首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

The classical theory of island biogeography explains loss of species in fragmented landscapes as an effect of remnant patch size and isolation. Recently this has been challenged by the habitat amount and habitat continuum hypotheses, according to which persistence in modified landscapes is related to total habitat amount rather than habitat configuration or the ability of species to use all habitats to varying degrees. Distinguishing between these theories is essential for effective conservation planning in modified landscapes.

Objective

Identify which factors of habitat type, amount and configuration predict the persistence of a keystone woodland specialist, the eastern bettong Bettongia gaimardi, in a fragmented landscape.

Method

In the Midlands region of Tasmania we carried out camera surveys at 62 sites in summer and winter. We included habitat and landscape features to model whether habitat amount or patch size and isolation influenced the presence of the eastern bettong, and to measure effects of habitat quality.

Results

Habitat amount within a 1 km buffer was a better predictor of occupancy than patch size and isolation. Occupancy was also affected by habitat quality, indicated by density of regenerating stems.

Conclusion

Our results support the habitat amount hypothesis as a better predictor of presence. For a species that is able to cross the matrix between remnant patches and utilise multiple patches, the island biogeography concept does not explain habitat use in fragmented landscapes. Our results emphasize the value of small remnant patches for conservation of the eastern bettong, provided those patches are in good condition.
  相似文献   

2.

Context

Wild medium-sized ungulate populations are recovering in many countries of the Northern Hemisphere due to abandonment of rural areas but also due to the translocation of native and exotic ungulates for game hunting.

Objectives

To assess the role of landscape connectivity, habitat suitability and interspecific interactions driving the simultaneous range expansion of two wild ungulates, one native (Iberian ibex, Capra pyrenaica) and one exotic species (Barbary sheep, Ammotragus lervia), in southeastern Spain.

Methods

We reconstructed the expansion process of the Iberian ibex and the Barbary sheep in southeastern Spain for the period 1975–2009 by means of Local Ecological Knowledge and tested the role of habitat suitability, landscape connectivity and interspecific competition during the expansion process by means of GLMM. Habitat suitability was assessed by means of ecological niche modeling and landscape connectivity was represented by competing resistance surface dispersal models.

Results

Our results show that at the landscape scale both species are ecologically very similar, although the Iberian ibex is more specialized in less transformed landscapes. Landscape connectivity was the main driver of the colonization process, followed by habitat suitability. From a connectivity point of view, both species showed a coarse perception of the landscape, recognizing three main use types: natural, agricultural and human. Major linear infrastructures do not affect the colonization process. Our colonization models also suggest a negative interaction of the Iberian ibex on the Barbary sheep.

Conclusions

The exotic Barbary sheep and the native Iberian ibex are two ungulate species very similar ecologically whose simultaneous expansion process in southeastern Spain are driven by landscape connectivity followed by habitat suitability. In addition, the Iberian ibex affects negatively the colonization ability of the Barbary sheep. Overall, our work deepens our understanding on two pressing issues simultaneously: (i) controls of the range expansion of ungulates at the landscape scale and (ii) how a native and an introduced species interact during their expansion process.
  相似文献   

3.

Context

Although small isolated habitat patches may not be able to maintain a minimum viable population, small patches that are structurally isolated may be functionally connected if individuals can cross the gaps between them, in which case, their areas could be added to form a larger habitat patch, eventually surpassing the size threshold for holding a viable population.

Objectives

We studied whether models based on the size and isolation of habitat patches could be used to predict the distribution of the Chestnut-throated Huet-Huet (Pteroptochos castaneus) in fragmented landscapes of the coastal range of the Maule region, central Chile.

Methods

We selected seven 10,000-ha landscapes (8.4–70.7% forest cover). For each habitat patch we made 18 predictions of the presence of the species based on the combination of two thresholds: three critical patch sizes for maintaining a viable population (62.5, 125 and 250 ha) and six critical isolation distances between patches (0, 10, 50, 100, 150 and 200 m). We used playbacks in 59 sampling points to estimate the species’ presence/absence. We used logistic regressions to test whether the output of the patch-matrix models could explain part of the variation in the presence of Pteroptochos castaneus.

Results

The best predictions for the presence of P. castaneus were obtained with the most conservative scenarios (125–250 ha to 0–10 m), including a positive effect of the understory cover and a lack of effect of the forest type (native or exotic).

