首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experiment was conducted in field experiment plot to investigate nitrogen transportation from hulls of pods in different periods at early stage of siliqua developing and effect of KH2PO4 and MgSO4 application on it using 15N-urea.
More than 80 % of 15N applied on the surface of pods at lower terminal during flowering was recovered from all pods one month after flowering, most of them were still in the hulls of labelled pods, 17-27 % of l5N applied was transported into seeds, a small amount was transported to pods at upper terminal, a little amount was found in pods at branch. More l5N applied in middle period of flowering was transported to pods at upper terminal and branch than those applied in early period of flowering. It should be further investigated to conclude how will be going on transportation of nitrogen from hulls as preceding of siliqua developing towards maturity of seeds and its difference between 15N applied in more different periods.
Application of KH2PO4 and MgSO4 with 15N-urea of surface of pods promoted transportation of 15N into seeds from hulls, effect of MgSO4 was more notable.  相似文献   

2.
Nitrogen transportation from different organs was investigated by labelling pods, leaves and internodes of upper stem with 15N-urea during flowering. Labelled plants were harvested one month after flowering and determined the amount of 15N in relative parts. The results of the experiment show the directions of 15N applied in different organs during flowering. Transportation of 15N applied in pods of lower terminal of the main stem and first branch was mainly directed to seeds inside the labelled pods, about 17 % of 15N entered into seeds 7 days after last labelling, a little transportation each other between the branch and terminal was found, more than 80 % of 15N applied on leaves during flowering was transported out of the leaves after flowering, 35 % and 67.93 % on average was translocated in pods for early and late flowering, respectively, while 55.97 % of 15N applied on surface of internodes of upper stem below terminal was found in pods. It was corroborated that nitrogen transportation also occurs within pods by labelling different parts of pods, much greater amount of nitrogen was transported from lower part to upper part of pods than those in opposite direction.  相似文献   

3.
Ten charges of 15N-labelled straw with different C/N ratios were incubated with lightly loamed sand at 25 °C and 50 % of the maximum water capacity. At the start of the 18-week incubation, mineral nitrogen was added and the 15Nmin (NH4 and NO3-N) content was determined six times during the course of the experiment. A slow release of 15N was observed. After 111 days, between 2.5 and 13.0% of the total applied 15N was mineralized. The addition of ammonium sulphate caused an increasing degradation of organic N compounds of the straw material even during the first weeks. Finally, between 6.4 and 33.3 %15N was released. The 15N release only partially shows the straw degradation.  相似文献   

4.
A lysimeter trial is described in which the fate of 15N was monitored in a sand, loam and clay soil by using it over a period of 6 years. The following results were obtained.
1. The uptake of fertilizer nitrogen by plants, determined by using 15N, is lower than by using the conventional method ("difference method"). Nitrate 15N is better utilized by the plants than is ammonium 15N. The total nitrogen uptake only gives hints of these differences.
2. The extent to which plants utilize fertilizer 15N is between 38 and 58%; in the case of the method of differences this figure is between 48 and 68%.
3. Plants remove more nitrogen from the soil when fertilizer N is applied than when without fertilization. The influence of these two nutrient forms is of subordinate significance.
4. After a trial period of six years between 26 and 54 % of the fertilizer 15N remains in the soil. The resulting sequences are clay > loam > sand > and ammonium > nitrate.
5. The immobilization of the fertilizer 15N is most pronounced in the first four years but then decreased considerably; in the case of the sandy soil it is then even slightly regressive.
6. The biggest part of the 15N is deposited in the uppermost layer of the soil. The amount of 15N in the deeper layers is diminished appreciably. The type of soil has a greater influence than the form of nitrogen.
7. If the amount of fertilizer N left in the soil is compared with the N losses from the soil's reservoir (plants' uptake, leaching) there is a negative balance for the soil nitrogen which mainly is determined by the type of soil.  相似文献   

