首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
An 84‐day feeding trial was conducted to study the effect of different levels of dietary protein, 250 (P25), 300 (P30), 350 (P35), 400 (P40) and 450 g (P45) kg?1 dry matter (DM) on growth, feed intake, feed utilization and carcass composition of bagrid catfish Horabagrus brachysoma fingerlings. Triplicate groups of fingerlings with mean initial body weight of 2.2 g were fed the experimental diets twice daily, till satiation, in 150‐L tanks supplied with flow‐through freshwater. Daily dry matter intake by the fingerlings decreased significantly (P < 0.05) when fed P25 diet, containing 250 g protein kg?1. The highest body weight gain, specific growth rate (SGR) and protein efficiency ratio (PER), and the lowest feed conversion ratio (FCR) were observed in fish fed 350 g protein kg?1 diet. The fish fed with P45 diet had the lowest (P < 0.05) carcass lipid content. The polynomial regression analysis indicates that H. brachysoma fingerlings require 391 g dietary crude protein kg?1 diet.  相似文献   

2.
Two feeding trials were conducted to determine the minimum dietary protein level producing maximum growth, and the optimum protein to energy ratio in diets for red porgy (Pagrus pagrus) fingerlings, respectively. In the first trial, six isoenergetic diets were formulated with protein levels ranging from 400 to 650 g kg?1 in increments of 50 g kg?1, and fed for 11 weeks to 2.8 g average initial weight fish. Weight gain, specific growth rate and feed efficiency were significantly higher with diets containing higher protein levels, when compared with dietary levels below 500 g kg?1. The highest protein efficiency ratios were obtained in fish fed 500 g kg?1 dietary protein. The minimum dietary protein level producing maximum fish growth was found to be 500 g kg?1. In the second trial, 15 g average initial weight fish were fed for 12 weeks, six diets containing three different lipid levels (100, 150 and 200 g kg?1) combined with two protein levels (450 and 500 g kg?1). Weight gain values increased when dietary lipids increased from 100 to 150 g kg?1, with a further decrease for 200 g kg?1 lipids in diets; the lowest fish growth being supported by 200 g kg?1 dietary lipids. Fish growth was significantly higher when dietary protein increased from 450 to 500 g kg?1. There was no evidence of a protein‐sparing effect of dietary lipids. Liver protein and lipid contents were low when compared with other fish species. All diet assayed produced high liver glycogen accumulation. The recommended protein and lipid levels in diets for red porgy fingerlings were 500 and 150 g kg?1, respectively.  相似文献   

3.
A feeding trial was conducted using isoenergetic practical diets to evaluate the effects of the dietary protein level on growth performance, feed utilization and digestive enzyme activity of the Chinese mitten crab, Eriocheir sinensis. Four experimental diets were formulated containing 250, 300, 350 and 400 g kg?1 protein and 16 kJ g?1 gross energy. Each diet was randomly assigned to triplicate groups of juvenile crab with mean initial body weight 3.56 ± 0.16 g and mean shell width 15.31 ± 0.06 mm. Juvenile crab were reared in indoor flow‐through system consisting of 12 plastic tanks (1.0 m × 0.6 m × 0.5 m) and fed diets twice daily at 6–8% of body weight for 12 weeks. Performance was judged on the basis of growth (specific growth rate of weight, SGRG; specific growth rate of shell width, SGRSW), feed conversion ratio (FCR) and protein efficiency ratio (PER). A decreased FCR was observed with increasing dietary protein levels. Both SGRG and SGRSW significantly increased with increasing dietary protein levels up to 350 g kg?1, whereas there were no significant differences for protein levels from 350–400 g kg?1. Application of broken line regression analysis to SGRG provided an estimate of 347.8 g kg?1 dietary protein for maximal growth. The highest PER was observed in crab fed the diet containing 350 g kg?1 protein (P < 0.05). The percent survival was not affected (P > 0.05) by the different dietary treatments. No significant differences were observed in the apparent digestibility coefficients of crude lipid and dry matter among dietary treatments (P > 0.05). However, the apparent digestibility coefficients of crude protein and energy in crab fed different protein levels significantly increased with increasing dietary protein level (P < 0.05). Both amylase and protease activities in the intestine of E. sinensis were studied. The amylase activity decreased significantly (P < 0.05) with increased dietary protein level and protease activity increased. Regression analysis showed a negative effect of inclusion of dietary protein level on amylase activity (P < 0.05). However, protease activities were found to be positively correlated (P < 0.05) with dietary protein level. The protein content of the crab significantly increased with dietary protein levels up to 350 g kg?1 (P < 0.05), but no significant differences (P > 0.05) were founded with protein levels higher than 350 g kg?1.  相似文献   