Conclusions

Our findings suggest that the long term persistence of P. castaneus may depend on the existence of large and/or very connected forest tracts.
  相似文献   

4.

Context

Urban landscapes are a mixture of built structures, human-altered vegetation, and remnant semi-natural areas. The spatial arrangement of abiotic and biotic conditions resulting from urbanization doubtless influences the establishment and spread of non-native species in a city.

Objectives

We investigated the effects of habitat structure, thermal microclimates, and species coexistence on the spread of a non-native lizard (Anolis cristatellus) in the Miami metropolitan area of South Florida (USA).

Methods

We used transect surveys to estimate lizard occurrence and abundance on trees and to measure vegetation characteristics, and we assessed forest cover and impervious surface using GIS. We sampled lizard body temperatures, habitat use, and relative abundance at multiple sites.

Results

At least one of five Anolis species occupied 79 % of the 1035 trees surveyed in primarily residential areas, and non-native A. cristatellus occupied 25 % of trees. Presence and abundance of A. cristatellus were strongly associated with forest patches, dense vegetation, and high canopy cover, which produced cooler microclimates suitable for this species. Presence of A. cristatellus was negatively associated with the ecologically similar non-native A. sagrei, resulting in reduced abundance and a shift in perch use of A. cristatellus.

Conclusions

The limited spread of A. cristatellus in Miami over 35 years is due to the patchy, low-density distribution of wooded habitat, which limits dispersal by diffusion. The presence of congeners may also limit spread. Open habitats—some parks, yards and roadsides—contain few if any A. cristatellus, and colonization of isolated forest habitat appears to depend on human-mediated dispersal.
  相似文献   

5.

Context

Interactions between landscape-scale processes and fine-grained habitat heterogeneity are usually invoked to explain species occupancy in fragmented landscapes. In variegated landscapes, however, organisms face continuous variation in micro-habitat features, which makes necessary to consider ecologically meaningful estimates of habitat quality at different spatial scales.

Objectives

We evaluated the spatial scales at which forest cover and tree quality make the greatest contribution to the occupancy of the long-horned beetle Microplophorus magellanicus (Coleoptera: Cerambycidae) in a variegated forest landscape.

Methods

We used averaged data of tree quality (as derived from remote sensing estimates of the decay stage of single trees) and spatially independent pheromone-baited traps to model the occurrence probability as a function of multiple cross-scale combinations between forest cover and tree quality (with scales ranging between 50 and 400 m).

Results

Model support and performance increased monotonically with the increasing scale at which tree quality was measured. Forest cover was not significant, and did not exhibit scale-specific effects on the occurrence probability of M. magellanicus. The interactive effect between tree quality and forest cover was stronger than the independent (additive) effects of tree quality and particularly forest cover. Significant interactions included tree quality measured at spatial scales ≥200 m, but cross-scale interactions occurred only in four of the seven best-supported models.

Conclusions

M. magellanicus respond to the high-quality trees available in the landscape rather than to the amount of forest per se. Conservation of viable metapopulations of M. magellanicus should consider the quality of trees at spatial scales >200 m.
  相似文献   

6.

Context

Multispecies and multiscale habitat suitability models (HSM) are important to identify the environmental variables and scales influencing habitat selection and facilitate the comparison of closely related species with different ecological requirements.

Objectives

This study explores the multiscale relationships of habitat suitability for the pine (Martes martes) and stone marten (M. foina) in northern Spain to evaluate differences in habitat selection and scaling, and to determine if there is habitat niche displacement when both species coexist.

Methods

We combined bivariate scaling and maximum entropy modeling to compare the multiscale habitat selection of the two martens. To optimize the HSM, the performance of three sampling bias correction methods at four spatial scales was explored. HSMs were compared to explore niche differentiation between species through a niche identity test.

Results

The comparison among HSMs resulted in the detection of a significant niche divergence between species. The pine marten was positively associated with cooler mountainous areas, low levels of human disturbance, high proportion of natural forests and well-connected forestry plantations, and medium-extent agroforestry mosaics. The stone marten was positively related to the density of urban areas, the proportion and extensiveness of croplands, the existence of some scrub cover and semi-continuous grasslands.

