首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

In a global context of erosion of biodiversity, the current environmental policy in Europe is oriented towards the creation and the preservation of ecological networks for wildlife. However, most of the management guidelines arose from a structural landscape diagnostic without truly taking into consideration species’ needs.

Objectives

We tested whether and how landscape elements influence the functional connectivity of landscapes for a forest specialist species, the European pine marten (Martes martes), in Northeastern France.

Methods

We collected pine marten scats and tissues from 13 evenly distributed study sites across the whole study area in order to test several types of barriers such as highways, waterways, and open agricultural fields. We crossed the results of several methods: spatial autocorrelation analysis, causal modelling framework, and clustering methods.

Results

The study indicates significant genetic differentiation among the sampling sites. A signal of isolation by distance was detected but disappeared after partialling out landscape or barrier resistance. The only model that was fully supported by causal modelling was the one identifying waterways as the main driver of genetic differentiation. Moreover, clustering analyses indicated the presence of genetic clusters, suggesting that pine marten spatial genetic pattern could be explained by the presence of waterways but also by their reluctance to cross open fields.

Conclusions

The current ecological network could thus be improved by increasing permeability of waterways, in particular navigation canals, and by maintaining and restoring forested corridors in agricultural plains.
  相似文献   

2.

Context

Barriers to dispersal influence the ability of individuals to expand into new areas and can ultimately define success of reintroduction programs. American marten (Martes americana) were reintroduced to the Upper Peninsula of Michigan, USA, from multiple, genetically differentiated source populations from 1955 to 1992. Previous research found multiple genetic clusters near release sites with little admixing, suggesting barriers to dispersal exist.

Objectives

We sought to identify whether the contact zones between genetic clusters coincided with landscape features hypothesized to influence M. americana dispersal. We also investigated whether the degree of landscape contiguity within each genetic cluster differed among clusters.

Methods

We mapped cluster boundaries in M. americana genetic assignment probabilities and used correlation length as a measure of landscape contiguity between genetic clusters. We then evaluated the effects of land cover and roads on spatial genetic structure using a spatial autoregressive model.

Results

We found that gene flow was facilitated by contiguous coniferous forest and low incidence of roads. However, the strength of those relationships varied by genetic cluster. Contact zones among some genetic clusters spatially coincided with areas of high road and low conifer contiguity, compared to within-clusters.

Conclusions

In contrast to landscape genetic analyses focused on identifying barriers to gene flow, we incorporated methods that are relatively novel in landscape genetics to quantify how landscape contiguity influences spatial genetic structure. Using this method we were able to identify landscape barriers to dispersal at the genetic cluster boundaries for a reintroduced species distributed continuously across the landscape.
  相似文献   

3.

Context

Dispersal is essential for species persistence and landscape genetic studies are valuable tools for identifying potential barriers to dispersal. Macaws have been studied for decades in their natural habitat, but we still have no knowledge of how natural landscape features influence their dispersal.

Objectives

We tested for correlations between landscape resistance models and the current population genetic structure of macaws in continuous rainforest to explore natural barriers to their dispersal.

Methods

We studied scarlet macaws (Ara macao) over a 13,000 km2 area of continuous primary Amazon rainforest in south-eastern Peru. Using remote sensing imagery from the Carnegie Airborne Observatory, we constructed landscape resistance surfaces in CIRCUITSCAPE based on elevation, canopy height and above-ground carbon distribution. We then used individual- and population-level genetic analyses to examine which landscape features influenced gene flow (genetic distance between individuals and populations).

Results

Across the lowland rainforest we found limited population genetic differentiation. However, a population from an intermountain valley of the Andes (Candamo) showed detectable genetic differentiation from two other populations (Tambopata) located 20–60 km away (F ST = 0.008, P = 0.001–0.003). Landscape resistance models revealed that genetic distance between individuals was significantly positively related to elevation.

Conclusions

Our landscape resistance analysis suggests that mountain ridges between Candamo and Tambopata may limit gene flow in scarlet macaws. These results serve as baseline data for continued landscape studies of parrots, and will be useful for understanding the impacts of anthropogenic dispersal barriers in the future.
  相似文献   

4.