4.
Protein requirement of silver barb, Puntius gonionotus fingerlings   总被引:2,自引:0,他引:2  
Five iso‐energetic (15.05 MJ kg?1) semi‐purified diets with graded levels of crude protein, i.e. 200 (D‐1), 250 (D‐2), 300 (D‐3), 350 (D‐4) and 400 (D‐5) g kg?1 diet were fed to Puntius gonionotus fingerlings (average weight 0.88 ± 0.03 g) in triplicate groups (15 healthy fish per replicate) for a period of 90 days to determine the optimum protein requirement of the fish. Fifteen flow‐through cement tanks of 100‐L capacity with a flow rate of 0.5 L min?1 were used for rearing the fish. Specific growth rate (SGR), food conversion (food gain) ratio (FCR), nutrient digestibility and retention, digestive enzyme activity, RNA : DNA ratio and tissue composition were used as response parameters with respect to dietary protein levels and feed intake. The mean weight gains of fish after 90 days were 10.84 ± 0.27, 11.07 ± 0.12, 14.09 ± 0.20, 11.27 ± 0.12 and 10.91 ± 0.25 g for D‐1, D‐2, D‐3, D‐4 and D‐5, respectively. Maximum SGR (3.13 ± 0.02% per day), RNA : DNA ratio (10.09 ± 0.09), tissue protein content (160 ± 0.1 g kg?1 wet weight), protease activity (25.27 ± 0.47 μg of leucine liberated mg tissue per protein h?1 at 37 °C) and minimum FCR (1.60 ± 0.02) was found in D‐3 group fed with 300 g kg?1 protein level. All these parameters were negatively affected with the further increase in protein level in the diet. Digestibility of protein, lipid and energy was not affected because of variation in dietary protein levels and nitrogen intake of fish. Maximum energy retention (27.68 ± 0.12%) was recorded at 300 g kg?1 dietary crude protein fed group. However, using broken line regression analysis, the maximum growth was found to be at 317.7 g kg?1 dietary protein. Hence, it may be concluded that the protein requirement of P. gonionotus fingerling is 317.7 g kg?1 diet with a resultant P/E ratio of 21.1 g protein MJ?1.  相似文献   

5.
A 360‐day feeding trial was conducted to observe the influence of varying levels of dietary protein on growth, reproductive performance, body and egg composition of rohu, Labeo rohita. Twenty fish (40.4 ± 0.24 cm; 852 ± 4.9 g), stocked in outdoor concrete tanks (200 m2), in duplicate, were fed diets with varying levels (200, 250, 300, 350 and 400 g kg?1) of crude protein exchanged with carbohydrate to apparent satiation, twice daily, at 09:00 and 17:00 h. Higher (P < 0.05) weight increment was discernible in fish fed dietary protein ≥300 g kg?1. Gonadosomatic index was comparable (P > 0.05) among fish of different dietary groups except those fed 200 g kg?1 protein diet which produced least values. Egg diameter remained unaffected (P > 0.05) by variations in levels of dietary protein. Relative fecundity was maximum (P < 0.05) in fish fed 250 and 300 g kg?1 protein diets. With the exception of fish fed 200 g kg?1 protein diet, fertilizability (%) remained unaffected (P > 0.05) by variations in dietary protein level. Hatchability (%) followed the trend of variations almost similar to that of fertilizability. Proximate composition of muscle and eggs varied significantly (P < 0.05) with dietary protein levels. For broodstock L. rohita, a dietary protein level of 250 g kg?1 was found optimum with regard to its reproductive performance, egg quality and composition.  相似文献   