Conclusions

This study outlines the influence of the spatial scale and the importance of the sampling bias corrections in HSM, and to our knowledge, it is the first comparing multiscale habitat selection and niche divergence of two related marten species. This study provides a useful methodological framework for multispecies and multiscale comparatives.
  相似文献   

7.
8.

Context

Methods for measuring restoration success that include functional connectivity between species’ populations are rare in landscape ecology and restoration practices. We developed an approach that analyzes connectivity between populations of target species and their dispersal probabilities to assess restoration success based on easily accessible input data. Applying this method to landscape development scenarios can help optimize restoration planning.

Objectives

We developed an assessment for restoration success and restoration planning based on functional connectivity between species’ populations and spatially explicit scenarios. The method was used in a case study to test its applicability.

Methods

Based on data on available habitat, species’ occurrence and dispersal ranges, connectivity metrics and dispersal probabilities for target species are calculated using the software Conefor Sensinode. The metrics are calculated for scenarios that reflect possible changes in the landscape to provide a basis for future restoration planning. We applied this approach to floodplain meadows along the Upper Rhine for four plant species and three future scenarios.

Results

In the case study, habitats of the target species were poorly connected. Peucedanum officinale and Sanguisorba officinalis were more successful in recolonizing new habitats than Iris spuria and Serratula tinctoria. The scenarios showed that restoration of species-rich grassland was beneficial for dispersal of the target species. As expected in the agriculturally dominated study area, restoration of former arable land significantly increased dispersal probabilities.

Conclusions

In the case study, the developed approach was easily applicable and provided reasonable results. Its implementation will be helpful in decision-making for future restoration planning.
  相似文献   

9.

Context

No single model can capture the complex species range dynamics under changing climates—hence the need for a combination approach that addresses management concerns.

Objective

A multistage approach is illustrated to manage forested landscapes under climate change. We combine a tree species habitat model—DISTRIB II, a species colonization model—SHIFT, and knowledge-based scoring system—MODFACs, to illustrate a decision support framework.

Methods

Using shortleaf pine (Pinus echinata) and sugar maple (Acer saccharum) as examples, we project suitable habitats under two future climate change scenarios (harsh, Hadley RCP8.5 and mild CCSM RCP4.5 at ~2100) at a resolution of 10 km and assess the colonization likelihood of the projected suitable habitats at a 1 km resolution; and score biological and disturbance factors for interpreting modeled outcomes.

Results

Shortleaf pine shows increased habitat northward by 2100, especially under the harsh scenario of climate change, and with higher possibility of natural migration confined to a narrow region close to the current species range boundary. Sugar maple shows decreased habitat and has negligible possibility of migration within the US due to a large portion of its range being north of the US border. Combination of suitable habitats with colonization likelihoods also allows for identification of potential locations appropriate for assisted migration, should that be deemed feasible.

Conclusion

The combination of these multiple components using diverse approaches leads to tools and products that may help managers make management decisions in the face of a changing climate.
  相似文献   

10.

Context

Agroecosystems are dynamic, with yearly changing proportions of crops. Explicit consideration of this temporal heterogeneity is required to decipher population and community patterns but remains poorly studied.

Objectives

We evaluated the impact on the activity-density of two dominant carabid species (Poecilus cupreus and Anchomenus dorsalis) of (1) local crop, current year landscape composition, and their interaction, and (2) inter-annual changes in landscape composition due to crop rotations.

Methods

Carabids were sampled using pitfall-traps in 188 fields of winter cereals and oilseed rape in three agricultural areas of western France contrasting in their spatial heterogeneity. We summarized landscape composition in the current and previous years in a multi-scale perspective, using buffers of increasing size around sampling locations.

Results

Both species were more abundant in oilseed rape, and in landscapes with a higher proportion of oilseed rape in the previous year. P. cupreus abundance was negatively influenced by oilseed rape proportion in the current year landscape in winter cereals and positively by winter cereal proportion in oilseed rape. A. dorsalis was globally impacted at finer scales than P. cupreus.

Conclusions

Resource concentration and dilution-concentration processes jointly appear to cause transient dynamics of population abundance and distribution among habitat patches. Inter-patch movements across years appear to be key drivers of carabids’ survival and distribution, in response to crop rotation. Therefore, the explicit consideration of the spatiotemporal dynamics of landscape composition can allow future studies to better evidence ecological processes behind observed species patterns and help developing new management strategies.
  相似文献   

11.

