首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.

Context

Animals selectively use landscapes to meet their energetic needs, and trade-offs in habitat use may depend on availability and environmental conditions. For example, habitat selection at high temperatures may favor thermal cover at the cost of reduced foraging efficiency under consistently warm conditions.

Objective

Our objective was to examine habitat selection and space use in distinct populations of moose (Alces alces). Hypothesizing that endotherm fitness is constrained by heat dissipation efficiency, we predicted that southerly populations would exhibit greater selection for thermal cover and reduced selection for foraging habitat.

Methods

We estimated individual step selection functions with shrinkage for 134 adult female moose in Minnesota, USA, and 64 in Ontario, Canada, to assess habitat selection with variation in temperature, time of day, and habitat availability. We averaged model coefficients within each site to quantify selection strength for habitats differing in forage availability and thermal cover.

Results

Moose in Ontario favored deciduous and mixedwood forest, indicating selection for foraging habitat across both diel and temperature. Habitat selection patterns of moose in Minnesota were more dynamic and indicated time- and temperature-dependent trade-offs between use of foraging habitat and thermal cover.

Conclusions

We detected a scale-dependent functional response in habitat selection driven by the trade-off between selection for foraging habitat and thermal cover. Landscape composition and internal state interact to produce complex patterns of space use, and animals exposed to increasingly high temperatures may mitigate fitness losses from reduced foraging efficiency by increasing selection for foraging habitat in sub-prime foraging landscapes.
  相似文献   

2.

Context

In southwestern Alberta, human development, including roads, is encroaching on the landscape and into the range of a partially migratory population of elk (Cervus elaphus).

Objectives

To quantify factors influencing among- and within-home-range selection of winter range in this population.

Methods

We studied individual habitat selection and road avoidance at two biologically relevant spatial scales. We outlined availability extents for 107 individual elk-years based on observed fall migration distance, and based on a minimum convex polygon around winter telemetry relocations. To model the response by elk to road disturbance, we fit a habitat-selection model to each elk-year at each of the two availability extents, and examined population-level and individual variation in space-use. We then evaluated the relationship between inferred selection at the two scales and the functional response in selection.

Results

Roads had a ubiquitous influence on elk across scales. Elk, individually and as a population, avoided roads when migrating to their winter range and within this seasonal home range. Individual elk that avoided roads more strongly relative to the population did so at both scales of analysis.Further, the avoidance of low-use roads decreased with increasing road density. These results support bottom-up habitat-selection patterns (i.e., scale-independent) and functional response in habitat selection.

Conclusions

Overall, using a multi-scale habitat selection analysis, we show that road avoidance is a major determinant of elk space-use behaviour across multiple scales. Consequently, any new road construction or increases in road-use intensity could have detrimental effects on migratory elk populations by restricting space-use.
  相似文献   

3.

Context

Understanding connectivity patterns in relation to habitat fragmentation is essential to landscape management. However, connectivity is often judged from expert opinion or species occurrence patterns, with very few studies considering the actual movements of individuals. Path selection functions provide a promising tool to infer functional connectivity from animal movement data, but its practical application remains scanty.

Objectives

We aimed to describe functional connectivity patterns in a forest carnivore using path-level analysis, and to explore how connectivity is affected by land cover patterns and road networks.

Methods

We radiotracked 22 common genets in a mixed forest-agricultural landscape of southern Portugal. We developed path selection functions discriminating between observed and random paths in relation to landscape variables. These functions were used together with land cover information to map conductance surfaces.

Results

Genets moved preferentially within forest patches and close to riparian habitats. Functional connectivity declined with increasing road density, but increased with the proximity of culverts, viaducts and bridges. Functional connectivity was favoured by large forest patches, and by the presence of riparian areas providing corridors within open agricultural land. Roads reduced connectivity by dissecting forest patches, but had less effect on riparian corridors due to the presence of crossing structures.