6.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

7.
Six test diets with protein levels varying from 250 to 500 g kg?1 were fed to six triplicate groups of summerling (initial weight: 1.56 g) and seven test diets with protein levels varying from 200 to 500 g kg?1 were fed to seven triplicate groups of winterling (initial weight: 9.49 g) for 8 weeks. Weight gain (WG) and feed efficiency (FE) of summerling significantly increased with increasing dietary protein levels from 250 to 350 g kg?1 and slightly declined, but without statistical significance at a dietary protein level of 400 g kg?1, then further significantly decreased with increasing protein levels to 450 and 500 g kg?1; WG of winterling increased significantly with increasing dietary protein levels from 200 to 300 g kg?1 (P < 0.05), and above this level, WG had a tendency to decrease with increasing dietary protein levels. Winterling fed diets with 300 and 400 g kg?1 of dietary protein had significantly higher FE than those fed other diets. WG data analysis by quadratic regressions showed that the optimum dietary protein levels required for the maximum growth of summerling and winterling were 374 and 355 g kg?1 of dry diet respectively. Protein efficiency ratio of both summerling and winterling negatively correlated with levels of dietary protein. The whole body moisture, protein, lipid and ash of summerling after being fed various test diets for 8 weeks were significantly different among treatments (P < 0.05). The whole body moisture and fat of winterling were also significantly affected by dietary protein levels (P < 0.05), while the whole body protein and ash of winterling were not (P > 0.05).  相似文献   

8.
The effect of dietary protein and energy content on the activity of digestive enzymes (total proteinases, trypsin, chymotrypsin α‐amylase and lipase), and growth and survival of Litopenaeus setiferus postlarvae was investigated under controlled conditions. There was a clear relationship between the diet fed to the postlarvae, growth and survival. Highest weight gain (2110 ± 96.7%) was obtained with a 400 g kg?1 protein and low energy diet (13.9 kJ g?1) (P < 0.05). The optimal protein to energy ratio (P/E) estimated was 28.8 mg of protein kJ?1. Good survival was obtained with low energy diets containing between 200 and 400 g kg?1 protein and with high energy diets containing 300–500 g kg?1 protein. Higher values for total proteinases, trypsin and α‐amylase were obtained with the low energy, 400 g kg?1 protein diet. Chymotryptic activity was considerably lower than that of other proteinases and lipase activity was too low to be reliably measured with the turbidimetric method employed. Total proteinase activity was significantly lower than in experimentally grown postlarvae. The α‐amylase activity was at least two orders of magnitude higher in wild postlarvae than in animals fed with the best experimental diet. Protein requirement was related to total energy content of the diet: best growth and digestive enzyme activity coincide with the low energy, 400 g kg?1 protein diet. These results suggest that dietary carbohydrates cannot spare protein because growth rates obtained with diets containing 200–300 g kg?1 protein (337 and 226 g kg?1 dextrin content, respectively) were significantly lowered.  相似文献   

9.
The objective of the present work was to determine the optimum dietary protein level for juvenile mullets. Five isocaloric diets were formulated to contain increasing levels (300, 350, 400, 450 and 500 g kg?1) of crude protein (CP) corresponding to 18.7 MJ metabolizable energy kg?1. All diets were tested in triplicate. Each experimental unit was composed of a 50 L tank with 50 juveniles (mean ± SE initial weight and length equal to 1.17 ± 0.02 g and 4.34 ± 0.03 cm respectively). Diets were offered five times a day until apparent satiation for 35 days. No significant difference (P>0.05) was observed in survival rate, feed efficiency and body composition between treatments. However, weight gain, feed consumption and specific growth rate were higher in fish fed the 350 g kg?1 CP level than those fed the highest protein content diet (500 g kg?1 CP). The amount of postprandial ammonia excreted by mullet was linearly related to protein intake. Intestinal tryptic activity was inversely proportional to the percentage of dietary CP. It is likely that diets containing <350 g kg?1 CP will be needed for on‐growing mullet, especially when reared in ponds with abundant natural food.  相似文献   