5.
Rice ( Oryza sativa cv. Koshihikari) seedlings were grown in a sandy dune soil in pots with a basal dressing of N (0.5 g N), P and K. Two N treatments were applied, a +N treatment in which a top dressing of 15N-labeled 0.5 g N was supplied on July 20 and a −N treatment in which no additional fertilizer was supplied. During the grain-filling stage from August 6 to 13, plants were subjected to one of three temperature treatments; controlled low temperature, LT (day/night 28/23 °C), controlled high temperature, HT (35/30 °C) and uncontrolled glasshouse temperature, UT (day/night averages, 38/26 °C). All plants were then exposed to 13CO2 for 1 h on August 11 in a growth chamber at 25 °C. On August 13, all plants were harvested and the 13C and 15N abundances and starch and sugar concentrations in the ears, shoots and roots were determined. The 13C content of the ear was lower in UT than in LT irrespective of the +N or −N treatment. The translocation of 15N to the ears was also slightly depressed in UT compared with LT. Under high-temperature conditions (HT and UT), the starch content per plant was reduced for −N, but for +N, it was not significantly different among the temperature treatments. A high accumulation of sucrose was observed in all plant parts under UT conditions. It is suggested that extreme high day temperatures during the grain-filling period may reduce starch synthesis in the grains and, especially so under N-deficient conditions. High temperatures also induce an accumulation of sucrose and a decrease in carbon and nitrogen transport from the shoots to the ears via the phloem.  相似文献   

6.
氮肥后移对不同氮效率水稻花后碳氮代谢的影响   总被引:9,自引:0,他引:9  
以氮高效品种(德香4103)和氮低效品种(宜香3724)为材料,利用~(13)C和~(15)N双同位素示踪技术和生理生化分析方法,采用盆栽及大田试验,在施氮量180 kg hm~(–2)条件下,设置3种氮肥运筹方式,基肥∶蘖肥∶穗肥比例分别为5∶3∶2(N_1)、3∶3∶4(N_2)、3∶1∶6(N_3),以及不施氮(N_0)处理;研究其对不同氮效率水稻花后氮碳代谢的影响,并探讨氮肥后移下花后光合同化物及氮素累积、转运、分配的共性响应机制及其与产量的关系。结果表明,品种、氮肥运筹对花后氮素利用特征、光合同化物分配、生理特性及产量均存在显著影响。氮高效品种与氮肥后移量占总施氮量的40%、氮素穗肥运筹以倒四、倒二叶龄期等量追施相配套(N_2处理),能促进花后氮素累积,提高剑叶光合速率和1,5-二磷酸核酮糖羧化酶、谷氨酰胺合成酶等碳氮代谢关键酶活性,促进叶片、茎鞘、根系、穗各营养器官光合同化物及氮素累积与转运,进而提高产量及氮肥利用率,为本试验氮高效品种配套的氮肥运筹优化模式。花后不同氮肥运筹下,氮高效品种光合同化物、氮素的累积与转运,分别较氮低效品种高7.78~12.75 mg ~(13)C株~(–1)、15.14~18.78mg ~(15)N株~(–1);且叶片转运量分别较氮低效品种高1.70~2.93 mg ~(13)C株~(–1)、2.21~4.55 mg ~(15)N株~(–1),茎鞘转运量分别较氮低效品种高1.70~2.93 mg ~(13)C株~(–1)、0.05~1.14 mg ~(15)N株~(–1);而穗部氮高效与氮低效品种~(13)C同化物分别增加31.04~44.68 mg ~(13)C株~(–1)(占~(13)C总量的42.04%~46.38%)、24.94~34.26 mg ~(13)C株~(–1)(占~(13)C总量的36.45%~41.36%),~(15)N则分别增加35.56~46.58 mg ~(15)N株~(–1)(占~(15)N总量的61.82%~82.93%)、27.37~31.57 mg ~(15)N株~(–1)(占~(15)N总量的58.04%~68.31%)。氮高效品种花后具有强光合碳同化、氮素的协同吸收转运特征,以及碳氮代谢能力,来满足籽粒灌浆期对光合同化物及氮素的利用,是氮高效品种相对于氮低效品种高产、氮高效利用的重要原因。此外,从花后不同器官碳氮比(C/N)变化值综合两品种高产及氮肥高效利用来看,N_2处理下,齐穗至成熟期叶片、穗部C/N提高幅度与该时期茎鞘、根系C/N降低幅度一致,据此可将C/N作为水稻高产及氮肥高效利用同步提高的评价指标,这具有重要的参考价值。  相似文献   