Conclusions

Genet movements were jointly affected by the spatial distribution of suitable habitats, and the presence of a road network dissecting such habitats and creating obstacles in areas otherwise permeable to animal movement. Overall, the study showed the value of path-level analysis to assess functional connectivity patterns in human-modified landscapes.
  相似文献   

4.

Context

Organisms commonly respond to their environment across a range of scales, however many habitat selection studies still conduct selection analyses using a single-scale framework. The adoption of multi-scale modeling frameworks in habitat selection studies can improve the effectiveness of these studies and provide greater insights into scale-dependent relationships between species and specific habitat components.

Objectives

Our study assessed multi-scale nest/roost habitat selection of the federally “Threatened” Mexican spotted owl (Strix occidentalis lucida) in northern Arizona, USA in an effort to provide improved conservation and management strategies for this subspecies.

Methods

We conducted multi-scale habitat modeling to assess habitat selection by Mexican spotted owls using survey data collected by the USFS. Each selected covariate was included in multi-scale models at their “characteristic scale” and we used an all-subsets approach and model selection framework to assess habitat selection.

Results

The “characteristic scale” identified for each covariate varied considerably among covariates and results from multi-scale models indicated that percent canopy cover and slope were the most important covariates with respect to habitat selection by Mexican spotted owls. Multi-scale models consistently outperformed their analogous single-scale counterparts with respect to the proportion of deviance explained and model predictive performance.

Conclusions

Efficacy of future habitat selection studies will benefit by taking a multi-scale approach. In addition to potentially providing increased explanatory power and predictive capacity, multi-scale habitat models enhance our understanding of the scales at which species respond to their environment, which is critical knowledge required to implement effective conservation and management strategies.
  相似文献   

5.

Context

Scale is the lens that focuses ecological relationships. Organisms select habitat at multiple hierarchical levels and at different spatial and/or temporal scales within each level. Failure to properly address scale dependence can result in incorrect inferences in multi-scale habitat selection modeling studies.

Objectives

Our goals in this review are to describe the conceptual origins of multi-scale habitat selection modeling, evaluate the current state-of-the-science, and suggest ways forward to improve analysis of scale-dependent habitat selection.

Methods

We reviewed more than 800 papers on habitat selection from 23 major ecological journals published between 2009 and 2014 and recorded a number of characteristics, such as whether they addressed habitat selection at multiple scales, what attributes of scale were evaluated, and what analytical methods were utilized.

Results

Our results show that despite widespread recognition of the importance of multi-scale analyses of habitat relationships, a large majority of published habitat ecology papers do not address multiple spatial or temporal scales. We also found that scale optimization, which is critical to assess scale dependence, is done in less than 5 % of all habitat selection modeling papers and less than 25 % of papers that address “multi-scale” habitat analysis broadly defined.

Conclusions

Our review confirms the existence of a powerful conceptual foundation for multi-scale habitat selection modeling, but that the majority of studies on wildlife habitat are still not adopting multi-scale frameworks. Most importantly, our review points to the need for wider adoption of a formal scale optimization of organism response to environmental variables.
  相似文献   

6.

Context

Although multi-scale approaches are commonly used to assess wildlife-habitat relationships, few studies have examined selection at multiple spatial scales within different hierarchical levels/orders of selection [sensu Johnson’s (1980) orders of selection]. Failure to account for multi-scale relationships within a single level of selection may lead to misleading inferences and predictions.

Objectives

We examined habitat selection of the federally threatened eastern indigo snake (Drymarchon couperi) in peninsular Florida at the level of the home range (Level II selection) and individual telemetry location (Level III selection) to identify influential habitat covariates and predict relative probability of selection.

Methods

Within each level, we identified the characteristic scale for each habitat covariate to create multi-scale resource selection functions. We used home range selection functions to model Level II selection and paired logistic regression to model Level III selection.