10.
This study was undertaken to determine the replacement value of Cassia fistula seed meal (CFM) for soybean meal (SBM) in practical diets of Oreochromis niloticus fingerlings. Five practical diets (350 g kg?1 crude protein) containing 0 g kg?1 (control), 170 g kg?1 (diet II), 340 g kg?1 (diet III), 509 g kg?1 (diet IV) and 670 g kg?1 (diet V) substitution levels of CFM for SBM were formulated and fed to triplicate groups of O. niloticus fingerlings (mean initial weight of 10.22 ± 0.03 g) for 70 days. Fish mortality increased linearly with increase in inclusion levels of CFM in the diet. Growth and diet utilization efficiency were depressed in fish fed diets containing CFM at varying inclusion levels. Feed conversion ratio, specific growth rate and protein efficiency ratio of O. niloticus fed on diet containing 170 g kg?1 substitution level of CFM were similar (P > 0.05) to the control diet. Digestibility of the different diets decreased with increase in inclusion levels of CFM. Fish fed diet containing 670 g kg?1 CFM had significantly lower carcass protein. However, no significant differences were observed in carcass protein and lipid contents between fish fed the control diets and diet containing 170 g kg?1 CFM. The most efficient diet in terms of cost per unit weight gain of fish was obtained in 170 g kg?1 CFM dietary substitution.  相似文献   

11.
A grow‐out experiment was designed to determine the effect of different dietary protein, lipid levels and protein–energy (P:E) ratio on growth performance and feed utilization of the freshwater prawn, Macrobrachium rosenbergii post larvae (PL) culture in pond net enclosures (hapa, 3.75 m?3 each) for 12 weeks (84 days). The experimental treatments were assigned in triplicate. Six test diets were formulated to contain three different protein levels (300, 350 and 400 g kg?1 diet) and two lipid levels (100 and 140 g kg?1 diet) in a factorial manner (3 × 2) to provided six different dietary P:E ratio: 16, 17, 18, 19, 20 and 21 mg CP kJ?1 g?1). The result showed that the highest significant (P≤0.05) survival rate, growth indices and feed utilization were observed for M. rosenbergii PL fed a diet with a P:E ratio of 17 mg CP kJ?1 g1, whereas, the lowest value was recorded for prawns fed a diet with a P:E ratio of 20 mg CP kJ?1 g?1. Whole body contents of protein and lipid were highest (P≤0.05) when fed diets with 21 and 17 mg CP kJ?1 g?1 respectively. Concerning dietary protein levels, the highest (P≤0.05) values for survival and growth indices were observed for PL fed a diet containing 300 g kg?1 diet protein. The same trend was observed for PL fed a diet with 100 g kg?1 diet lipid level, irrespective of dietary protein levels. A diet containing 300 g kg?1 protein and 100 g kg?1 lipid with a dietary P:E ratio of 17 mg CP kJ g?1 is recommended to stimulate growth performance and nutrients utilization efficiency of M. rosenbergii PL.  相似文献   