7.
15N-aided investigations were conducted to ascertain the Nj fixation and the nitrogen (N) contribution by mungbean ( Vigna radiata L.) and groundnut ( Aracbis hypogaea L.) when intercropped with maize ( Zea mays ). The study involved growing seven genotypes of the above legumes with maize in alternate rows in two separate experiments. A sole crop of maize was used as the reference crop to determine N2 fixation by the 15N methodology. Significant genotypic differences in pod yield and stover N content were observed in intercropped mungbean and groundnut. The percentage N derived from the atmosphere showed a genotypic variation of 31 to 45 % (7 to 10 kg N2 fixed ha−1O in mungbean and 47 to 69 % (9 to 18 kg N2 fixed ha−1) in groundnut. Harvest index for N varied from 58 to 77 % in mungbean and 55 to 75 % in groundnut. In groundnut, the uptake of soil N was significantly affected by the genotype. Assuming that the N contribution to the soil by the helow-ground plant parts was negligible, the removal of seeds at maturity resulted in a negative N balance in the soil in all the genotypes of mungbean. In groundnut, some genotypes produced a positive N balance in the soil. Owing to high N2 fixation capacity and low harvest index for N, groundnut showed a greater N supplementing ability than mungbean.  相似文献   

8.
Nitrogen utilization and uptake patterns of wheat was studied using 15N labelled fertilizer at four rates of application. Plants harvested at maximum tillering and at flowering indicated that plant N levels stabilized with time. Fertilizer N uptake and utilization of added fertilizer increased with time. However, uptake of soil N was not affected by rates of fertilizer at early stages. Increases were observed only at higher rates at the later harvest.  相似文献   

9.
N-uptake and N utilization of different fertilizer types by winter wheat – pot experiments with 15N
The efficiency of top dressing urea, ammonium nitrate and ammonium sulphate fertilizers on winter wheat grown on loamy sand and loessial black soil was studied. At a rate of 0.5 g N per pot on the loamy sand 20 % volatilization losses of NH3 occurred with urea and 10 % on the loessial black soil with urea resp. ammonium sulphate.
The grain yields an N removal correspond to these results. At an amount of 1.6 g N per pot the N-uptake of 15N ranged from 0.589 g (urea) on sandy soils to 1.279 g (ammonium nitrate) which agrees with 76 % an 91 % of the total N uptake. On black soil 0.675 g (urea) and 1.038 g (ammonium nitrate) or 44 % and 51 % of the total uptake are found.  相似文献   

10.
Field bean planes cultivar Nadwiślański were submitted to soil drought (30 % of field soil water capacity) for 5 days at the stage of pod formation (A) and of rapid pod growth (B) and then exposed for 20 minutes to 14CO2. Radioactivity of leaves, stems, roots, and pods or pod shells and seeds was measured 1, 5, 24 and 48 hours after exposition.
In both stages soil drought reduced by about five times total CO2 assimilation, mainly owing to lower activity of the photosynthetic apparatus and also, though less so, to reduced leaf growth. Photosynthetic activity referred to the dry weight of the leaves dropped to 22-35% of controls. Accumulation of photosynthetates in generative organs was much less depressed than 14CO2 assimilation. 48 hours after exposition to 14CO2 of drought treated plants, the contents of 14C of pods in phase A, and seeds in phase B, amounted to respectively 24% and 36% of assimilated 14C and equalled 91.5% and 74% of the corresponding values for controls.
The progressive decline of radioactivity in leaves and stems after 14CO2 exposition was distinctly correlated to the rise of radioactivity of generative organs both in soil drought treated plants and in controls. Slightly lower values of correlation coefficients in drought treated plants may indicate impairment under drought conditions of synchronization in processes of unloading and accumulation of assimilates.
In plants drought treated in phase A the ability to dissimilate 14C was reduced to about 59% of that in controls, but when drought was applied in phase B, dissimilation rate was about three times as high.  相似文献   

11.
The effect of varying seed rates (100–1000 seeds m−2) and nitrogen fertilizer (0–60 kg N ha-1) applied either in a single basal dose or in splits was investigated on a tall elongating, photosensitive rice variety, Nalini, under semi-deepwater conditions (0–100cm) during 1993 and 1994 at Cuttack, India. Seedling emergence was higher in 1993 (53.9 %) than in 1994 (44.1 %) and it increased proportionately with increasing seed rate, Increase in the number of tillers and panicles m−2 at higher seed rates was associated with a corresponding decrease in panicle weight. Regression analysis indicated a decrease of 0.91–1.28g in panicle weight for an increase of 100 panicles m−2. The grain yield of rice was significantly higher at 400 seeds m−2 in 1993 and at 600 seeds m−2 in 1994 than at low seed rates but further increase in seed rate did not increase the yield. Application of N fertilizer increased the panicle number and thereby grain yield significantly. The effect of basal and split applied N at active or maximum tillering stages as well as between 30 and 60 kg N ha−1 was not significant on the grain yield. The results suggest that a basal dose of 30kg N ha−1 and seeding density of 400–600 seeds m−2, resulting in 40–50 % seedling emergence and 150–200 panicles m−2, each with 2.0–2.5 g weight, may be adequate for optimum productivity of rice under semideepwater conditions.  相似文献   