Context

Landscape fragmentation significantly affects species distributions by decreasing the number and connectivity of suitable patches. While researchers have hypothesized that species functional traits could help in predicting species distribution in a landscape, predictions should depend on the type of patches available and on the ability of species to disperse and grow there.

Objectives

To explore whether different traits can explain the frequency of grassland species (number of occupied patches) and/or their occupancy (ratio of occupied to suitable patches) across a variety of patch types within a fragmented landscape.

Methods

We sampled species distributions over 1300 grassland patches in a fragmented landscape of 385 km2 in the Czech Republic. Relationships between functional traits and species frequency and occupancy were tested across all patches in the landscape, as well as within patches that shared similar management, wetness, and isolation.

Results

Although some traits predicting species frequency also predicted occupancy, others were markedly different, with competition- and dispersal-related traits becoming more important for occupancy. Which traits were important differed for frequency and occupancy and also differed depending on patch management, wetness, and isolation.

Conclusions

Plant traits can provide insight into plant distribution in fragmented landscapes and can reveal specific abiotic, biotic, and dispersal processes affecting species occurrence in a patch type. However, the importance of individual traits depends on the type of suitable patches available within the landscape.
  相似文献   

5.

Context

Amphibian metapopulations have become increasingly fragmented in the Midwestern United States, with wetland-breeding salamanders being especially dependent on intact, high-quality forested landscapes. However, the degree to which amphibian populations are isolated, the factors that influence dispersal and, ultimately, functional connectivity remain areas in need of investigation.

Objectives and methods

We combined population demographic and genetic approaches to assess how a landscape fragmented by agriculture influences functional connectivity and metapopulation dynamics of a locally threatened salamander (Ambystoma jeffersonianum).

Results

We found that the allelic richness and heterozygosity of this species was significantly related to the level of connectivity with other occupied breeding wetlands and that decreased connectivity resulted in increased genetic differentiation. We also found that effective population size appears to be declining and, while correlative, our focal landscape has experienced significant losses of forested upland habitats and potential wetland breeding habitats over the last 200 years.

Conclusions

By combining population and landscape genetic analyses with an assessment of regional wetland occupancy, our study has uniquely synthesized genetic and metapopulation processes, while also incorporating the effects of the landscape matrix on dispersal, connectivity, and population differentiation. The significant relationship between connectivity with heterozygosity, allelic richness, and genetic divergence observed in this study reinforces empirical observations of long distance dispersal and movements in ambystomatid salamanders. However, our results show that protection of core habitat around isolated wetlands may not sufficiently minimize genetic differentiation among populations and preserve critical genetic diversity that may be essential for the long-term persistence of local populations.
  相似文献   

6.

Context

Multispecies and multiscale habitat suitability models (HSM) are important to identify the environmental variables and scales influencing habitat selection and facilitate the comparison of closely related species with different ecological requirements.

Objectives

This study explores the multiscale relationships of habitat suitability for the pine (Martes martes) and stone marten (M. foina) in northern Spain to evaluate differences in habitat selection and scaling, and to determine if there is habitat niche displacement when both species coexist.

Methods

We combined bivariate scaling and maximum entropy modeling to compare the multiscale habitat selection of the two martens. To optimize the HSM, the performance of three sampling bias correction methods at four spatial scales was explored. HSMs were compared to explore niche differentiation between species through a niche identity test.

Results

The comparison among HSMs resulted in the detection of a significant niche divergence between species. The pine marten was positively associated with cooler mountainous areas, low levels of human disturbance, high proportion of natural forests and well-connected forestry plantations, and medium-extent agroforestry mosaics. The stone marten was positively related to the density of urban areas, the proportion and extensiveness of croplands, the existence of some scrub cover and semi-continuous grasslands.

Conclusions

This study outlines the influence of the spatial scale and the importance of the sampling bias corrections in HSM, and to our knowledge, it is the first comparing multiscale habitat selection and niche divergence of two related marten species. This study provides a useful methodological framework for multispecies and multiscale comparatives.
  相似文献   

7.
8.