Results

At both levels, EIS selected undeveloped upland land covers and habitat edges while avoiding urban land covers. Selection was generally strongest at the finest scales with the exception of Level II urban edge which was avoided at a broad scale indicating avoidance of urbanized land covers rather than urban edge per se.

Conclusions

Our study illustrates how characteristic scales may vary within a single level of selection and demonstrates the utility of multi-level, scale-optimized habitat selection analyses. We emphasize the importance of maintaining large mosaics of natural habitats for eastern indigo snake conservation.
  相似文献   

7.

Context

Connectivity assessments typically rely on resistance surfaces derived from habitat models, assuming that higher-quality habitat facilitates movement. This assumption remains largely untested though, and it is unlikely that the same environmental factors determine both animal movements and habitat selection, potentially biasing connectivity assessments.

Objectives

We evaluated how much connectivity assessments differ when based on resistance surfaces from habitat versus movement models. In addition, we tested how sensitive connectivity assessments are with respect to the parameterization of the movement models.

Methods

We parameterized maximum entropy models to predict habitat suitability, and step selection functions to derive movement models for brown bear (Ursus arctos) in the northeastern Carpathians. We compared spatial patterns and distributions of resistance values derived from those models, and locations and characteristics of potential movement corridors.

Results

Brown bears preferred areas with high forest cover, close to forest edges, high topographic complexity, and with low human pressure in both habitat and movement models. However, resistance surfaces derived from the habitat models based on predictors measured at broad and medium scales tended to underestimate connectivity, as they predicted substantially higher resistance values for most of the study area, including corridors.

Conclusions

Our findings highlighted that connectivity assessments should be based on movement information if available, rather than generic habitat models. However, the parameterization of movement models is important, because the type of movement events considered, and the sampling method of environmental covariates can greatly affect connectivity assessments, and hence the predicted corridors.
  相似文献   

8.

Context

In heterogeneous landscapes, local patterns of community structure are a product of the habitat size and condition within a patch interacting with adjacent habitat patches of varying composition and quantity. While evidence for local versus landscape factors have been found in terrestrial biomes, support for such multi-scale effects shaping marine ecological communities is equivocal.

Objectives

We investigated whether within-patch habitat condition can override seascape context to explain the community structure of macroalgae-associated reef fishes across a tropical seascape.

Methods

We mapped the distribution and abundance of a diverse family of reef fishes (Labridae) occupying macroalgae meadows within a tropical reef ecosystem, and using best-subsets model selection, investigated the potential for habitat structural connectivity and/or local habitat quality for predicting variations in fish community structure across the seascape.

Results

Local habitat quality (canopy structure, hard habitat complexity) and area of coral-dominated habitat within 500 m of a macroalgal meadow provided the best predictors of fish community structure. However, the specific importance of a given predictor varied with fish life history stage and functional trophic group. Interestingly, macroalgae meadow area was among the least important predictors.

Conclusions

Given the complex interplay between local habitat quality and spatial context effects on fish biodiversity, our study reveals the multi-scale predictors that should be used in spatial conservation and management approaches for tropical fish diversity. Moreover, our findings question the ubiquity of habitat area effects in patchy landscapes, and cautions against a sole reliance on habitat quantity in spatial management.
  相似文献   

9.

Context

The spatial distribution of non-substitutable resources implies diverging predictions for animal movement patterns. At broad scales, animals should respond to landscape complementation by selecting areas where resource patches are close-by to minimize movement costs. Yet at fine scales, central place effects lead to the depletion of patches that are close to one another and that should ultimately be avoided by consumers.

Objectives

We developed a multi-scale resource selection framework to test whether animal movement is driven by landscape complementation or resource depletion and identify at which spatial scale these processes are relevant from an animal’s perspective.

Methods

During the dry season, surface water and forage are non-substitutable resources for African elephants. Eight family herds were tracked using GPS loggers in Hwange National Park, Zimbabwe. We explained habitat selection during foraging trips by mapping surface water at two scales with gaussian kernels of varying widths placed over each waterhole.

