritization schemes.

Results

Networks for different forest structure types produced very different patch distributions. Conservation scenarios based on different schemes led to contrasting changes during land cover change simulations: the scheme prioritizing only habitat area resulted in immediate near-term losses in connectivity, whereas the scheme considering both habitat area and their spatial configurations maintained the overall connectivity most effectively. Adding climate constraints did not diminish or improve overall connectivity.

Conclusions

Both habitat area and habitat configuration should be considered in dynamic modeling of habitat connectivity under changing landscapes. This research provides a framework for integrating forest structure and cover attributes obtained from remote sensing data into network connectivity modeling, and may serve as a prototype for multi-criteria forest management and conservation planning.
  相似文献   

13.
14.
15.

Context

The relationship between biodiversity and ecosystem functioning (BEF) has been a central topic in ecology for more than 20 years. While experimental and theoretical studies have produced much knowledge of how biodiversity affects ecosystem functioning, it remains poorly understood how habitat fragmentation affects the BEF relationship.

Objectives

To develop a framework that connects habitat fragmentation to the BEF relationship from a landscape perspective.

Methods

We reviewed the literature on habitat fragmentation, BEF, and related fields, and developed a framework to analyze how habitat fragmentation affects the BEF relationship through altering biodiversity, environmental conditions, and both, based on the pattern-process-scale perspective in landscape ecology.

Results

Our synthesis of the literature suggests that habitat fragmentation can alter BEF relationship through several processes. First, habitat fragmentation causes the non-random loss of species that make major contributions to ecosystem functioning (decreasing sampling effect), and reduces mutualistic interactions (decreasing complementarity effects) regardless of the changes in species richness. Second, environmental conditions within patches and ecological flows among patches vary significantly with the degree of fragmentation, which potentially contributes to and modulates the BEF relationship.

Conclusions

Habitat fragmentation can affect the BEF relationship directly by altering community composition, as well as indirectly by changing environmental conditions within and among habitat patches on both local and landscape levels. The BEF relationship obtained from small plots and over short time periods may not fully represent that in real landscapes that are fragmented, dynamic, and continuously influenced by myriad human activities on different scales in time and space.
  相似文献   

16.

Context

Although forest fragmentation is generally thought to impact tree growth and mortality negatively, recent work suggests some forests are resilient. Experimental forests provide an opportunity to examine the timing and extent of forest tree resilience to disturbance from fragmentation.

Objectives

We used the Wog Wog Habitat Fragmentation Experiment in southeastern Australia to test Eucalyptus growth and survivorship responses to forest fragmentation over a 26 year period.

Methods

We measured 2418 tree diameters and used spline-regression techniques to examine non-monotonic fragmentation effect over two time periods.

Results

Over the first 4 years after fragmentation, individual eucalypt tree growth was greater than in continuous forest for large trees and mortality rates were higher only within 10 m of edges. Over the following 22 years only the effects on tree growth remained and on average all fragments rebounded so that their biomass and mortality rates were equivalent to continuous forest. Importantly non-monotonic patterns were observed in growth and mortality with respect to area and distance from edge in both study periods, demonstrating that fragmentation impacts on trees can be strong in localized areas (greatest in 3 ha fragments and 0–30 m edges) and over short time periods.

Conclusions

Dry-sclerophyll eucalypt forests join the set of forest types that display resilient growth dynamics post fragmentation. Moreover, persistent non-monotonic impacts on tree growth with respect to tree size, fragment area, and fragment distance from edge, highlighting landscape fragmentation as a driver of habitat heterogeneity within remnant forest fragments.
  相似文献   

17.

Context

Despite continued forest cover losses in many parts of the world, Atlantic Forest, one of the largest of the Americas, is increasing in some locations. Economic factors are suggested as causes of forest gain, while enforcement has reduced deforestation.

Objectives

We examine three aspects of this issue: the relative importance of biophysical versus anthropogenic factors in driving forest dynamics; role of forest mean patch age influencing areas targeted for losses; and what future forest mean patch age mosaic we can expect (more forest cover and full forest maturity?).

Methods

Three land cover maps from 1990, 2000 and 2010, were used in the study. We selected six biophysical and six anthropogenic spatial determinants to analyze by means of weights of evidence, using Dinamica software.

Results

Results show that forest regrowth is influenced by multiple factors, working in synergy. Biophysical variables are related to forest gain while anthropogenic are associated with loss. Clear patterns of regrowth on pasture and sugarcane plantations occurred, especially near rivers and forest patches, on steeper slopes and with sufficient rainfall. Forest loss has targeted both older and newer forests. Future projections reveal forest gain in a slow pace, followed by specific ecosystem service losses, due to continuous trends of older mature forest loss.