Context

Woodland and agricultural expansion are major causes of grassland fragmentation. Fire and rainfall play important roles in maintaining grasslands, however, fire activity has been reduced in fragmented landscapes.

Objectives

Quantify the degree to which basic landscape fragmentation metrics could be used as drivers of woody cover potential.

Methods

Woody plant percent cover was calculated between 2004 and 2008 at?>?2000 sites. At each site, we calculated these fragmentation metrics for grassland cover type (classified by the National Land Cover Database); # patches, landscape proportion, edge density, largest patch index, effective mesh size and patch cohesion index within 3 circular areas (10 km2, 360 km2 and 3600 km2) surrounding the sampling site. A quantile regression was performed to identify which metrics were useful at predicting the 25th, 50th, 75th or 95th quantile of woody cover distribution.

Results

Grassland proportion and edge density were significant predictors of the woody plant potential (75th and 95th quantile). Woody cover potential was positively associated with edge density suggesting that fragmented areas (i.e., areas with high number of edges) maintained higher woody cover, while grassland proportion was negatively associated with woody plant potential.

Conclusion

We propose that in addition to a lack of fire, fragmented landscapes may facilitate further woodland expansion by reducing natural land and restricting grasslands to smaller, less connected patches, which can maintain higher woody cover. Given current trends in woodland expansion, special attention should be given to areas that are found within a fragmented landscape and climatically prone to woodland expansion.
  相似文献   

9.

Context

Anthropogenic activities readily result in the fragmentation of habitats such that species persistence increasingly depends on their ability to disperse. However, landscape features that enhance or limit individual dispersal are often poorly understood. Landscape genetics has recently provided innovative solutions to evaluate landscape resistance to dispersal.

Objectives

We studied the dispersal of the common meadow brown butterfly, Maniola jurtina, in agricultural landscapes, using a replicated study design and rigorous statistical analyses. Based on existing behavioral and life history research, we hypothesized that the meadow brown would preferentially disperse through its preferred grassy habitats (meadows and road verges) and avoid dispersing through woodlands and the agricultural matrix.

Methods

Samples were collected in 18 study landscapes of 5 × 5 km in three contrasting agricultural French regions. Using circuit theory, least cost path and transect-based methods, we analyzed the effect of the landscape on gene flow separately for each sex.

Results

Analysis of 1681 samples with 6 microsatellites loci revealed that landscape features weakly influence meadow brown butterfly gene flow. Gene flow in both sexes appeared to be weakly limited by forests and arable lands, whereas grasslands and grassy linear elements (road verges) were more likely to enhance gene flow.

Conclusion

Our results are consistent with the hypothesis of greater dispersal through landscape elements that are most similar to suitable habitat. Our spatially replicated landscape genetics study allowed us to detect subtle landscape effects on butterfly gene flow, and these findings were reinforced by consistent results across analytical methods.
  相似文献   

10.

Context

Increasing demands on land for agriculture have resulted in large-scale clearance and fragmentation of forests globally. In fragmented landscapes, species that tolerate or exploit the matrix will persist, while those that do not, frequently decline. Knowledge of matrix use is therefore critical to predicting extinction proneness of species in modified landscapes and defining the value of land for conservation management.

Objectives

In a fragmented landscape consisting of seven remnant patches surrounded by agricultural land and a large Eucalyptus forest, we explored (i) population connectivity of common ringtail possums, Pseudocheirus peregrinus, to determine the permeability of the agricultural matrix, and (ii) genetic consequences of forest fragmentation.

Methods

238 common ringtail possums were screened at 14 microsatellite markers and analysed using a range of genetic techniques.

Results

We observed significant genetic differentiation among all patches and limited dispersal through the agricultural matrix, even between neighbouring patches. Consequences of this were a six- to ten-fold increase in genetic dissimilarity over an equivalent geographic distance across patches compared with sites in the continuous forest and a significant reduction in genetic diversity, particularly in patches that were geographically more isolated from their neighbours.

Conclusions

We conclude that the agricultural matrix has a number of characteristics that make it unsuitable for facilitating movement of possums through this landscape, and recommend several management strategies to mitigate the impacts of fragmentation on this and other arboreal species for their conservation.
  相似文献   

11.