Results

Unexpectedly, elephants select areas with low waterhole density at both fine scales (< 1 km) and broad scales (5–7 km). Selection is stronger when elephants forage far away from water, even more so as the dry season progresses.

Conclusions

Elephant selection of low waterhole density areas suggests that resource depletion around multiple central places is the main driver of their habitat selection. By identifying the scale at which animals respond to waterhole distribution we provide a template for water management in arid and semi-arid landscapes that can be tailored to match the requirements and mobility of free ranging wild or domestic species.
  相似文献   

10.

Context

In natural populations, gene flow often represents a key factor in determining and maintaining genetic diversity. In a worldwide context of habitat fragmentation, assessing the relative contribution of landscape features to gene flow thus appears crucial for sustainable management of species.

Objective

We addressed this issue in Mediterranean mouflon (Ovis gmelini musimon?×?Ovis sp.) by combining previous knowledge on behavioral ecology with landscape genetics. We also assessed how sex-specific behavioral differences translated in term of functional connectivity in both sexes.

Methods

We relied on 239 individuals genotyped at 16 microsatellite markers. We applied a model optimization approach in a causal modeling framework of landscape genetics to test for the effects on gene flow of habitat types and linear landscape features previously identified as important for movements and habitat selection in both sexes. Five resistance values were alternately assigned to these landscape characteristics leading to a comprehensive set of resistance surfaces.

Results

Isolation by resistance shaped female gene flow, supporting the central role of linear landscape features as behavioral barriers for animal movements. Conversely, no isolation by resistance was detected in males. Although a lack of statistical power cannot be discarded to explain this result, it tended to confirm that males are less influenced by landscape structures during the mating period.

Conclusions

Combining previous knowledge on behavioral ecology with results from landscape genetics was decisive in assessing functional landscape connectivity in both sexes. These results highlighted the need to perform sex-specific studies for management and conservation of dimorphic species.
  相似文献   

11.

Context

Allometric scaling laws are foundational to structuring processes from cellular to ecosystem levels. The idea that allometric relationships underlie species characteristic selection scales, the spatial scales at which species respond to landscape features, has recently been investigated, however, supporting empirical evidence is scarce.

Objectives

Lack of pattern can be explained by inaccurate estimation, low power, confounding factors, or absence of a relationship. In this paper, we evaluate the relationship between body size and species characteristic selection scales after overcoming limitations of previous study designs.

Methods

We conducted 1328 avian point counts across the state of Nebraska using the robust sampling design to account for imperfect detection. We used Bayesian latent indicator scale selection with N-mixture models to estimate species’ characteristic selection scales of six habitat features for 86 species. We propagated the uncertainty associated with assigning characteristic scales to a model of the relationship between body size and characteristic spatial scales.

Results

Species characteristic scales varied across habitat predictors, and varied in the uncertainty associated with selecting single characteristic scales. After propagating uncertainty our results do not support a relationship between species’ body size and the spatial scales at which they respond to landscape features.

Conclusions

As species abundance integrates birth, death, immigration, and emigration processes, each of which are influenced by ecological processes manifesting at various scales, we question whether a general allometric relationship should be expected. Our results suggest that selection may act on responses to specific environmental features, rather than responses to spatial scale per se.
  相似文献   

12.

Context

The definition of the geospatial landscape is the underlying basis for species-habitat models, yet sensitivity of habitat use inference, predicted probability surfaces, and connectivity models to landscape definition has received little attention.

Objectives

We evaluated the sensitivity of resource selection and connectivity models to four landscape definition choices including (1) the type of geospatial layers used, (2) layer source, (3) thematic resolution, and (4) spatial grain.

Methods

We used GPS telemetry data from pumas (Puma concolor) in southern California to create multi-scale path selection function models (PathSFs) across landscapes with 2500 unique landscape definitions. To create the landscape definitions, we identified seven geospatial layers that have been shown to influence puma habitat use. We then varied the number, sources, spatial grain, and thematic resolutions of these layers to create our suite of plausible landscape definitions. We assessed how PathSF model performance (based on AIC) was affected by landscape definition and examined variability among the predicted probability of movement surfaces, connectivity models, and road crossing locations.