12.
A 10‐week feeding experiment was conducted to evaluate the effect of different protein to energy ratios on growth and body composition of juvenile Litopenaeus vannamei (initial average weight of 0.09 ± 0.002 g, mean ± SE). Twelve practical test diets were formulated to contain four protein levels (300, 340, 380 and 420 g kg?1) and three lipid levels (50, 75 and 100 g kg?1). Each diet was randomly fed to triplicate groups of 30 shrimps per tank (260 L). The water temperature was 28.5 ± 2 °C and the salinity was 28 ± 1 g L?1 during the experimental period. The results showed that the growth was significantly (P < 0.05) affected by dietary treatments. Shrimps fed the diets containing 300 g kg?1 protein showed the poorest growth. However, shrimp fed the 75 g kg?1 lipid diets had only slightly higher growth than that fed 50 g kg?1 lipid diets at the same dietary protein level, and even a little decline in growth with the further increase of dietary lipid to 100 g kg?1. Shrimp fed the diet with 420 g kg?1protein and 75 g kg?1 lipid had the highest specific growth rate. However, shrimp fed the diet with 340 g kg?1 protein and 75 g kg?1 lipid showed comparable growth, and had the highest protein efficiency ratio, energy retention and feed efficiency ratio among dietary treatments. Triglycerides and total cholesterol in the serum of shrimp increased with increasing dietary lipid level at the same dietary protein level. Body lipid and energy increased with increasing dietary lipid level irrespective of dietary protein. Results of the present study showed that the diet containing 340 g kg?1 protein and 75 g kg?1 lipid with digestible protein/digestible energy of 21.1 mg kJ?1 is optimum for L. vannamei, and the increase of dietary lipid level has not efficient protein‐sparing effect.  相似文献   

13.
The effects of varying dietary protein level (200, 250, 300 and 350 g protein kg?1 diet) and plant : animal protein ratio (1 : 2, 1 : 1, 1 : 1.5 and 2 : 1) on growth of juvenile Macrobrachium rosenbergii (de Man) with approximately 0.27 g initial body weight were evaluated in two separate 30‐days study using practical diets. Significantly lower survival rate was recorded in prawns fed a diet containing 200 g kg?1 dietary protein (66.67%) whilst 300 and 350 g kg?1 protein gave the highest survival (96.67%). Significant differences (P < 0.05) in feed conversion ratio and protein efficiency ratio were recorded among different dietary protein levels. The results of the study showed that highest growth rate and maximum utilization of protein were recorded in prawns fed 300 g kg?1 dietary protein and further increase in the dietary protein does not have any added advantage. There existed no statistically significant difference (P > 0.05) in the specific growth rate, protein efficiency ratio, weight gain and survival rate among the juveniles of M. rosenbergii fed varying plant–animal protein ratios at 300 g kg?1 protein. Better‐feed conversion ratio was recorded in diets having a plant to animal protein ratio of 1 : 1 (2.62) followed by 1 : 1.5 (2.66), however there was no significant difference between them (P > 0.05). Based on the present study, it would be possible to replace animal protein by low‐cost plant protein in prawn feed. Better growth performance in juveniles of M. rosenbergii can be achieved by the incorporation of equal proportions of plant and animal protein (A : P = 1) in the diet.  相似文献   

14.
Twelve experimental diets (D‐1 to D‐12) in a 4 × 3 factorial design (four protein levels: 250, 350, 400 and 450 g kg?1 and three lipid levels: 50, 100 and 150 g kg?1) were formulated. Carbohydrate level was constant at 250 g kg?1. Rohu fingerlings (average wt. 4.3 ± 0.02 g) were fed the experimental diets for 60 days in three replicates at 2% BW  day?1. Weight gain (%), specific growth rate (% day?1) and feed gain ratio (FGR) indicated that diets containing 450 g kg?1 protein and 100 or 150 g kg?1 lipid (diets D‐11 and D‐12) resulted in best performance, although results were not significantly different from those of diet D‐9 (400 g kg?1 protein and 150 g kg?1 lipid). Protein efficiency ratio was highest with diets D‐6 (350 g kg?1 protein and 150 g kg?1 lipid) and D‐9 (400 g kg?1 protein and 150 g kg?1 lipid) (P > 0.05) and declined with higher and lower protein diets at all levels of lipid tested. Elevated lipid level (50, 100 or 150 g kg?1) did not produce better FGR in diets containing 400 and 450 g kg?1 dietary protein (P > 0.05). The combined effects of protein and lipid were evident up to 400 g kg?1 protein. Growth and FGR showed consistent improvement with increased lipid levels from 50 to 150 g kg?1 at each protein level tested except with diets containing 450 g kg?1 protein. Apparent nutrient digestibility (for protein, lipid and energy) did not show significant variation among different dietary groups (P > 0.05). Whole body protein and lipid contents increased significantly (P > 0.05) with dietary protein level. The results of this study indicate that rohu fingerlings are adapted to utilize high protein in diets with varying efficiency. The fish could utilize lipid to spare protein but there is no significant advantage from this beyond the dietary protein level of 350–400 g kg?1 in terms of growth and body composition.  相似文献   