Context

The classical theory of island biogeography explains loss of species in fragmented landscapes as an effect of remnant patch size and isolation. Recently this has been challenged by the habitat amount and habitat continuum hypotheses, according to which persistence in modified landscapes is related to total habitat amount rather than habitat configuration or the ability of species to use all habitats to varying degrees. Distinguishing between these theories is essential for effective conservation planning in modified landscapes.

Objective

Identify which factors of habitat type, amount and configuration predict the persistence of a keystone woodland specialist, the eastern bettong Bettongia gaimardi, in a fragmented landscape.

Method

In the Midlands region of Tasmania we carried out camera surveys at 62 sites in summer and winter. We included habitat and landscape features to model whether habitat amount or patch size and isolation influenced the presence of the eastern bettong, and to measure effects of habitat quality.

Results

Habitat amount within a 1 km buffer was a better predictor of occupancy than patch size and isolation. Occupancy was also affected by habitat quality, indicated by density of regenerating stems.

Conclusion

Our results support the habitat amount hypothesis as a better predictor of presence. For a species that is able to cross the matrix between remnant patches and utilise multiple patches, the island biogeography concept does not explain habitat use in fragmented landscapes. Our results emphasize the value of small remnant patches for conservation of the eastern bettong, provided those patches are in good condition.
  相似文献   

12.

Context

Spatial variation in abundance is influenced by local- and landscape-level environmental variables, but modeling landscape effects is challenging because the spatial scales of the relationships are unknown. Current approaches involve buffering survey locations with polygons of various sizes and using model selection to identify the best scale. The buffering approach does not acknowledge that the influence of surrounding landscape features should diminish with distance, and it does not yield an estimate of the unknown scale parameters.

Objectives

The purpose of this paper is to present an approach that allows for statistical inference about the scales at which landscape variables affect abundance.

Methods

Our method uses smoothing kernels to average landscape variables around focal sites and uses maximum likelihood to estimate the scale parameters of the kernels and the effects of the smoothed variables on abundance. We assessed model performance using a simulation study and an avian point count dataset.

Results

The simulation study demonstrated that estimators are unbiased and produce correct confidence interval coverage except in the rare case in which there is little spatial autocorrelation in the landscape variable. Canada warbler abundance was more highly correlated with site-level measures of NDVI than landscape-level NDVI, but the reverse was true for elevation. Canada warbler abundance was highest when elevation in the surrounding landscape, defined by an estimated Gaussian kernel, was between 1300 and 1400 m.

Conclusions

Our method provides a rigorous way of formally estimating the scales at which landscape variables affect abundance, and it can be embedded within most classes of statistical models.
  相似文献   

13.

Context

Protected areas are a cornerstone of the global strategy for conserving biodiversity, and yet their efficacy in comparison to unprotected areas is rarely tested. In the highly fragmented forests of temperate regions, landscape context and forest history may be more important than protection status for plant species diversity.

Objectives

To determine whether there are differences in plant diversity between protected areas and private lands while controlling for landscape context, forest age, and other important factors.

Methods

We used a database of 156 one-hectare forest plots distributed over 120,000 km2 in the fragmented forests of southern Ontario to test whether protected areas and private forests differed in native species richness, relative abundance of exotic species, and the probability of finding species of conservation concern.

Results

Plots with more forest on the surrounding landscape had higher native species richness, lower abundance of exotic species, and greater probability of supporting at least one species of conservation concern. Young forests tended to have higher abundance of exotics, and were less likely to support species of conservation concern. Surprisingly, privately owned forests had greater native species richness and were more likely to support species of conservation concern once these other factors were accounted for. In addition, there were significant interactions between ownership type, forest history, and landscape context.

Conclusions

Our results highlight the importance of privately owned forests in this region, and the need to consider forest history and landscape context when comparing the efficacy of protected areas versus private land for sustaining biodiversity.
  相似文献   

14.

Context

A recent hypothesis, the habitat amount hypothesis, predicts that the total amount of habitat in the landscape can replace habitat patch size and isolation in studies of species richness in fragmented landscapes.