Results

We found model performance was extremely sensitive to landscape definition and identified only seven top models out of our suite of definitions (<1%). Spatial grain and the number of geospatial layers selected for a landscape definition significantly affected model performance measures, with finer grains and greater numbers of layers increasing model performance.

Conclusions

Given the sensitivity of habitat use inference, predicted probability surfaces, and connectivity models to landscape definition, out results indicate the need for increased attention to landscape definition in future studies.
  相似文献   

13.

Context

Landscape and habitat filters are major drivers of biodiversity of small habitat islands by influencing dispersal and extinction events in plant metapopulations.

Objectives

We assessed the effects of landscape and habitat filters on the species richness, abundance and trait composition of grassland specialist and generalist plants in small habitat islands. We studied traits related to functional spatial connectivity (dispersal ability by wind and animals) and temporal connectivity (clonality and seed bank persistence) using model selection.

Methods

We sampled herbaceous plants, landscape (local and regional isolation) and habitat filters (inclination, woody encroachment and disturbance) in 82 grassland islands in Hungary.

Results

Isolation decreased the abundance of good disperser specialist plants due to the lack of directional vectors transferring seeds between suitable habitat patches. Clonality was an effective strategy, but persistent seed bank did not support the survival of specialist plants in isolated habitats. Generalist plants were unaffected by landscape filters due to their wide habitat breadth and high propagule availability. Clonal specialist plants could cope with increasing woody encroachment due to their high resistance against environmental changes; however, they could not cope with intensive disturbance. Steep slopes providing environmental heterogeneity had an overall positive effect on species richness.

Conclusions

Specialist plants were influenced by the interplay of landscape filters influencing their abundance and habitat filters affecting species richness. Landscape filtering by isolation influenced the abundance of specialist plants by regulating seed dispersal. Habitat filters sorted species that could establish and persist at a site by influencing microsite availability and quality.
  相似文献   

14.

Context

Multispecies and multiscale habitat suitability models (HSM) are important to identify the environmental variables and scales influencing habitat selection and facilitate the comparison of closely related species with different ecological requirements.

Objectives

This study explores the multiscale relationships of habitat suitability for the pine (Martes martes) and stone marten (M. foina) in northern Spain to evaluate differences in habitat selection and scaling, and to determine if there is habitat niche displacement when both species coexist.

Methods

We combined bivariate scaling and maximum entropy modeling to compare the multiscale habitat selection of the two martens. To optimize the HSM, the performance of three sampling bias correction methods at four spatial scales was explored. HSMs were compared to explore niche differentiation between species through a niche identity test.

Results

The comparison among HSMs resulted in the detection of a significant niche divergence between species. The pine marten was positively associated with cooler mountainous areas, low levels of human disturbance, high proportion of natural forests and well-connected forestry plantations, and medium-extent agroforestry mosaics. The stone marten was positively related to the density of urban areas, the proportion and extensiveness of croplands, the existence of some scrub cover and semi-continuous grasslands.

Conclusions

This study outlines the influence of the spatial scale and the importance of the sampling bias corrections in HSM, and to our knowledge, it is the first comparing multiscale habitat selection and niche divergence of two related marten species. This study provides a useful methodological framework for multispecies and multiscale comparatives.
  相似文献   

15.

Context

Land use change and forest degradation have myriad effects on tropical ecosystems. Yet their consequences for low-order streams remain very poorly understood, including in the world´s largest freshwater basin, the Amazon.

Objectives

Determine the degree to which physical and chemical characteristics of the instream habitat of low-order Amazonian streams change in response to past local- and catchment-level anthropogenic disturbances.