15.
A 14 weeks growth trial was performed to estimate the protein requirement for growth and maintenance of zebra sea bream (Diplodus cervinus) juveniles. For that purpose, nine isolipidic diets were formulated to contain increasing protein levels (from 50 to 550 g kg?1) at the expense of carbohydrate. Each diet was assigned to duplicate groups of 20 fish, with an average body weight of 7.7 g. Feed efficiency improved with dietary protein up to 400 g kg?1, no further differences being noticed at higher protein levels. Fish fed the 50 g kg?1 protein diet lost weight during the trial. In the other groups, weight gain improved as dietary protein increased up to 350–400 g kg?1. Fish fed diets with 250 g kg?1 protein or lower had lower whole‐body protein content than the other groups. A curvilinear‐plateau model was used to adjust weight gain and protein gain (g kg ABW?1 day?1) to dietary protein levels. Based on that model, the optimum dietary protein requirement for maximum weight gain was estimated to be 437.6 g kg?1 and for maximum protein gain 461.9 g kg?1, corresponding to a protein intake of 7.63 g kg ABW?1 day?1. Protein requirement for maintenance was estimated to be 1.01 g kg ABW?1 day?1.  相似文献   

16.
An 8‐week growth trial was conducted using a 2 × 3 factorial design to evaluate the effect of substitution of fishmeal (FM) by rendered animal protein blend [APB, comprised of 400 g kg?1 poultry by‐product meal, 350 g kg?1 meat and bone meal, 200 g kg?1 hydrolysed feather meal (HFM) and 50 g kg?1 spray‐dried blood meal] in diets of Siberian sturgeon, Acipenser baerii Brandt. Two isoenergetic control diets were formulated to contain two different protein levels [high‐protein control (400 g kg?1), with 483 g kg?1 of FM] and [low‐protein control (360 g kg?1), with 400 g kg?1 of FM]. At each protein level, dietary FM protein was replaced by APB at 75% and 100% levels and supplemented with crystallized essential amino acid under ideal protein concept. The six diets were named as HC, HAPB75, HAPB100, LC, LAPB75 and LAPB100, respectively. No significant differences were found in weight gain rate (WGR) and specific growth rate (SGR), but fish fed with the low‐protein diets showed higher feed intake and feed conversion ratio. Plasma growth hormone and insulin‐like growth factors I of each group were not significantly different (P > 0.05). The whole‐body composition and liver composition were not affected by dietary protein levels, replacement or their interaction. Muscle protein and lipid contents of fish fed with diet LAPB100 were significantly lower than those of HC group. Digestibility of nitrogen (N) and phosphorus (P) were reduced with higher APB inclusion levels, but productive N and P values of all groups were not different. Lower N and P intake induced lower nutrients losses (P < 0.05). The results suggested that dietary protein level could be reduced to 360 g kg?1 from 400 g kg?1 without affecting WGR or SGR and significantly reduced nutrients lose. Furthermore, dietary FM protein can be totally replaced by APB in feed formulation either at 400 g kg?1 or at 360 g kg?1 protein level.  相似文献   

17.
In order to evaluate the effects of dietary protein and lipid levels on the growth, feed utilization and body composition of Heterotis niloticus fingerlings, a factorial experiment with three replicates was conducted. Six experimental diets containing three crude protein levels (28%, 32% and 36%) and two crude lipid levels (6% and 13%) were tested. Heterotis niloticus (2.34 g) were fed with the diets to apparent satiation, twice a day. For 56 days, weight gain (WG), specific growth rate (SGR), feed efficiency (FE) and protein retention (PR) were significantly affected by dietary protein and dietary lipid levels respectively (P<0.01). The highest WG, SGR and FE were observed for fingerlings fed the diet containing 36% protein and 6% lipid, but no significance difference was found between groups fed with the following diets: P28L13 (28% protein and 13% lipid), P32L6, P32L13 and P36L13. A significant interaction between dietary protein and lipid was observed for WG, SGR, FE and PR. The whole‐body protein, lipid, moisture and ash content were not significantly affected by dietary lipid levels, but body protein and lipid content were significantly affected by dietary protein. The dietary protein‐sparing effect was clearly demonstrated when the dietary energy of lipid increased from 17 to 19.6 kJ g?1 at 28% crude protein on H. niloticus.  相似文献   