Objectives

To test the habitat amount hypothesis by first evaluating at which spatial scale the relationship between species richness in equal-sized sample quadrats and habitat amount was the strongest, and then test the importance of spatial configuration of habitat—measured as local patch size and isolation—when habitat amount was taken into account.

Methods

A quasi-experimental setup with 20 habitat patches of dry calcareous grasslands varying in patch size, patch isolation and habitat amount at the landscape scale was established in the inner Oslo fjord, Southern Norway. We recorded species richness of habitat specialists of vascular plants in equal-sized sample quadrats and analysed the relationship between species richness, habitat amount in the landscape and patch size and isolation.

Results

Although the total amount of habitat in a 3 km-radius around the local patch was positively related to species richness in the sample quadrats, local patch size had an additional positive effect, and the effect of patch size was higher when the amount of habitat within the 3 km-radius was high than when it was low.

Conclusions

In our study system of specialist vascular plants in dry calcareous grasslands, we do not find support for the habitat amount hypothesis.
  相似文献   

15.

Context

Identifying the drivers shaping biological assemblages in fragmented tropical landscapes is critical for designing effective conservation strategies. It is still unclear, however, whether tropical biodiversity is more strongly affected by forest loss, by its spatial configuration or by matrix composition across different spatial scales.

Objectives

Assessing the relative influence of forest patch and landscape attributes on dung beetle assemblages in the fragmented Lacandona rainforest, Mexico.

Methods

Using a multimodel inference approach we tested the relative impact of forest patch size and landscape forest cover (measures of forest amount at the patch and landscape scales, respectively), patch shape and isolation (forest configuration indices at the patch scale), forest fragmentation (forest configuration index at the landscape scale), and matrix composition on the diversity, abundance and biomass of dung beetles.

Results

Patch size, landscape forest cover and matrix composition were the best predictors of dung beetle assemblages. Species richness, beetle abundance, and biomass decreased in smaller patches surrounded by a lower percentage of forest cover, and in landscapes dominated by open-area matrices. Community evenness also increased under these conditions due to the loss of rare species.

Conclusions

Forest loss at the patch and landscape levels and matrix composition show a larger impact on dung beetles than forest spatial configuration. To preserve dung beetle assemblages, and their key functional roles in the ecosystem, conservation initiatives should prioritize a reduction in deforestation and an increase in the heterogeneity of the matrix surrounding forest remnants.
  相似文献   

16.

Context

Jack pine (Pinus banksiana)-dominated ecosystems of northern Lower Michigan are the primary breeding habitat for the federally endangered Kirtland’s warbler (Setophaga kirtlandii, KW). Historically, young stands used by KW were produced by stand-replacing wildfires, but fire suppression has necessitated the management of jack pine plantations for KW habitat since the 1970s. Effects of this long-term management on landscape age heterogeneity have previously not been quantified.

Objectives

We hypothesized that forest management has altered the spatial and temporal distribution of jack pine-dominated ecosystems beyond their historic range of variability.

Methods

By developing a diameter-age relationship for jack pine, we estimated ages of pre-European settlement trees found in General Land Office survey notes. We compared pre-European and current landscapes using geostatistical modeling of survey notes, and landscape metrics to quantify changes in pattern.

Results

Three KW management-based age classes (<20, 21–50, >50 years) are now more evenly distributed (31, 39, and 30 %, respectively) compared to the pre-European distribution (5, 19, 76 %) with little variability over time. Landscape metrics suggest the current landscape is younger and more fragmented than the pre-European landscape. These changes indicate restriction of the historic range of age variability, largely due to conversion of older jack pine stands to young KW habitat plantations.

Conclusions

Management has met KW population objectives, but has altered the temporal variability of the landscape’s age structure. Pre-European settlement patterns of stand-ages may provide a foundation for an ecosystem-based management plan for the region that supports both KW and the ecosystems upon which they depend.
  相似文献   

17.

Context

The history of the landscape directly affects biotic assemblages, resulting in time lags in species response to disturbances. In highly fragmented environments, this phenomenon often causes extinction debts. However, few studies have been carried out in urban settings.