Methods

To do so, we collected field instream habitat (i.e., physical habitat and water quality) and landscape data from 99 stream sites in two eastern Brazilian Amazon regions. We used random forest regression trees to assess the relative importance of different predictor variables in determining changes in instream habitat response variables.

Results

Multiple drivers, operating at multiple spatial scales, were important in determining changes in the physical habitat and water quality of the sites. Although we found few similarities in modelled relationships between the two regions, we observed non-linear responses of specific instream characteristics to landscape change; for example 20 % of catchment deforestation resulted in consistently warmer streams.

Conclusions

Our results highlight the importance of local riparian and catchment-scale forest cover in shaping instream physical environments, but also underscore the importance of other land use changes and activities, such as road crossings and upstream agriculture intensification. In contrast to the property-scale focus of the Brazilian Forest code, which governs environmental regulations on private land, our results reinforce the importance of catchment-wide management strategies to protect stream ecosystem integrity.
  相似文献   

16.

Context

Understanding habitat selection can be challenging for species surviving in small populations, but is needed for landscape-scale conservation planning.

Objectives

We assessed how European bison (Bison bonasus) habitat selection, and particularly forest use, varies across subpopulations and spatial scales.

Methods

We gathered the most comprehensive European bison occurrence dataset to date, from five free-ranging herds in Poland. We compared these data to a high-resolution forest map and modelled the influence of environmental and human-pressure variables on habitat selection.

Results

Around 65% of European bison occurrences were in forests, with cows showing a slightly higher forest association than bulls. Forest association did not change markedly across spatial scales, yet differed strongly among herds. Modelling European bison habitat suitability confirmed forest preference, but also showed strong differences in habitat selection among herds. Some herds used open areas heavily and actively selected for them. Similarly, human-pressure variables were important in all herds, but some herds avoided human-dominated areas more than others.

Conclusions

Assessing European bison habitat across multiple herds revealed a more generalist habitat use pattern than when studying individual herds only. Our results highlight that conflicts with land use and people could be substantial if bison are released in human-dominated landscapes. Future restoration efforts should target areas with low road and human population density, regardless of the degree of forest cover. More broadly, our study highlights the importance of considering multiple subpopulations and spatial scales in conservation planning.
  相似文献   

17.

Context

Conservation corridors must facilitate long-distance dispersal movements to promote gene flow, prevent inbreeding, and allow animals to shift ranges with climate change. Least-cost models are used to identify areas that support long-distance movement. These models rely on estimates of landscape resistance, which are typically derived from habitat suitability.

Objectives

We examine two key steps in estimating resistance from habitat suitability: choosing a procedure to estimate habitat suitability, and choosing a transformation function to translate habitat suitability into resistance.

Methods

We used linear and nonlinear functions to convert three types of habitat suitability estimates (from expert opinion, resource selection functions, and step selection functions) into resistances for elk (Cervus canadensis) and desert bighorn sheep (Ovis canadensis nelsoni). We evaluated the resulting resistance maps on an independent set of observed long-distance, prospecting movements.

Results

A negative exponential function best described the relationship between resistance values and habitat suitability for desert bighorn sheep indicating long-distance movers readily travel through moderately-suitable areas and avoid only the least suitable habitat. For desert bighorn sheep, all three suitability estimates performed better than chance, and resource and step selection functions outperformed expert opinion. For elk, all three suitability estimates performed the same as chance.

Conclusions

When designing corridors to facilitate long-distance movements of mobile animals, we recommend transforming habitat suitability into resistance with a negative exponential function. Use of an exponential transformation means that larger fractions of the landscape offer low resistance, allowing greater flexibility in where a corridor is located.
  相似文献   

18.

Context

Habitat loss and fragmentation may alter habitat occupancy patterns, for example through a reduction in regional abundance or in functional connectivity, which in turn may reduce the number of dispersers or their ability to prospect for territories. Yet, the relationship between landscape structure and habitat niche remains poorly known.