Conclusions

Regrowth is linked to land abandonment, and to neighboring environmental conditions. It is important to question which mechanisms will guarantee and potentiate new regrowth, thus contributing to landscape restoration and reestablishment of ecosystem services in the Atlantic Forest.
  相似文献   

18.

Context

Forest loss and fragmentation negatively affect biodiversity. However, disturbances in forest canopy resulting from repeated deforestation and reforestation are also likely important drivers of biodiversity, but are overlooked when forest cover change is assessed using a single time interval.

Objectives

We investigated two questions at the nexus of plant diversity and forest cover change dynamics: (1) Do multitemporal forest cover change trajectories explain patterns of plant diversity better than a simple measure of overall forest change? (2) Are specific types of forest cover change trajectories associated with significantly higher or lower levels of diversity?

Methods

We sampled plant biodiversity in forests spanning the Charlotte, NC, region. We derived forest cover change trajectories occurring within nested spatial extents per sample site using a time series of aerial photos from 1938 to 2009, then classified trajectories by spatio-temporal patterns of change. While accounting for landscape and environmental covariates, we assessed the effects of the trajectory classes as compared to net forest cover change on native plant diversity.

Results

Our results indicated that forest stand diversity is best explained by forest change trajectories, while the herb layer is better explained by net forest cover change. Three distinct forest change trajectory classes were found to influence the forest stand and herb layer.

Conclusions

The influence of forest dynamics on biodiversity can be overlooked in analyses that use only net forest cover change. Our results illustrate the utility of assessing how specific trajectories of past land cover change influence biodiversity patterns in the present.
  相似文献   

19.

Context

Woodland and agricultural expansion are major causes of grassland fragmentation. Fire and rainfall play important roles in maintaining grasslands, however, fire activity has been reduced in fragmented landscapes.

Objectives

Quantify the degree to which basic landscape fragmentation metrics could be used as drivers of woody cover potential.

Methods

Woody plant percent cover was calculated between 2004 and 2008 at?>?2000 sites. At each site, we calculated these fragmentation metrics for grassland cover type (classified by the National Land Cover Database); # patches, landscape proportion, edge density, largest patch index, effective mesh size and patch cohesion index within 3 circular areas (10 km2, 360 km2 and 3600 km2) surrounding the sampling site. A quantile regression was performed to identify which metrics were useful at predicting the 25th, 50th, 75th or 95th quantile of woody cover distribution.

Results

Grassland proportion and edge density were significant predictors of the woody plant potential (75th and 95th quantile). Woody cover potential was positively associated with edge density suggesting that fragmented areas (i.e., areas with high number of edges) maintained higher woody cover, while grassland proportion was negatively associated with woody plant potential.

Conclusion

We propose that in addition to a lack of fire, fragmented landscapes may facilitate further woodland expansion by reducing natural land and restricting grasslands to smaller, less connected patches, which can maintain higher woody cover. Given current trends in woodland expansion, special attention should be given to areas that are found within a fragmented landscape and climatically prone to woodland expansion.
  相似文献   

20.

Context

Tropical forest regeneration is increasingly prominent as agro-pastoral lands are abandoned. Regeneration is characterised as favouring ‘marginal’ lands; however, observations of its drivers are often coarse or simple, leaving doubt as to spatial dynamics and causation.

Objectives

We quantified the spatial dynamics of forest regeneration relative to marginality and remnant forest cover in a 3000 km2 pastoral region in northern tropical Australia.

Methods

Classification and regression trees related the extent and distribution of regeneration to soil agricultural potential, land-cover history, terrain slope, distance to primary forest, and primary forest fragment size, as defined by aerial photography.

Results

Secondary forest extent and distribution overwhelmingly reflect the proximity and size of primary forest fragments. Some 85 % of secondary forest area occurs <1 km of primary forest, and 86 % of secondary forest patches >50 ha are <400 m from primary forest and coincident with historic primary forest fragments. Where primary forest fragments are >8.5 ha, secondary forest area declines less rapidly with increasing distance from primary forest up to 1.5 km. Marginality inferred by soil potential and slope had no bearing on regeneration, except at the coarsest of spatial scales where regeneration is a proxy for primary forest cover.

Conclusion

Findings underline the need to conserve even modest rainforest patches as propagule reservoirs enabling regeneration. Marginality per se may have a limited role in regeneration. As most secondary forest was an extension of primary forest, its unique conservation value relative to that of primary forest may likewise merit reconsideration.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号