Objectives

To determine if there are time lags in the response of temperate natural grasslands to urbanization. Does it differ for indigenous species and for species indicative of disturbance and between woody and open grasslands? Do these time lags change over time? What are the potential landscape factors driving these changes? What are the corresponding vegetation changes?

Methods

In 1995 and 2012 vegetation sampling was carried out in 43 urban grassland sites. We calculated six urbanization and landscape measures in a 500 m buffer area surrounding each site for 1938, 1961, 1970, 1994, 1999, 2006, and 2010. We used generalized linear models and model selection to determine which time period best predicted the contemporary species richness patterns.

Results

Woody grasslands showed time lags of 20–40 years. Contemporary open grassland communities were, generally, associated with more contemporary landscapes. Altitude and road network density of natural areas were the most frequent predictors of species richness. The importance of the predictors changed between the different models. Species richness, specifically, indigenous herbaceous species, declined from 1995 to 2012.

Conclusions

The history of urbanization affects contemporary urban vegetation assemblages. This indicates potential extinction debts, which have important consequences for biodiversity conservation planning and sustainable future scenarios.
  相似文献   

18.

Context

Landscape heterogeneity (the composition and configuration of matrix habitats) plays a major role in shaping species communities in wooded-agricultural landscapes. However, few studies consider the influence of different types of semi-natural and linear habitats in the matrix, despite their known ecological value for biodiversity.

Objective

To investigate the importance of the composition and configuration of matrix habitats for woodland carabid communities and identify whether specific landscape features can help to maintain long-term populations in wooded-agricultural environments.

Methods

Carabids were sampled from woodlands in 36 tetrads of 4 km2 across southern Britain. Landscape heterogeneity including an innovative representation of linear habitats was quantified for each tetrad. Carabid community response was analysed using ordination methods combined with variation partitioning and additional response trait analyses.

Results

Woodland carabid community response was trait-specific and better explained by simultaneously considering the composition and configuration of matrix habitats. Semi-natural and linear features provided significant refuge habitat and functional connectivity. Mature hedgerows were essential for slow-dispersing carabids in fragmented landscapes. Species commonly associated with heathland were correlated with inland water and woodland patches despite widespread heathland conversion to agricultural land, suggesting that species may persist for some decades when elements representative of the original habitat are retained following landscape modification.

Conclusions

Semi-natural and linear habitats have high biodiversity value. Landowners should identify features that can provide additional resources or functional connectivity for species relative to other habitat types in the landscape matrix. Agri-environment options should consider landscape heterogeneity to identify the most efficacious changes for biodiversity.
  相似文献   

19.

Context

In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes.

Objectives

To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon.

Methods

We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type.

Results

We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types.

Conclusions

Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.
  相似文献   

20.

Context

Reestablishing foundational plant species through aerial seeding is an essential yet challenging step for restoring the vast semiarid landscapes impacted by plant invasions and wildfire-regime shifts. A key component of the challenge stems from landscape variability and its effects on plant recovery.

Objectives

We assessed landscape correlates, thresholds, and tipping points for sagebrush presence from fine-scale sampling across a large, heterogeneous area burned the previous year, where we were able to quantify soil surface features that are typically occluded yet can strongly affect recovery patterns.

Methods

Hypothesis testing and binary-decision trees were used to evaluate factors affecting initial sagebrush establishment, using 2171 field plots (totaling?~?2,000,000 m2 sampled) over a 113,000-ha region.

Results

Sagebrush established in 50% of plots where it was seeded, a?>?12-fold greater establishment frequency than in unseeded areas. Sagebrush establishment was enhanced in threshold-like ways by elevation (>?1200 m ASL), topographic features that alter heatload and soil water, and by soil-surface features such as “fertile islands” that bore the imprint of pre-fire sagebrush. Sagebrush occupancy had a negative, linear relationship with exotic-annual grass cover and parabolic relationship with perennial bunchgrasses (optimal at 40% cover).

Conclusions

Our approach revealed interactive, ecological relationships such as novel soil-surface effects on first year establishment of sagebrush across the burned landscape, and identified “hot spots” for recovery. The approach could be expanded across sites and years to provide the information needed to explain past seeding successes or failures, and in designing treatments at the landscape scale.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号