18.
The present study investigated the optimum dietary protein level for the maturation of adult Pangasianodon hypophthalmus broodstock. Four isocaloric diets containing 250, 300, 350 and 400 g kg?1 of protein levels were prepared and presented to triplicate groups of fish. The fish (mean weight 770 ± 17.23 g and 712 ± 23.42 g for females and males respectively) were stocked in outdoor canvas tanks (4 m × 1 m × 1 m) at a stocking density of 20 fish/tank with a male: female ratio of 1:4. The fish were fed the test diets to satiation twice daily for 6 months. Gonadosomatic index (GSI) and fecundity were similar among fish fed dietary protein levels, higher than those fed on the 250 g kg?1. Final weight, weight gain, oocyte weight were significantly highest (< 0.05) for the fish fed 350 and 400 g kg?1 dietary protein treatments. Only the 350 g kg?1 dietary protein treatment resulted in significantly best ovipositor diameter and % ripe egg. Amino acid levels were highest in the muscle followed by the oocyte and liver of fish fed 350 and 400 g kg?1 dietary protein levels. The present results suggested that a dietary protein level of 350 g kg?1 can be recommended for the development of P. hypophthalmus broodstock.  相似文献   

19.
A 3 × 5 factorial design including three lipid levels (100, 130 and 180 g kg?1 diet, based on dry matter) and five dietary protein levels (370, 420, 470, 520 and 570 g kg?1 diet, based on dry matter) was conducted to investigate the optimum dietary lipid and protein requirements for Rutilus frisii kutum fingerlings. Triplicate groups of 80 kutum (500 ± 60 mg initial weight) were stocked in 250‐l tanks and fed to apparent satiation thrice daily for 8 weeks. The results showed that the growth performance and feed utilization were significantly (P < 0.05) affected by dietary protein and lipid levels. Weight gain, specific growth rate and feed conversion ratio of kutum improved significantly with increasing protein level from 370 to 470 g protein kg?1 diet, but there was a significant decrease in growth parameters with increasing protein level from 470 to 570 g protein kg?1 diet. Also, the higher values of weight gain, specific growth rate and better feed conversion ratio were observed for fish fed diets containing 130 g kg?1 lipid diet. The results of this study showed that diet containing 420 g kg?1 protein and 130 g kg?1 lipid with a P:E ratio of 19.22 mg protein kJ?1 of gross energy is optimal for kutum fingerlings.  相似文献   

20.
The effect of varying dietary levels of defatted soybean meal on the growth and survival of mrigal, Cirrhinus mrigala (Hamilton) was investigated. In a feeding trial of 90 days, three experimental diets containing soybean meal at 200, 300 and 400 g kg?1 level of incorporation were fed to quadruplicate groups of 10 fish each. The conventional feed used in India, consisting of a mixture of groundnut oil cake and rice bran in 1 : 1 ratio served as the control. Best growth in terms of percentage weight gain, specific growth rate, protein efficiency ratio (PER), feed conversion ratio and survival rate was obtained for the test diet with 354 g kg?1 crude protein and with 400 g kg?1 soybean meal inclusion level. However, no statistical significant difference was observed between the three soybean‐based diets, except for PER and survival rate. Soybean meal is an easily available, acceptable and cost‐effective protein source in formulated feeds for Indian major carps. The results of the present study indicate that a diet of 350 g kg?1 overall protein with soybean meal included at 400 g kg?1 can elicit good growth response and survival in mrigal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号