Context

Landscape heterogeneity (the composition and configuration of matrix habitats) plays a major role in shaping species communities in wooded-agricultural landscapes. However, few studies consider the influence of different types of semi-natural and linear habitats in the matrix, despite their known ecological value for biodiversity.

Objective

To investigate the importance of the composition and configuration of matrix habitats for woodland carabid communities and identify whether specific landscape features can help to maintain long-term populations in wooded-agricultural environments.

Methods

Carabids were sampled from woodlands in 36 tetrads of 4 km2 across southern Britain. Landscape heterogeneity including an innovative representation of linear habitats was quantified for each tetrad. Carabid community response was analysed using ordination methods combined with variation partitioning and additional response trait analyses.

Results

Woodland carabid community response was trait-specific and better explained by simultaneously considering the composition and configuration of matrix habitats. Semi-natural and linear features provided significant refuge habitat and functional connectivity. Mature hedgerows were essential for slow-dispersing carabids in fragmented landscapes. Species commonly associated with heathland were correlated with inland water and woodland patches despite widespread heathland conversion to agricultural land, suggesting that species may persist for some decades when elements representative of the original habitat are retained following landscape modification.

Conclusions

Semi-natural and linear habitats have high biodiversity value. Landowners should identify features that can provide additional resources or functional connectivity for species relative to other habitat types in the landscape matrix. Agri-environment options should consider landscape heterogeneity to identify the most efficacious changes for biodiversity.
  相似文献   

12.

Context

Conservation planning for at-risk species requires understanding of where species are likely to occur, how many individuals are likely to be supported on a given landscape, and the ability to monitor those changes through time.

Objectives

We developed a distribution model for northern spotted owls that incorporates both habitat suitability and probability of territory occupancy while accounting for interspecies competition.

Methods

We developed range-wide habitat suitability maps for two time periods (1993 and 2012) for northern spotted owls that accounted for regional differences in habitat use and home range size. We used these maps for a long-term demographic monitoring study area to assess habitat change and estimate the number of potential territories based on available habitat for both time periods. We adjusted the number of potential territories using known occupancy rates to estimate owl densities for both time periods. We evaluated our range-wide habitat suitability model using independent survey data.

Results

Our range-wide habitat maps predicted areas suitable for territorial spotted owl presence well. On the demographic study area, the amount of habitat declined 19.7% between 1993 and 2012, while our estimate of the habitat-based carrying capacity declined from 150 to 146 territories. Estimated number of occupied territories declined from 94 to 57.

Conclusions

Conservation and recovery of at-risk species depends on understanding how habitat changes over time in response to factors such as wildfire, climate change, biological invasions, and interspecies competition, and how these changes influence species distribution. We demonstrate a model-based approach that provides an effective planning tool.
  相似文献   

13.

Context

Context Bats are considered as an ecological indicator of habitat quality due to their sensitivity to human-induced ecosystem changes. Hence, we will focus the study on two indicator species of bats as a proxy to evaluate structure and composition of the landscape to analyze anthropic pressures driving changes in patterns.

Objectives

This study develops a spatially-explicit model to highlight key habitat nodes and corridors which are integral for maintaining functional landscape connectivity for bat movement. We focus on a complex mountain landscape and two bat species: greater (Rhinolophus ferrumequinum) and lesser (Rhinolophus hipposideros) horseshoe bats which are known to be sensitive to landscape composition and configuration.

Methods

Species distribution models are used to delineate high-quality foraging habitat for each species using opportunistic ultrasonic bat data. We then performed connectivity analysis combining (modelled) suitable foraging habitat and (known) roost sites. We use graph-theory and the deviation in the probability of connectivity to quantify resilience of the landscape connectivity to perturbations.

Results

Both species were confined to lowlands (<1000 m elevation) and avoided areas with high road densities. Greater horseshoe bats were more generalist than lesser horseshoe bats which tended to be associated with broadleaved and mixed forests.

Conclusions

The spatially-explicit models obtained were proven crucial for prioritizing foraging habitats, roost sites and key corridors for conservation. Hence, our results are being used by key stakeholders to help integrate conservation measures into forest management and conservation planning at the regional level. The approach used can be integrated into conservation initiatives elsewhere.
  相似文献   

14.