12.
Rape plants were labelled by applying (NH4)235SO4 to soil. Changes in content of 35S in various constituents in pods and grains were determined during siliquae development to exploit formation and accumulation of glucosinolates in oilseed rape. Content of 35S in glucosinolates expressed as μmol S/g.d.w. and its relative amounts in extractable forms in young siliquae were in constant level within one week after flowering, but either absolute content or relative content of 35S in glucosinolates increased largely by two weeks after flowering, thereafter the distribution of extractable 35S in glucosinolates of siliquae and grains increased linearly as proceeding of its development, 35S in extracts of grains almost was in form of glucosinolates after 8 weeks from flowering. Amounts of both 35S in glucosinolates and dry matter per pod increased linearly with time after flowering. According to the changes of amounts of 35S in other constituents per pod, it could be supposed that glucosinolates accumulated in seeds might be transported from other organs together with nutrients.  相似文献   

13.
Effect of heat stress on 14CO2 assimilation and translocation by different parts was investigated in Indian mustard ( Brassica juncea (L.) Czern.]. Heat stress reduced 14CO2 assimilation by leaves, stem and pods. Export of radioactive carbon from upper and lower leaves, upper and lower stem and stem of terminal raceme was inhibited in response to heat stress. Import of 14C-photosynthates into pods was also inhibited by heat stress indicating reduction in sink strength of the developing pods.  相似文献   

14.
A field study was conducted to estimate the nitrogen fixation by soybean [ Glycine max (L.) Merr.], using the A-value and the N-difference methods, and to examine the N partitioning within the plant. The cultivar Clark and its non-nodulating isoline (as reference crop) were grown in a silty clay (Typic Xerothent) soil, in 1991 and 1992. 15N-Labelled fertilizer was surface applied in solution, at rates of 20 and 100 kg N ha−1 to the nodulating and non-nodulating soybean, respectively. Plant samples were taken at full bloom (R2), beginning of seed growth (R5) and physiological maturity (R7). There was little nitrogen fixation at the early growth stages but it increased rapidly during the seed filling period. At R7 nitrogen fixed was estimated by the A-value method as 155 kg N ha-1 in 1991 and as 240 kg N ha−1 in 1992. The corresponding estimates by the N-difference method were significantly smaller. The seeds had a higher, and the vegetative parts smaller, proportion of fixed nitrogen compared to the whole plant. During the seed filling period, the translocation efficiency for fixed nitrogen was greater (93 % in 1991 and 85 % in 1992) compared to the N derived from soil (75 and 56 %, respectively). It was estimated that, after the harvest of pods, the soil was depleted by a net amount of 121 kg N ha−1 in 1991 and 90 kg N ha−1 in 1992.  相似文献   

15.
Effect of monoethanolamine on yield of crops
I. Studies on the effect of monoethanolamine on the grain yield and the nitrogen household in cereal plants (pot experiments)
The effect of monoethanolamine (EA, applied as foliar spray, 10 mg per pot) on grain yield and yield components was investigated in pot experiments with spring barley, winter wheat, and winter rye. Under conditions of a moderate drought stress the applied EA increased the grain yield of spring barley from 5 % to 7 % (significance only at α= 0.05). A stimulating effect of EA on the grain yield of winter wheat and winter rye was also obtained.
The positive influence of EA on the grain yield of spring barley was reproducible under the conditions of a limited water supply in small-scale plot experiments (increase of yield about 9 %).
In case of spring barley and winter rye the increase of the grain yield by EA, applied at growth stage 31 (= DC 31) was connected with a greater number of ear-bearing tillers. The increase of the winter wheat yield resulted from more grains per ear of the tillers.
The enhanced formation of tiller grain mass and total tiller biomass by EA was in correlation with a higher nitrogen import into tillers (r = 0.8+). Since an export of N from the main shoots into the tillers was not observed a higher N uptake (≥ 6 %) was calculated from N balances. After a fertilization with 15N-labelled fertilizers the additional 15N uptake was 13 % to 20 %.
Possible stress reducing activities caused by EA are discussed.  相似文献   