Objectives

We hypothesized that changes in landscape structure associated with habitat loss and fragmentation will reduce the habitat niche breadth of forest birds, either through a reduction in density-dependent spillover from optimal habitat or by impeding the colonization of patches.

Methods

We surveyed forest birds with point counts in eastern Ontario, Canada, and analyzed their response to loss and fragmentation of mature woodland. We selected 62 landscapes varying in both forest cover (15–45%) and its degree of fragmentation, and classified them into two categories (high versus low levels of loss and fragmentation). We determined the habitat niche breadth of 12 focal species as a function of 8 habitat structure variables for each landscape category.

Results

Habitat niche breadth was narrower in landscapes with high versus low levels of loss and fragmentation of forest cover. The relative occupancy of marginal habitat appeared to drive this relationship. Species sensitivity to mature forest cover had no apparent influence on relative niche breadth.

Conclusions

Regional abundance and, in turn, density-dependent spillover into suboptimal habitat appeared to be determinants of habitat niche breadth. For a given proportion of forest cover, fragmentation also appeared to alter habitat use, which could exacerbate its other negative effects unless functional connectivity is high enough to allow individuals to saturate optimal habitat.
  相似文献   

19.

Context

GPS telemetry collars and their ability to acquire accurate and consistently frequent locations have increased the use of step selection functions (SSFs) and path selection functions (PathSFs) for studying animal movement and estimating resistance. However, previously published SSFs and PathSFs often do not accommodate multiple scales or multi-scale modeling.

Objectives

We present a method that allows multiple scales to be analyzed with SSF and PathSF models. We also explore the sensitivity of model results and resistance surfaces to whether SSFs or PathSFs are used, scale, prediction framework, and GPS collar sampling interval.

Methods

We use 5-min GPS collar data from pumas (Puma concolor) in southern California to model SSFs and PathSFs at multiple scales, to predict resistance using two prediction frameworks (paired and unpaired), and to explore potential bias from GPS collar sampling intervals.

Results

Regression coefficients were extremely sensitive to scale and pumas exhibited multiple scales of selection during movement. We found PathSFs produced stronger regression coefficients, larger resistance values, and superior model performance than SSFs. We observed more heterogeneous surfaces when resistance was predicted in a paired framework compared with an unpaired framework. Lastly, we observed bias in habitat use and resistance results when using a GPS collar sampling interval longer than 5 min.

Conclusions

The methods presented provide a novel way to model multi-scale habitat selection and resistance from movement data. Due to the sensitivity of resistance surfaces to method, scale, and GPS schedule, care should be used when modeling corridors for conservation purposes using these methods.
  相似文献   

20.

Context

In modern agricultural landscapes, fragmentation of partial habitats is a significant filter for multi-habitat users, reducing local taxonomic and functional diversity. There is compelling evidence that small species are more susceptible than large species. The impact of habitat fragmentation on intraspecific body-size distribution, however, is yet unexplored.

Objectives

We tested habitat fragmentation, a major driver of pollinator loss, for its impact on intraspecific body-size distributions of solitary wild-bee species. Subsequently, we tested individual body size for its impact on pollination services.

Methods

We sampled 1272 individuals of the four most common Andrena wild bee species in 22 newly established flowering fields (0.21–0.41 ha) in Hessen, Central Germany, over two consecutive years. Study sites were located in a ca. 80 ha landscape context of increasing habitat fragmentation. We analysed the pollen loads of the most abundant species.

Results

Body size within local populations of the two medium-sized bees increased with fragmentation, suggesting intraspecific selection for higher dispersal capacity. Pollen analysis carried out for the most common species revealed that larger individuals visited a significantly smaller plant spectrum. Habitat fragmentation may thus alter pollination services without necessarily affecting species richness or composition.

Conclusions

Systematic body-size variation at the population level thus explains the considerable variability between simple community measures and ecosystem functioning. Filtering processes at the individual level require increased understanding for targeting pollination services under current and future land-use change.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号