Context

Common species important for ecosystem restoration stand to lose as much genetic diversity from anthropogenic habitat fragmentation and climate change as rare species, but are rarely studied. Salt marshes, valuable ecosystems in widespread decline due to human development, are dominated by the foundational plant species black needlerush (Juncus roemerianus Scheele) in the northeastern Gulf of Mexico.

Objectives

We assessed genetic patterns in J. roemerianus by measuring genetic and genotypic diversity, and characterizing population structure. We examined population connectivity by delineating possible dispersal corridors, and identified landscape factors influencing population connectivity.

Methods

A panel of 19 microsatellite markers was used to genotype 576 samples from ten sites across the northeastern Gulf of Mexico from the Grand Bay National Estuarine Research Reserve (NERR) to the Apalachicola NERR. Genetic distances (FST and Dch) were used in a least cost transect analysis (LCTA) within a hierarchical model selection framework.

Results

Genetic and genotypic diversity results were higher than expected based on life history literature, and samples structured into two large, admixed genetic clusters across the study area, indicating sexual reproduction may not be as rare as predicted in this clonal macrophyte. Digitized coastal transects buffered by 500 m may represent possible dispersal corridors, and developed land may significantly impede population connectivity in J. roemerianus.

Conclusions

Results have important implications for coastal restoration and management that seek to preserve adaptive potential by sustaining natural levels of genetic diversity and conserving population connectivity. Our methodology could be applied to other common, widespread and understudied species.
  相似文献   

15.

Context

A recent hypothesis, the habitat amount hypothesis, predicts that the total amount of habitat in the landscape can replace habitat patch size and isolation in studies of species richness in fragmented landscapes.

Objectives

To test the habitat amount hypothesis by first evaluating at which spatial scale the relationship between species richness in equal-sized sample quadrats and habitat amount was the strongest, and then test the importance of spatial configuration of habitat—measured as local patch size and isolation—when habitat amount was taken into account.

Methods

A quasi-experimental setup with 20 habitat patches of dry calcareous grasslands varying in patch size, patch isolation and habitat amount at the landscape scale was established in the inner Oslo fjord, Southern Norway. We recorded species richness of habitat specialists of vascular plants in equal-sized sample quadrats and analysed the relationship between species richness, habitat amount in the landscape and patch size and isolation.

Results

Although the total amount of habitat in a 3 km-radius around the local patch was positively related to species richness in the sample quadrats, local patch size had an additional positive effect, and the effect of patch size was higher when the amount of habitat within the 3 km-radius was high than when it was low.

Conclusions

In our study system of specialist vascular plants in dry calcareous grasslands, we do not find support for the habitat amount hypothesis.
  相似文献   

16.

Context

Dispersal has important fitness consequences for individuals, populations, and species. Despite growing theoretical insights into the evolution of dispersal, its behavioral underpinnings remain empirically understudied, limiting our understanding of the extent and impact of responses to landscape-level heterogeneity of environments, and increasing the risk of inferring species-level responses from biased population sampling.

Objectives

We asked if predictable ecological variation among naturally fragmented arid waterbodies is correlated with disparate dispersal responses of populations of the desert goby Chlamydogobius eremius, which naturally inhabits two habitat “types” (permanent springs, ephemeral rivers), and different levels of hydrological connectivity (high and low) that potentially convey different costs and benefits of dispersal.

Methods

To test for possible behavioral divergence between such populations, we experimentally compared the movement behaviors (correlates of emigration and exploration) of wild-caught fish. We used two biologically relevant spatial scales to test movement relevant to different stages of the dispersal process.

Results

Behavior differed at both spatial scales, suggesting that alternative dispersal strategies enable desert gobies to exploit diverse habitat patches. However, while emigration was best predicted by the connectivity (flood risk) of fish habitats, exploration was linked to their habitat type (spring versus river).

Conclusions

Our findings demonstrate that despite a complex picture of ecological variation, key landscape factors have an overarching effect on among-population variation in dispersal traits. Implications include the maintenance of within-species variation, potentially divergent evolutionary trajectories of naturally or anthropogenically isolated populations, and the direction of future experimental studies on the ecology and evolution of dispersal behavior.
  相似文献   

17.