16.
Effect of plant growth regulators Naphthalene acetic acid (NAA), Gibberellic acid (GA3) and Kinetin on 14CO2 assimilation, partitioning of 14C into major biochemical fractions and translocation of assimilates was studied in different parts of Indian Mustard ( Brassica juncea ) at late ripening stage. Leaves, stem and pod walls are photosynthetically active and are important sources for seed filling. NAA and kinetin increased the 14CO2 assimilation rate in all the three photosynthetically active parts. All the three growth regulators increased the export of 14assimilates out of source organs and increased the movement of assimilates into the reproductive parts (pods). The increased movement of photoassimilates into the developing pods may be due to the stimulation of sink activity by the growth regulators which resulted in the higher demand for photoassimilates. It was suggested that growth regulators may increase yield by altering distribution of assimilates in the mustard plants.  相似文献   

17.
The role of leaves, stem and reproductive parts in 14CO2 fixation and subsequent photosynthate translocation was studied in Indian mustard ( Brassica juncea L.) at three growth stages. The data indicated that leaves, stem and pods are important sources of photosynthates for seed filling. At bud emergence stage leaves are the principle site of 14CO2, fixation. The contribution of leaves declines at subsequent stages, where as the contribution of pod walls increased from bud emergence stage to ripening stage. The contribution of the stem remains more or less constant at all three growth stages studied. Although stem can fix 14CO2, at bud emergence and flowering stages it imported 14C-photosynthates from leaves. However, stem exported photosynthates during subsequent growth stages.  相似文献   

18.
Investigations about the distribution of assimilates during flowering in broad beans ( Vicia faba L.)
The distribution of assimilates during flowering was studied on single plants exposed to 14CO2 in the field. The plants were harvested 1, 3, 15 days after exposition and at ripening. Results:
1. At the begin of flowering the nodes with flowers assimilated much 14C with a tendency of higher contents in the more above situated nodes. The concentration of 14C was similar in blades, stalks and flowers.
2. The assimilates incorporated after 24 hours were only to a small amount translocated afterwards. Only 3 % went to the apical region. An intensive restorement out of the blades took place at the time of ripening.
3. In the midst of flowering the concentration of 14C was lower in the nodes with open flowers than in those with shut or with pods. At that time pods are already strong sinks that withdraw assimilates from blades and stalks.
4. At the time when large and small pods are growing on the lower and middle nodes, the nodes in the apical region will be deprived of assimilates (effects of dominance).
5. Roots and nodules had low but stable contents and concentrations of 14C during flowering. These descended distinctly at ripening.  相似文献   

19.
The pea weevil, Bruchus pisorum (L.), is one of the most intractable pest problems of cultivated pea, Pisum sativum L., in the world. This study investigated the transfer of pea weevil resistance from two accessions (PI 595946, PI 343955) of wild pea, Pisum fulvum Sibth. & Sm., to interspecific populations derived from crossing these accessions with a weevil-susceptible pea cultivar ('Alaska 81'). Partial life tables characterized weevil stage-specific mortality and survivorship on parents and interspecific progeny in two glasshouse trials. Larval mortality rates on pods (F3 plants) of several F2:3 families were between 36.0% and 52.9%. These means were statistically similar to mean mortality rates on pods of resistant parents (45.4% and 46.2%), but significantly greater than mean rates on the susceptible parent (1.2% and 10.6%). Pod surface characteristics contributed to high neonate larval mortality on pods of resistant parents and interspecific progeny. Seed resistance was not broadly transferred to interspecific progeny [revealed by high weevil survivorship in seeds (means mostly >80%) and high seed damage ratings of 3–5 where ratings of 1–2 denote resistance (production of resistant seed averaged 4.2% to 22.8%)]. Estimates of total weevil mortality on pods and seeds of eight F2:3 families were 50–70%. Thus, weevil resistance in the Pisum secondary gene pool can be transferred to interspecific progeny, thereby providing a potential avenue to develop weevil-resistant pea cultivars.  相似文献   

20.
Little is known about the effect of fertilization on the N uptake of sunflowers. A 42 factorial trial with 0, 60, 120 and 180 kg N ha−1 and 0, 15, 30 and 45 kg P ha−1 was conducted over three years. The N content and concentration of leaves, stems and capitula were determined at three growth stages. High N levels increased the N content and concentration of all plant parts at all growth stages sharply. High P levels increased the N content of all plant components through better growth. P has an inconsistent effect on N concentration but tended to decrease it. After flowering the crop assimilated 20 to 25 % of the total N. This implies that N applied can still be applied and utilized by the crop at a late stage. This should be substantiated by further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号