Context

Land-use change can reduce and isolate suitable habitat generating spatial variation in resource availability. Improving species distribution models requires a multi-scale understanding of resource requirements and species’ sensitivities to novel landscapes.

Objectives

We investigated how the spatial distribution of supplementary habitats (permanent wetlands), urbanization, water depths, and distribution of a key prey species (muskrat; Ondatra zibethicus) influence occupancy dynamics of American mink (Neovison vison). Although mink are widespread across North America and a destructive invasive species in Europe, South America, and Asia, we have a limited understanding of factors affecting their spatial distribution.

Methods

We used 6 years of presence–absence data (2007–2012) to evaluate occupancy dynamics of mink at 58–90 stream sites along an urbanization gradient in Illinois, USA. We predicted negative relationships between stream occupancy and urban land cover and distance from permanent wetlands, and positive associations with muskrat presence, water depth, and riparian zone width.

Results

Contrary to our hypothesis, stream sites closer to permanent wetlands had lower occupancy and colonization rates for mink. Occupancy and colonization rates were higher at sites with deeper water, and colonization rates were related negatively to urbanization. Mink were more likely to leave stream habitat if muskrats were not present and permanent wetlands were nearby.

Conclusion

Factors interplaying across multiple scales influenced occupancy dynamics of mink in stream habitat in a highly modified landscape. Our results highlight the importance of considering both direct measures of prey availability and the spatial distribution of supplementary habitats to improve habitat-selection models for carnivores.
  相似文献   

18.

Context

Multiple ecological drivers generate spatial patterns in species’ distributions. Changes to natural disturbance regimes can place early successional habitat specialists at an increased risk of extinction by altering landscape patterns of habitat suitability.

Objectives

We developed a series of hypotheses to evaluate the effects of landscape structure, fire history, and site-level habitat quality on site occupancy by an early successional specialist, the eastern chestnut mouse (Pseudomys gracilicaudatus).

Methods

We obtained eight years of monitoring data from 26 sites in recently burned heathland in southeast Australia. We used generalised linear models to determine which explanatory variables were related to occupancy. We also explored predictability in patterns of small mammal species co-occurrence.

Results

Landscape structure (patch area, landscape heterogeneity) was strongly related to site occupancy. Site occupancy was associated with dead shrubs in the understory and rock cover on ground layer, but was not directly influenced by recent or historical fire. Contrary to contemporary ecological theory, we found no predictable species associations in our early successional community.

Conclusions

We recommend surveys take account of landscape configuration and proximity to suitable habitat for optimal results. Fire regimes expected to promote eastern chestnut mouse population growth should encourage the retention of critical habitat features rather than be based on temporal rates of successional stages. For management to adequately account for post-disturbance patterns in early successional communities, a species-by-species, multi-scaled approach to research is necessary.
  相似文献   

19.
20.

Context

The species–area relationship (SAR) is the most ubiquitous scaling relationship in ecology, yet we still do not know how different aspects of scale affect this relationship. Scale is defined by grain, extent, and focus. Focus here pertains to whether patches or landscapes are used to derive SARs.

Objective

To explore whether altering the focal scale influences the resulting SAR. If the SAR is scale-invariant, patch-based and landscape-based SARs should be congruent.

Methods

I fit a power-law function (S = cA z) to arthropod data obtained from an experimental landscape system, in which habitat amount and configuration (clumped vs. fragmented) of red clover (Trifolium pratense) varied among plots (256 m2). The scaling coefficient (z) was compared among patch-based and landscape-based SARs for congruence.

Results

Patches gained species at a faster rate than landscapes (z = 0.37 vs. 0.26, respectively), producing domains of incongruity in the SAR. Landscape richness (S L) was greater than patch richness (S P) below 30 % habitat, but S P > S L above 60 % habitat. Landscape configuration contributed to this incongruity below 30 % habitat (fragmented S L > clumped S L), but landscape context (whether the largest patch was embedded in a fragmented or clumped landscape) was important above 60 % habitat for understanding the SAR in this domain.

Conclusions

Landscape configuration exerts both direct (<30 % habitat) and indirect (>60 % habitat) effects on the SAR. Because patch-based and landscape-based SARs may not be congruent, we should exercise care when extrapolating from patches to landscapes to make inferences about the effects of habitat loss and fragmentation on species richness.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号